
A Nonblocking Algorithm for the Distributed Simulation
of FCFS Queueing Networks with Irreducible Markovian

Routing l

Manish Gupta and Anurag Kumar
Dept. of Electrical Communication Engg.

Indian Institute of Science
Bangalore, 560 012, INDIA

e-mail: manish, anuragOece.iisc.ernet.in

Abstract

In this paper we consider the distributed simulation
of queueing networks of FCFS servers with infinite
buffers, and irreducible Markovian routing. We first
show that for either the conservative or optimistic syn-
chronization protocols the simulation of such networks
can prematurely block owing to event buffer exhaus-
tion. Buffer exhaustion can occur in the simulator
whether or not the simulator is stable, and, unlike
simulators of feedforward networks, cannot be pre-
vented by interprocessor flow control alone. We pro-
pose a simple technique (which we call compactfica-
tiori), which, when used in conjunction with interpro-
cessor flow control, prevents buffer exhaustion. This
leads to a general algorithm, for both conservative and
optimistic synchronization, that allows one to simulate
the queueing network within the finite amount of mem-
ory available at each processor. For each algorithim
presented we also provide the proof that it cannot get
deadlocked owing to buffer exhaustion.

1 Introduction

In distributed discrete event simulation, the simulation
of a physical process (PP) is partitioned into several
logical processes (LPs) which are assigned to several
processing elements. The time evolution of the sim-
ulation at the various LPs is synchronised by means
of time stamped messages that flow between the LPs.

This work was supported by the Education & Research Net-
work (ERNET) Project of the Department of Electronics, Govt.
of India.

We are concerned with the situation in which the mes-
sages are not just for synchronisation [2], [11], but also
carry "work" which when done modifies the state of
the receiving LP. A typical example is the distributed
simulation of a queueing network model, in which one
or more queues is assigned to each LP, and the mes-
sages indicate the motion of customers between the
queues in the various LPs. The simulation makes cor-
rect progress if each LP processes the incoming events,
from all other LPs, in time stamp order [2].

From LR,

From LP,

From LPn

Event
Sequencer

(ES)

Output
Buffer (OB)

Logical Process (LP)

Figure 1: Schematic View of a Logical Process

We view each LP in terms of the model shown in Fig-
ure 1 [15]. Each LP comprises an input queue for
each channel over which it can receive messages from
other LPs. Since the messages must be processed in
time stamp order, the event processor (EP) must be
preceded by an event sequencer (ES). The messages
must emerge from the ES in time stamp order; to
achieve this the ES implements an event sequencing
algorithm. Event sequencing algorithms fall into one
of two classes: conservative or optimistic. A conserva-
tive ES allows a message to pass through only if it is



sure that no lower time-stamped event can arrive in the
(real-time) future [1], [11]. An optimistic ES, on the
other hand, lets messages pass through without being
sure that no lower time-stamped message can arrive
in the future. If then a lower time-stamped message
does arrive, corrective action is taken resulting in a
rollback of the simulation [2], [6]. Another important
component (though not always explicitly shown) is the
Output Buffer (OB) which contains events that have
been processed in the EP, and whose output events
are waiting (events may have to wait because of flow-
control between processors, etc.) to be sent to their
destination.

Queueing Networks are widely used as a modelling
tool in processor networks, manufacturing systems,
etc. To get reliable measures of performance for com-
plex queueing models, we may have to simulate these
models for a "long" time and would not like the simu-
lation to halt prematurely. We show in this paper that,
in fact, for the distributed simulation of FCFS queue-
ing networks with irreducible Markovian routing and
infinite buffers, such an undesirable thing can happen.
We show that the cause for the halting or blocking
of the simulation is that the number of events in the
system can become more than the available storage
space and the simulation has to stop. This problem
can be aggravated if some of the queues are working
close to saturation. Both the conservative and the op-
timistic mechanisms have this problem. In the case of
the optimistic mechanism our work is different from
the usual memory management schemes [6], [7], [9],
[10], [13], where the actual problem is the large and
inefficient use of memory by the Time-Warp proto-
col. In the case of conservative methods our work can
be said to be related to the problem of nonoptimality
of space (see [7]) in asynchronous conservative simula-
tion. This problem has not been discussed in literature
and we feel that it is important for a simulationist to
be aware of it in the detail presented in this paper.
We show that, without modification, both the mech-
anisms (conservative and optimistic) are inadequate
for the simulation of FCFS queueing network models
with infinite buffers and irreducible Markovian rout-
ing. We, in this paper, also provide a solution for this
inadequacy such that with both the mechanisms the
simulation can run without blocking, only needing a
finite amount of memory at each processor. The out-
line of the rest of the paper is as follows. In Section 2
we see how flow control between LPs helps to prevent
instability of a distributed simulator of a feedforward
queueing network and cannot help if we simulate a
queueing network with irreducible routing. Section 3

