
A Scalable Architecture for Supporting

Interactive Games on the Internet

Wen tongCAI P ercival XAVIER Stephen J. TURNER Bu-Sung LEE

P arallel &Distributed Processing Laboratory

School of Computer Engineering

NanyangTechnological University

Singapore 639798

Abstract

This paper presents a scalable archite ctur efor sup-
porting large-scale inter active Internet games. In or-
der to support a large number of particip antsand to
divide the workload, the virtual world is divided into
partitions. Each partition is then assigned to a server.
A client (i.e., a player or a particip ant)will join a
server ac cording to the position of the avatar it controls.
Compared to a centr alized archite ctur e, this distributed
client-server archite cture is mor e scalable. In addition,
compared to a fully distribute d,peer-to-p eerarchite c-
ture, it also provides a means for dete cting cheating
in distribute dgames. Sinc einteractions and account-
ing information must be forwarded directly to one of
the servers for quali�cation and veri�c ation,cheating
amongst distribute dplayers of the game will be mini-
mized. T o support secur ed communication for interac-
tions and accounting information as well as to speedup
periodic update messages (e.g., position updates), a hy-
brid communication scheme using both TCP and IP
multicast is used betwe enclients and the asso ciate d
server. The communication among servers is enabled
by the R un-TimeInfr astructure (R TI)services. The
High Level Archite ctur e (HLA) Data Distribution Man-
agement (DDM) is employed to limit the amount of
communication betwe enthe servers. In addition, the
Ownership Management (OM) is also employed to im-
plement the ne ed for transferring the avatars betwe en
servers. In this p ap er, the design detail of the archite c-
ture will be presente d.An experimental interactive In-
ternet game realize dusing the archite cture will b e also
describ ed in the paper.

Keywords: Large-scale Interactiv eGames, Scalabil-
ity, Distributed Client-Serv er Architecture, High Level
Architecture (HLA), Run-Time Infrastructure (RTI),

Ownership and Data Distribution Management.

1 Introduction

Interactive multi-user Internet games have their ori-
gins from programs sharing a common heritage known
variously as MUGs (Multi-User Games), MUDs (Multi-
User Dungeons or Multi-User Dimensions) and MUAs
(Multi-User Adven tures). They have gained signi�cant
popularity due to their en tertainment value. Along
with the improvements to computer graphics, audio
and real-time processing, multi-user games have also
improved in terms of visual interactivit y. T oaccom-
modate the great demand for realit y and in teractiv-
ity, information critical for rendering of remote entities
must be issued as frequently as possible. This simple
scheme is however inadmissible because of the following
tw o factors [9]:

� The ever increasing requirement for state updates
of remote entities will overload the simulation en-
gine; and

� Net w orklatency and limited bandwidth will put
an upper bound to the rate at which entities can
exc hange information with each other.

These tw o factors lead to the issue of software architec-
tural scalability. A scalable softw are arc hitecture can
be de�ned as a general framework that supports a vir-
tual environment with an increasingly larger number
of concurrent dynamic entities and/or players without
fundamental modi�cations to that architecture. The
design of a softw are arc hitecture must take theabo ve
tw o factors into account because faster computers and
netw orks alone will not satisfy the requirements for in-
creasing the number of participants in a virtual envi-
ronment over time.

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

Most of the currently available, in teractiv emulti-
user Internet games are based on a centralize d archi-
tectur e(i.e., client-server architecture), where all the
clien ts (i.e., pla yers)are connected to a centralized
server. The communication betw een the clients will go
through the server and the sever maintains a consistent
game view of all the clients. So, the major problem of
this architecture is that the server will become the bot-
tlenec k in terms of both communication and computa-
tion, thus limiting the scalability. A logical solution to
this problem is to have a fully-distributed architecture,
where each client computes its own view of the game
state and communicates with other clients without the
intervention of a server. An example application using
the fully-distributed architecture is the MiMaze which
is a distributed multiplayer in teractiv e game developed
using IP multicast [3]. In addition, the High Level Ar-
chitecture (HLA) [2, 4] also provides a framework for
constructing such fully-distributed, interactiv e, multi-
user In ternet games.

Another important area of concern in in teractiv e
multi-user Internet games is securit y. One major as-
pect of securit y is the prevention of cheating among
clien ts participating in the game. In a centralized ar-
chitecture, information reaches its destination through
the server. Therefore, a consistent state of scoring
and accounting can be easily maintained and game
companies, for example, can charge pla yers based on
the duration of their participation. How ev er,in a
fully-distributed architecture, since interactions and
accounting information are not quali�ed and veri�ed
by a server, cheating amongst distributed pla yersof
the game is possible. Detection of cheating in a fully-
distributed architecture is also more di�cult than that
in a centralized architecture.