considers a simple example to motivate the general al-
gorithm for conservative simulation, which is presented
in Section 4, with a fixed amount of memory at each
processor. In Section 6 we carry over the above dis-
cussion to the optimistic paradigm. Some conclusions
and details are left for discussion in Section 7.

2 A Key Difference

By way of example, we shall first bring out a key
difference between the distributed simulators of open
feedforward queueing networks, and open queueing
networks with irreducible1 Markovian (where a cus-
tomer goes after finishing current service does not de-
pend upon the sequence of queues visited prior to the
present queue) routing.

queuel queue2

Figure 2: Jackson Network: Two Queues in Tandem

LP
Events come out

of LP i at rate Y!

Figure 3: A Simulator for the Queueing Network in Fig-

In Figure 2 we show a feedforward Jackson queueing
network - two queues in tandem. The second queue
is given to be unstable2 (see [17] for a formal defini-
tion of stability). One way to simulate the queueing
network of Figure 2 is depicted in Figure 3.

Any customer in any queue has a nonzero probability of
going to any queue (including the present queue), once it finishes
service at the current queue.

Informally speaking, by instability for any queue we mean
that, the number of customers/events in that queue grow un-
boundedly with time.



We show in Figure 3 two LPs. LPi simulates queue i
(cf. Figure 2)3 and lies on a processor with processing
rate z/j events per second, for i = I , 2. Note that LP\
also simulates the external Poisson arrivals to queue 1.
It is given that v\ < 1/2- Now note that both LPs
cannot be unstable. If we had not chosen v\ < 1/2,
we still could have precluded instability for the sim-
ulator by having flow control between the two LPs.
In essence one can choose processor speeds and apply
flow control between processors to preclude instability
of the distributed simulator even though the feedfor-
ward queueing network simulated is unstable. Thus
the simulator can be run indefinitely without any re-
quirement of more buffer space than already present.
(We point out that it has been shown (see [15], [16])
that conservative simulators of feedforward queueing
networks are unstable and thus flow-control is neces-

Next consider its distributed simulator shown Figure 5.
LPi simulates queue i and is situated on a processor
with rate z/j, i = 1,2. Note that, the infinite queue at
LP\ models the external arrivals which can be gener-
ated when necessary. It is interesting now to observe
that the simulator in Figure 5 is unstable no matter
what be the processing speeds {z/j, i = 1,2} we choose
and whether we have flow control or not. This follows
from our result in [4]. Indeed we have the following
result:

Theorem 1 In a conservative distributed simulator of
an unstable queueing network of FIFO queues, with in-
finite buffers and irreducible Markovian routing, the
buffers at one of the processors eventually get ex-
hausted and the simulation must stop prematurely.

Lli unstable

— >- ( ) — -
U-2

Cr (l-p)
queuel queue2

Figure 4: Jackson Network: Two Queues with a Feed-
back

Sketch of Proof: The result follows from the main
theorem in [4], that if the queueing network is unsta-
ble, the simulator is unstable (with or without inter-
processor flow-control) with respect to the number of
events in the system. Intuitively speaking, the large
queue lengths in the unstable queueing network show
up as a large number of events in the simulator. D

3 Motivation for an Algorithm

-*-!!!1 1 1

Infinite
queue

i
/^ "x

1 D LPLHi Lr2

2
/̂ "N/ y_

Figure 5: A Simulator for the Queueing Network in Fig-
ure 4

Now we contrast the above situation with the dis-
tributed simulator of a queueing network with irre-
ducible routing. Consider the network in Figure 4. It
is a Jackson network with queue 2 given to be unsta-
ble. External arrivals to queue 1 are at rate A. The
service rate at queue i is ^i, i = 1, 2. At queue 2 the
events after service leave the system with probability
1 — p or go to queue 1 otherwise.