Hence, the objective of this paper is to develop a dis-
tribute d client-server archite ctur efor in teractive Inter-
net games, which combines the advantages of both cen-
tralized and fully-distributed architectures. The vir-
tual world is divided into partitions. Each partition is
then assigned to a server. A clien twill join a server
according to the position of the avatar1 it con trols.An
overview of the architecture will be presented in Sec-
tion 2.

To preserve interactivit y of the game, a fast response
from the serv er is required. The strategy applied is
to incorporate a hybrid communication mechanism de-
pending on the nature of the information that is passed
betw een clients and the server. In Section 3, a detailed

1We use the word \client" or \player" to refer to a physi-

cal participan t in the interactive Internet game and the word

\avatar" to refer to the graphical embodiment represen ting the

participan t in the virtual en vironment.

account of the design strategy of the front-end client-
server communication will be discussed.

The communication among serv ers is enabled by
the services provided by the Run-Time Infrastructure
(R TI) of the HLA. Our work is in-line with the areas
involving distributed virtual en vironments [10], net-
w ork edvirtual environments [9] and distributed sim-
ulations based on the HLA [6]. A common technique
used by these applications to limit the amount of data
pac kets being transmitted in the network is data �lter-
ing (or interest management). HLA Data Distribution
Management (DDM) services are employed to limit the
amount of communication betw een the servers. The is-
sues concerning the design of the back-end servers will
be studied in Section 4.

In Section 5, an experimental in teractiv eIn ternet
game realized using the architecture will be also de-
scribed. The conclusions and the description of future
work will be given in Section 6.

2 An Overview of the Distributed

Client-Server Architecture

Fully-distributed and cen tralized architectures can
be combined to form a distributed client-serv er arc hi-
tecture where there are multiple servers pro viding ser-
vices to the clients. The distributed client-serv er arc hi-
tecture retains the advantage of the simple centralized
(clien t-server) architecture. In addition, by sharing the
load of computation and communication amongst mul-
tiple serv ers, more players would be able to participate
in the same virtual environment. There are two prin-
cipal approaches to divide the work amongst servers in
a distributed client-serv er arc hitecture [1]:

� Virtual World Subdivision: The virtual w orld is
partitioned in to logical groups and eac h group is
assigned to a server. Clients connect to the server
according to the group to which its a vatar belongs.

� Participant Sub division: Clients are grouped and
assigned to a server according to the physical dis-
tance between the clien t and the serv er. Clients
connect to the server according to the geographi-
cal area in which they are located.

In the virtual world subdivision approach, a server only
maintains a part of the entire virtual w orld. But, a
clien tmay need to migrate to a di�erent serv er if it
changes its logical group. In the participant subdivi-
sion approach, a client will connect to the same server
throughout the game. But, each server may need to
maintain a cop yof the en tire virtual world. An ex-
ample application using participant subdivision can be

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

found in [7]. In this paper, we adopt the virtual world
subdivision approach.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Partition 1

Partition 4Partition 3

Partition 2

Virtual World

(a)

P1

P4P3

P2

Virtual World

(b)

server 1

server 4server 3

server 2

Figure 1. Spatial Partition of Virtual World

An optimum choice for distributing load amongst
the servers may depend on the application, netw ork
topology and other design decisions. In [8], it suggests
three possibilities for partitioning a virtual world:

� Sp atial Partitioning: This is based on partitioning
the virtual world into areas which can be processed
in parallel and independently. Therefore, the play-
ers in the same part of the virtual world can inter-
act with each other through the same server.

� T emporal Partitioning: Entities that require the
same rate of update are grouped together. Groups
requiring a higher update rate can then have a
larger share of the total netw ork bandwidth.

� F unctional Partitioning: Entities are grouped ac-
cording to functional classes (e.g., a battalion in
w ar-gaming). Those in the same functional class
can then communicate with each other frequently
through a multicast group.

In this paper, the spatial partitioning approach is
adopted. As shown in Figure 1(a), the virtual world
is spatially divided in to partitions. A serv er is then
assigned to each partition, managing a group of play-
ers (clien ts) who ha veavatars in the partition (Fig-
ure 1(b)). Thus, each serv er is responsible for manag-
ing only a portion of participating players in the entire
virtual environment.