This is only an example; the analytical approach applies
to more general mappings than the simulation of one physical
queue per processor.

We shall use the example presented in the previous
section and show how we can achieve stability of the
simulator in Figure 5. This will act as a spring-board
for the following section where we present the general
algorithm.

We assume for expository simplicity that queue 2 in
Figure 4 is unstable, and after time t = 0 there is no
idle period for queue 2 and the queuelength goes to
infinity. Thus the server at queue 2 is always busy,
and the output stream after the first departure at
queue 2 is a Poisson process with rate ^2- This fact
can be capitalized upon for redesigning the algorithm
for the simulator. At LP% all those events that have
finished service need not be immediately despatched
to their destination. But if we do not want to send
them immediately, we need to store them at LP% it-
self, and, if nothing else is done, large queues in PP
will still appear as a large number of events at LP^.
Let e j , 62, . . . , fifc be the first k events in succession that
finish service at LP% and let us assume that they all
have to be routed to LP\. Obviously, timestamp(ei)
< timestamp(e2) < . . . < timestamp(efc). Again note
that these epochs are a fragment of a Poisson process.



Suppose we keep the triple - the timestamp of ei, the
random number generator seed used to generate the
service sample that the customer corresponding to e\
receives at queue 2, and the number k — then we need
not know anything else. If at a later time LP% wants to
send say e\ and 62 to LP\ then we can generate these
two events using the triple, and after generating the
two events the triple gets updated to - the timestamp
of 63, the new state of the random number generator,
and the number k — 2. Now consider the scenario where
after sending e\ and 62 to LPi, e/.+i finishes service
at LP%. The triple can now be simply updated by in-
crementing its third coordinate, i.e., changing k — 2 to
k — I . With this technique LP% can send LP\ events
(that are to be routed to LP\) on demand from LP\.
This way LPi's (or LP^s) buffers do not "overflow"
(to be proved below for the general case). Note, al-
though the space required to hold events/messages is
bounded, yet the integer counters can still overflow if
the simulator is allowed to run indefinitely. Two points
to be noted are that (i) the computational effort per
event at LP% is higher than in the original conservative
algorithm, and (ii) some kind of flow control is needed
between LP\ and LP%. Obviously this technique is
not computationally efficient, but we must appreciate
that if we do not simulate this way (i.e., used our old
distributed conservative simulation paradigm) we will
surely run out of the buffer space (needed for storing
events) at one of the processors, and then be forced to
stop.

An important observation is that if in Figure 4 we
chose a stable Jackson network, it is still not possible to
simulate the network indefinitely because when large
queue lengths occur in the queueing network, or, the
network behaves as if it is unstable (this has a nonzero
probability), then the simulator also shows the same
behaviour and hence has a nonzero probability for one
of its LPs to exhaust its buffer space, causing the sim-
ulation to end prematurely. We now present a theorem
that formalises this last observation:

Theorem 2 We assume that there is a nonzero
ability for the number of customers in the queueing
network to exceed any given number. In a conservative
distributed simulator of a stable queueing network with
FIFO queues, infinite buffers and irreducible Marko-
vian routing, the buffers at one of the processors even-
tually gets exhausted and the simulation must end in
finite time with probability one.

Sketch of Proof: By hypothesis there is a nonzero
probability for the number of customers in the queue-

ing network to exceed any given number. When even-
tually atypical behaviour occurs in the queueing net-
work it also induces a similar behaviour on its dis-
tributed simulator (this coupling can be seen more
clearly once we consider the key inequality in the main
result in [4]). Thus there is a nonzero probability for
the number of events in the simulator to exceed the
available buffers. This causes the simulation to stop
prematurely. D

Note that the above result is an asymptotic result; as
the running time of a simulation goes to infinity the
simulation will deadlock with probability one. In many
practical situations the probability of buffer exhaus-
tion over a finite simulation time may be negligibly
small.

4 Algorithm for the Conservative Case

In this section we present a simple technique, called
"compactification", which when used with the conser-
vative synchronization algorithm, allows one to sim-
ulate the queueing network within the given amount
of memory. In the following it will be seen that the
technique makes use of counters (which store integer
values) and during the course of the simulation the
value of the counter can be unbounded. Thus, though
our technique precludes the possibility of the queues
of events in the simulator from blowing up, yet it does
not allow the simulation to run indefinitely.

4.1 Assumptions

1. The events are identical in all respects except for
the timestamps that they carry.

2. For each queue of the queueing network sim-
ulated by an LP, there is a separate random
stream for generating the service samples, and
one for routing of the serviced events.

3. The queueing network simulated has First-In-
First-Out queues, with infinite buffers, and ir-
reducible Markovian routing.

4. Service times of customers in the queueing net-
work are nonzero with probability one (this is
necessary for a nonzero lookahead).

5. We simulate the work-in-the-system process (see
[8]) for each of the queues and therefore output
events can be immediately generated.



4.2 Algorithm to be added to the Basic Con-
servative Algorithm
Before we present the algorithm we define: Consider
some queue Q simulated by an LP. Let ei, e%, . . ., e/.
be the events corresponding to the departures from
Q. Assume that ej : i = 1, 2, . . . , k are served back-
to-back in the PP (see Section 3). The process of
compactly representing ej : i = 1, 2, . . . , k in the out-
put list of the LP (as we did in Section 3) is defined
as compactification.

OB

From

From LP

From

From LP4

EP

DD

Output Queues in OB

Figure 6: Partitioning of the events in the OB of an LP

Let the total number of LPs in the system be m, and
define C,P := {1, 2, . . . , m}. This following algorithm
is to be executed at each LPi, for i £ £P, in addition
to the basic conservative algorithm.

Algorithm : CON+ at LPt

1. LPi keeps a variable #sentj for each LPj (j G
£P) from which it receives events. #sentj cor-
responds to the number of tokens that LPi has
sent to LPj. Each time LPi receives an event
from LPj it decrements the corresponding vari-
able #sentj by one. Each time LPi sends a token
to LPj it increments the corresponding variable
#sentj by one.

2. LPi has a variable ^receivedj corresponding to
each LPj (j £ CP) to which it sends events. The
variable #receivedj keeps the number of events
that LPi can still send to LPj. Each time LPi re-
ceives a token from LPj it increments the corre-
sponding variable #receivedj by one. Each time
LPi sends an event to LPj it decrements the
corresponding variable #receivedj by one. LPi
sends an event LPj only if the corresponding
#receivedj is greater than zero.

3. For each queue of the queueing network simu-
lated by LPi, the LP maintains a separate queue

of output events in the OB4, i.e., the output
events (which correspond to the departures of
customers in the queues of the PP simulated by
LPi) are partitioned according to the queue of
the PP (which is simulated by LPi) to which
they belong (see Figure 6). The event buffer
space in the system is shared dynamically among
all the simulated queues. However, there is al-
ways an event worth of buffer space allocated to
each output queue. In Figure 6, we have shown
that the middle queue in the OB is empty but
still has one event worth of buffer space.

4. If LPi reaches a state where it has no tokens to
send to its sender LPs then it performs compact-
ification. Compactification may be done only
partially as and when required.

5. At the beginning of the simulation, LPi sends at
least one token to each LP that sends events to
it. Further distribution of the remaining tokens
may depend on the "particular" policy adopted.
After an event is sequenced and then processed
at LPi, the resultant output event

• may be immediately sent to the the des-
tination, in which case the event may be
removed from the event list,

• may go to an empty output queue,

• may be compactified with some event al-
ready in the output queue,

• could not be compactified with the last
event of the output queue in which it was
put.

Only in the first three cases a token should be
sent to the source LP of this event, if the source
LP does not have any token. Note that the
compactification of a processed event with some
event in the output queue results in freeing of an
event buffer space.