Figure 2 sho ws the overall communication infras-
tructure of the distributed clien t-serv erarchitecture.
In this infrastructure, the servers comply with the HLA
rules and communicate with eac h other through the
R TI. The clients connected to the same server are rep-
resen ted b y the server as a federate in the federation.
Communication and in teraction between clien ts and
the server is via socket connections.

Figure 3 sho ws a more detailed design of the dis-
tributed clien t-serv erarchitecture. It consists of tw o

main parts: the front-end client-server and the dis-
tributed back-end servers. Each serv er consists of three
modules: server back-end, message queue and server
front-end. The main role of the server back-end mod-
ule is to process in teractions, accounting information
and update messages of the participating pla yers and
to k eep state information of all the avatars in the parti-
tion. Server back-end modules are in fact the federates
participating in the federation. They together with the
R TI form the distributed back-end servers. The main
aim of using an HLA-based implementation is to en-
hance interoperability and scalability. When an avatar
moves from one partition to another, the HLA Own-
ership Management (OM) services are used to migrate
the corresponding avatar betw eenthe tw oservers in-
volv ed. In order to reduce the amount of data trans-
mitted among the servers, the HLA DDM services are
employed so that a server only subscribes to the state
updates of remote avatars near the edge of its par-
tition. The functionality of the distributed bac k-end
servers will be further explained in Section 4.

Server
Back-End

Server
Front-End

Message Queue

server

Server
Back-End

Server
Front-End

Message Queue

server

RTI Distributed
Back-End Servers

client client client

Front-End
Client-Server

Figure 3. Design of Distributed Client-Server
Architecture

The front-end client-serv er structure consists of the
server fron t-end module and the associated clients. The
main task of the server fron t-end module is to handle
the arriv al of joining clien tsand to provide a mecha-
nism for the server to communicate with the clients.
The server bac k-end and front-end modules communi-
cate with each other through a message queue. The de-
velopment of the fron t-end client-serv er structure will

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

client

server

TCP or
UDP

Federate 1

RTI

Federate 2

Federate 3 Federate 4

Figure 2. Overview of Distributed Client-Server Architecture

be further explained in the next section.

3 Front-end Client-Server Structure

A communication architecture is required for infor-
mation exchange betw een clients and the server. There
are three types of message-passing in a front-end client-
serv er structure: position updates, interactions and ac-
counting information. Clients need to issue position
updates which will be sent to the server and will also
be propagated to other clien ts in the structure. The
serv er will use these updates to maintain the state of
the virtual environment so as to verify clien ts' inter-
actions. Clients must also forward in teractions (e.g.,
attac kingactions), when attempting to in teract with
the virtual environment, to the server. The server will
qualify the interactions and sends results back to the
clien t. The accounting information is sent betw een the
serv er and clients for session management and scoring.
Table 3 giv es a summary of the relativ efrequency of
these three types of client-serv er message-passing.

T o ensure the security of data, a connection-oriented
approach is required for handling interactions and ac-
counting information. Thus, a TCP connection is
established betw een each clien t and the serv er. IP
multicast relies on a connectionless, datagram-based
approach to route pac ketsbetween netw orken tities.
Since no acknowledgment packet from the receiving en-

Type R elative Frequency

P osition Updates High
In teractions Medium
Accounting Low

Table 1. Classification of Client-Server Com-
munication

tity is required, information passing betw een netw ork
en tities can take place at a faster rate than TCP. With
this advantage, IP multicast is deployed to handle po-
sition updates of clients because these updates are re-
quired to be transmitted at a higher frequency as com-
pared to interactions and accounting information. A
major problem with IP multicast is the possibility of
lost packets. This issue is how ev er ignored because the
occasional loss of position updates does not severely
a�ect the simulation of remote avatars.

Figure 4 shows a logical view of the communication
scheme used in the front-end clien t-serv erstructure.
The server fron t-endmodule is multithreaded. There
is a thread for eac h TCP connection and a separate
thread for handling position updates. These threads
act as proxies betw een the distributed back-end servers
and the clients, relaying messages in both directions.
The message queue is used to bu�er the messages be-

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

Server
Front-End

client client

multicast group

TCP
connection

to Message Queue

client

Figure 4. Communication Architecture for
Front-end Client-Server

tw een the front-end client and the distributed back-end
serv ers. The shaded area in Figure 4 represents a mul-
ticast group which includes all the clients connected to
the same server and the thread responsible for position
updates. As explained above, this multicast group is
used for transmitting position updates.

In summary, to support secured communication for
in teractions and accounting information as well as
to speedup periodic update messages (e.g., position
updates), a hybrid communication architecture using
both TCP and IP multicast is used in the fron t-end
clien t-serv er structure.