6. Events in the output list (corresponding to all
queues simulated) are sent to there destination
in the increasing order of their timestamp.

4.3 Algorithm CON+ does not Deadlock
It is to be noted that our algorithm works just like any
other conservative algorithm (e.g., there is some kind

4 As mentioned in the Introduction and shown in Figure 1, an
OB comprises those processed events in the event list of an LP
whose output event is yet to be sent to its destination LP. In the
conservative case an event can be deleted from the event list if
the corresponding output event has been sent to its destination.



of a deadlock avoidance or breaking mechanism oper-
ating to resolve deadlocks due to event synchroniza-
tion) but with the difference that at times it performs
compactification to create space to accommodate more
events. The only way our algorithm cannot work is if
a deadlock (due to buffer constraints) occurs. When
a deadlock occurs, no LP (in the whole system) is in
a position to output an event to any other LP and
all events which could be sequenced into the EP have
been done by every LP. Note that, as in the basic
conservative algorithm, this is possible because every
LP is eventually able to discover which events in the
ES it can process.

In the following proofs the names of events and their
timestamps shall be denoted by £"0, E\, etc., and de-
pending on the context it should be clear whether we
are referring to the event name or to its timestamp.
For example, E\ < £"0 means that the timestamp of
EI is strictly smaller than the timestamp of E%.

Lemma 1 Suppose the system deadlocks, then the
smallest timestamped event in the system is in the OB
of some LP.

Proof: Suppose not, then the smallest timestamped
event (which we call EO) is in the ES of some LP
(say LPo). It could not be processed because LPo
must process at least one event (say EI) before it can
process Eg. This means that the event EI which is to
be sequenced before £"0 is n°t yet in the ES of LPo,
and also EI < EO- Let £2 be the predecessor event of
E\, i.e., £2 will eventually come as E\ to LPo. Clearly
£2 < EI and hence £2 < £Q — a contradiction. D

Proof: Suppose that £Q (the smallest event in the
system), in the OB of LPo, cannot be sent to LPi,
its destination. By Lemma 2, since £Q is next event
that LPo should send next, the only possibility is that
LPo does not have any token from LP\. The above
situation together with the algorithmic Point 5 implies
that the last event (say EI) that was sent by LPo to
LP\ is either (1) in the corresponding event sequencer
queue of LPi, or, (2) it has been processed. The former
case can be outrightly rejected because it implies that
EO is not the smallest event in the system as EI <
EO- The second case further implies that E I , after
being processed, did not go to an empty output queue,
nor could be compactified with the last event in the
nonempty output queue in which it was put. Letting
£3 denote the last event of the output queue, we have
E\ > £3. Observe that the customers, say C\ and 6*3,
corresponding to E\ and £3 pass through the same
queue in the PP, and the arrival epoch of C\ (i.e.,
EI) is later in virtual time than the departure epoch
of C*s (i.e., £3). But this means that £Q is not the
smallest event in the system because £Q > £1 - which
is a contradiction. D

System makes progress if the GVT (Global Virtual
Time) makes progress. But GVT is really the time
stamp of the smallest timestamped event in the sys-
tem. If at any time this event gets blocked (forever)
then GVT cannot make progress and the system is
in a deadlock. Note it can be shown that, due to
the irreducibility of routing in the queueing network
simulated, the whole system will come to a deadlock
if the smallest timestamped event in the system gets
blocked. The above Lemmas and observation yield the
following Theorem:

Lemma 2 The smallest timestamped event in the sys-
tem, if it is in the OB of an LP, is the next event that
should leave the LP.

Theorem 3 The conservative simulator, when modi-
fied according to our definition, does not deadlock.

Proof: Point 6, in Algorithm CON+, says that events
from any LP leave in the increasing order of their
timestamp. By assumption the smallest timestamped
event in the system (say EO) is in the OB of some LP
(say LPo). Now if LPo sends next any other event but
EO, then it would mean that £Q is not the smallest
timestamped event. D

Lemma 3 The smallest timestamped event in the sys-
tem, if it is in the OB of an LP, can be moved to its
destination.

Proof: Suppose that at some wall clock time the
smallest timestamped event (say EO) in the system
gets blocked leading to a deadlock. By Lemma 1,
EO must be in the OB of some LP (say LPo). By
Lemma 3, £Q can be moved to its destination (say
LPi). But this contradicts our hypothesis that the
system is in a state of deadlock. D

Hence a deadlock is not possible and the algorithm can
perform in the limited buffer space at each LP.



5 Class of Queueing Networks where the
Algorithm is Applicable

For simplicity of exposition we have in this paper con-
sidered only single server FCFS queueing networks
with state independent Markovian irreducible rout-
ing. Note that there is no assumption on the arrival
and service distributions. The same ideas hold good
if we consider multiple (homegenous or heterogenous)
servers per queue simulated. In the multiple server
case besides the partititioning of the events in the OB
according to the PP queue to which they belong, the
events must also be partitioned according to the server
(of the queue) to which they belong. Thus our algo-
rithm cannot work for ././oo queues.

Now, if the customers in the above queueing networks
also bring with them priorities (the total number of
priorities being finite for a queue) and the customers
of the same priority are served in FCFS order, our
algorithm is still applicable. We assume that the new
priority of the customer who finishes service at a queue
does not depend upon the state of the system.

As regards state dependent routing, the Theorems 1
and 2 can be worked out for (see also [4]) the following
special type: the routing matrix P(t) (where t is the
time parameter) is lower bounded by an irreducible
stochastic matrix for all t. The algorithm also holds
good for this type of state dependent routing.

Finally we wish to add that service disciplines like last-
come-first-served, processor sharing, etc., can not be
simulated using our algorithm as it is not possible to
regenerate the departures after performing compacti-
fication.

6 Algorithm for the Optimistic Case

As in the conservative case, we have:

Theorem 4 In an optimistic distributed simulator of
an unstable or stable queueing network with FIFO
queues, infinite buffers, and irreducible Markovian
routing, the buffers at one of the processors eventually
get exhausted.

The proof of Theorem 4 is identical to those of The-
orems 1 and 2. When the optimistic simulator has
aggressive cancellation the proof relies on the inequal-
ity introduced in [4]. But the proof for the case of lazy

cancellation uses the additional fact that event copies
are maintained in the system as long as the GVT is
smaller than the event's timestamp. Thus the simula-
tor will eventually stop because of buffer exhaustion.
The algorithm and the proof that it does not deadlock
is provided in [5].

7 Concluding Remarks

We have considered the distributed simulation of
queueing networks with single server FCFS queues and
Markovian routing and with general arrival time dis-
tribution and independent and identically distributed
service times. Based upon our results in paper [4] and
Theorems 1 ,2 , and 4 presented in this paper, the fol-
lowing observations were made (both for conservative
and optimistic simulators):

1. If the queueing model has infinite buffers and
is unstable, then the distributed simulation is
necessarily unstable and hence the simulator will
eventually block because of buffer exhaustion.

2. If the queueing model, with infinite buffers, is
stable, then although the simulator is stable, yet
with probability one the simulator will block due
to buffer exhaustion.

Motivated by these observations, in this paper we have
developed enhancements to the original conservative
distributed simulation protocol (which we call CON+
), that permit the distributed simulation for the above
class of queueing networks to run until the space taken
by the counters in the simulation exceed the available
memory. We also provide proof that CON+ will not
deadlock due to the enhancements introduced into the
original protocol.

Our results will be useful if the simulation requires
more processor memory than what is available. It is
interesting to note that a serial (uniprocessor) simu-
lation of an unstable or stable queueing network with
N queues requires at most 27V pending events in the
global time list. Another point to note is that a con-
servative distributed simulation (with interprocessor
flow-control) of an unstable feedforward queueing net-
work with Markovian routing can be accomplished in
a finite amount of memory at each processor.

The assumption of FCFS queues is crucial. Another
assumption is that the events in the simulator are
identical in all respects but for their time stamps.