4 Distributed Back-end Servers

Distributed back-end servers consist of server back-
end modules, each of which is built as a federate and is
responsible for maintaining state updates of all avatars
it owns and handling interactions and accounting infor-
mation. As discussed in Section 2, the spatial partition-
ing sc heme is adopted in the design of the distributed
clien t-serv er arc hitecture.The selection is based on the
assumption that at any time, the participating avatars
are likely to be uniformly distributed in the virtual
world since they are able to move around in the vir-
tual world autonomously. One problem in the spatial
partitioning scheme is the migration of an avatar from
one serv er2 to another when it changes its partition.

2Server in this section actually refers to the server back-end

module of the server.

This is illustrated in Figure 5 where the virtual world is
spatially divided into four partitions. When an avatar
changes from partition P1 to partition P3, the owner-
ship of the avatar should be transferred from server
1 to server 3. In addition, the clien t which controls
the avatar should also be reconnected to server 3. The
HLA's Ownership Management (OM) services are used
to solv e this problem.

server 1

server 4server 3

server 2

Virtual World

a

P1

P3 P4

P2

Figure 5. Migration of Client and Avatar

In order to ensure a seamless virtual en vironment,
an a vatar located at the edge of the partition must be
able to \see" the close-b yavatars belonging to other
partitions so that they can interact with each other. So,
another problem is how to maintain a seamless virtual
en vironment without resulting in too much inter-serv er
tra�c. To solve this problem, the HLA's Data Distri-
bution Management (DDM) services are employed.

4.1 Transferring Ownership of Avatars

The HLA's OM services are deployed to transfer
ownership of avatarswhen they cross the boundaries
of the partition to which they currently belong. In or-
der to enforce a scheme for ownership management of
avatars, each server must be able to perform a real-time
query of each avatar's position to determine whether an
avatar has moved out of the server's partition. The in-
teraction diagram in Figure 6 shows how the transfer
of a vatar o wnership is achieved. Dotted lines represent
communications in the distributed back-end severs and
solid lines represent communications in the front-end
clien t-serv er structure.

The ownership of each avatar is divested based on
the ownership push scheme. Ownership push sug-
gests that a federate that owns update responsibility

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

1. New Location Update

6. ITM_SWITCH

2. Negotiated Attribute
Ownership Diverstiture

3. Request Attribute
Ownership Assumption

4. Attribute Ownership
Acquisition

5. Attribute Ownership
Acquisition Notification

5. Attribute Ownership
Divestiture Notification

Client Server A RTI Server B

Figure 6. Protocol for Transferring Ownership
of Avatar

of and/or the privilege to delete instance attributes
wishes to transfer ownership of the attributes to an-
other federate. The ownership may be surrendered
unconditionally or by ne gotiation. Unconditional push
releases a federate from attribute update and/or dele-
tion responsibility without any commitment from other
federates to assume these responsibilities. Negotiated
push is a formal exchange where a federate retains re-
sponsibility until a new owner is identi�ed and a formal
exc hange process is completed. The negotiated push
scheme is adopted in our design.

As sho wn in Figure 6, a serv er wishing to let go
the responsibilities calls the R TIambassador method
negotiatedAttributeOwnershipDivestiture(). As only
one serv er may acquire the ownership of an avatar,
the div esting serv er will specify which serv er shall
be the new owner of its div ested avatar. The
speci�cation is made through the tag data when
negotiatedAttributeOwnershipDivestiture() is called.
Given that the other serv ers are capable of updating
any or all of the attributes being giv en aw ay,they
are therefore, noti�ed via their F ederateAmbassador
method requestAttributeOwnershipAssumption(). A
server wishing to acquire one or more of the of-
fered attributes indicates its interest using the method
attributeOwnershipAcquisition(). If any serv er is
found to assume the responsibilities being given
aw ay,the serv er that initiated the push receiv es
attributeOwnershipDivestitureNotification(). The
server gaining the responsibilities is informed with
attributeOwnershipAcquisitionNotification(). Once
the transaction for ownership management is done, the
server which originally owned the avatar instance will
send a message ITM SWITCH to the clien t to inform

it of the need to join another multicast group. It is
one type of the interaction messages sent betw een the
server and clients [11]. The IP address of the new server
and the multicast group address are pro vided in the
ITM SWITCH message.