In the case of conservative protocol we assumed that
the deadlock avoidance or breaking protocol was suit-
ably altered to accomodate compactification of events.
Compactification of events is definitely an overhead
and can possibly degrade the performance of the sim-
ulator. Compactification of events has been done at
the output end of an LP because by doing so we are
not losing any sample-path information of the queue-
ing network simulated.

Acknowledgement: We are grateful to some insight-
ful remarks of referees that led us to improve Sections
3.1 and 3.2 in the final version.

References

[I] K. M. Chandy and J. Misra, Asynchronous distributed
simulation via a sequence of parallel computations, in Commun.
ACM 24, 11 (November 1981), 198-205.

[2] R. M. Fujimoto, Parallel Discrete Event Simulation, in
Communication of the ACM 33, 10 (October 1990), 30-53.

[3] Manish Gupta, Anurag Kumar, Rajeev Shorey., Queue-
ing Models and Stability of Message Flows in Distributed Sim-
ulators of Open Queueing Networks, in Proceedings of 10th

ACM/SCS/IEEE Workshop on Parallel and Distributed Sim-
ulation (PADS '96), May 20-23, Philadelphia, USA.

[4] Manish Gupta, Anurag Kumar, On the Stability of Dis-
tributed Simulators of Queueing Networks vis-a-vis the Stability
of the Physical Process, in First International Congress on Sys-
tem Simulation (WCSS'97), September 1-3, 1997, Singapore.

[5] Manish Gupta, Stochastic Models, Stability, and Per-
formance Analysis of Distributed Simulators of Queueing Net-
works, PhD Thesis, Indian Institute of Science, Bangalore, In-
dia, Dec. 1998.

[6] D. R. Jefferson, Virtual Time, in ACM Tran. of Prog.
Lang, and Syst., 7, 3 (July 1985), 404-425.

[7] D. R. Jefferson, Virtual Time II: Storage Management
in Distributed Simulation, in Proc. Ninth Ann. ACM Symp.
Principles of Distributed Computing, pp.75-89, Aug. 1990.

[8] L. Kleinrock, "Queueing Systems, Volume I, Theory",
John Wiley & Sons, 1975.

[9] Y. -B. Lin, Memory Management Algorithms for Opti-
mistic Parallel Simulation, in Proc. SCS Multiconf. Parallel and
Distributed Simulation, vol. 24, no.3, pp. 43-52, Jan 1992.

[10] Y. -B. Lin and B. R. Preiss, Optimal Memory Manage-
ment for Time Warp Parallel Simulation, in ACM Trans. Mod-
eling and Computer Simulation, vol. 1, no.4, pp. 283-307, Oct.
1991.

[II] J. Misra, Distributed discrete event simulation, in ACM
Computing survey 18, 1 (March 1986), 39-65.

[12] David Nicol and R. Fujimoto, Parallel Simulation Today,
in Annals of Operations Research, December 1994.

[13] B. R. Preiss and W. M. Loucks, Memory Management
Techniques for Time Warp on a Distributed Memory Machine,
in Proc. Ninth Workshop on Parallel and Distributed Simula-
tion, pp. 30-39, 1995.

[14] B. Samadi, Distributed Simulation Algorithms and Per-
formance Analysis, Phd thesis, University of California, Los An-
geles, 1985.

[15] Rajeev Shorey, Modelling and Analysis of Event Message
Flows in Distributed Discrete Event Simulators of Queueing
Networks, PhD Thesis, Indian Institute of Science, Bangalore,
India, Dec. 1995.

[16] Rajeev Shorey, Anurag Kumar and Kiran M. Rege, In-
stability and Performance Limits of Distributed Simulators of
Feedforward Queueing Networks, in ACM TOMACS, Vol. 7, No.
2, pp. 210-238, April 1997.

[17] W. Szpankowski, Towards Computable Stability Crite-
ria For Sortie Multidimensional Stochastic Systems, in Stochas-
tic Analysis Of Computer and Communication System, Hideaki
Takagi (ed.), Elsevier Science Publishers B. V. (North-Holland),
1990.

[18] D. B. Wagner, and E. D. Lazowska, "Parallel Simulation
of Queueing Networks: Limitations and Potentials", in Proc.
1989 ACM SIGMETRICS and Performence '89 Con]., 1989.