4.2 Provision of State Updates of Edge Avatars

The HLA's DDM services are used to provide state
updates of the avatars near the edge of a partition.
Serv ers exchange avatar state information by updating
and re
ecting object attribute values. And they obtain
only relevan t state updates from neighboring partitions
by de�ning update and subscription regions.

server i

D

D

a'
a

2D

2
D

(a) (b)

H

W

Pj

a

D

Pi

D

Figure 7. Update and Subscription Regions

The extent to which an avatar can see another is de-
�ned by the avatar's view radiusD. Factors a�ecting
this value depend on the virtual world's en vironmen-
tal conditions (e.g., fog and obstructions) as w ell as
the speed of the avatar. Figure 7(a) shows the dimen-
sions of the part of the virtual world displayed for each
pla yer. Figure 7(b) sho ws a server's update and sub-
scription regions. The update region of a server is the
en tire partition assigned to the serv er. In this case,
the update region of server i is the partition Pi itself.
The subscription region of a server is the region sur-
rounding its partition. In Figure 7(b), the subscription
region of server i is represented by the darkly-shaded
area. DDM services associateRegionForUpdates()
and subscribeObjectClassAttributesWithRegion()
are used. A server only updates the state of an avatar,
by updateAttributeV alues(), if it is in the edge of the
partition (for server i in Figure 7(b), it is represented
by the lightly-shaded area.

F or example, as shown in Figure 7(b), when avatar
a0 moves into the darkly-shaded areain partition Pj ,
server j will update its position. The update region of
a0 is the partition Pj itself and the subscription region

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

of the server i is the darkly-shaded area. So, there is an
overlap betw een update and subscription region. The
position update of a0 will be sent to serv eri. Therefore,
avatar a in partition Pi will be able to see avatar a0 in
partition Pj in its displayed virtual world.

Obviously, the advan tage of using the DDM services
is the reduction on inter-serv er communication. Now,
eac h server only receives the updates of relevant avatars
from other servers. The other advantage of the above
de�nition of update and subscription regions is that
they are constant and need not be dynamically recre-
ated. Thus, the overhead on calculating the overlap
betw een regions is minimized.

5 An Experimental Internet Game

An experimental in teractive Internet game has been
constructed using the distributed clien t-serv erarchi-
tecture. The game scenario is reminiscent of \Pac-
man" in which each player has a 3D representation of
his/her view of the game (with respect to Figure 7(a)).
The game involv esa group of avatars that na vigate
through a virtual 3D maze with the objective of �nd-
ing as many items as possible. Items are generated
by the virtual environment dynamically at random po-
sitions. Avatars may group into teams (according to
their colors). Avatars may also attack one another to
\steal" items. How ev er, an avatar that attacks its o wn
team member will result in a penalty. Figure 8 shows
the view of a player. In this case, there are tw ore-
mote avatars and one static item in the view. The self-
representation is ignored in the view since each player
is assumed to view the virtual world from his/her own
angle.

remote avatar static item

Figure 8. View of a Player

Preliminary performance analysis has been con-
ducted using M/M/1 queue to compare centralized and
distributed clien t-serv erarchitectures. Currently, ex-
periments are being conducted to collect results from
the experimental In ternet game for further perfor-
mance study.

6 Conclusions and Future Work

The development of the distributed client-server ar-
chitecture is divided into two stages. The �rst stage is
concerned with the development of a front-end client-
server structure that enables client-server interaction.
Both IP multicast and TCP based communication are
deployed to relay di�erent classes of information. The
advantage of multicast lies with its abilit y to route
pac kets at a fast rate.As such, it is employed to trans-
mit position updates betw een participating clients.
TCP, on the other hand, is employed to establish a
secure communications channel betw een the client and
its serv er to rela y accounting information and interac-
tions.

The second stage of dev elopment is involv edwith
the construction of the distributed back-end servers.
The main purpose of employing a distributed archi-
tecture is to divide the workload of managing avatars
among multiple of serv ers. The scheme employed for
scalability is based on spatial partitioning. In this
scheme, there is a need to transfer the management of
avatars when they migrate from the scope of interest
of their current server. To maintain a seamless virtual
w orld, a vatars located at the edge of a partition need
to \see" avatars belonging to other partitions. The
R TIis used for the communication in the distributed
back-end servers, and the HLA services are employed
to address the above two issues. The HLA Ownership
Management services are used to transfer the owner-
ship of clien t instances. T o enable the edges of parti-
tions to be visible to neighboring partitions, the DDM
management services were employed to create update
and subscription regions.

F uturew ork on thisgame architecture will involve
an improvement on the distribution of clients. In the
current scheme, the distribution of workload for man-
aging clien t interactions is static and is based on the
assumption that clients will be uniformly spread out in
the virtual world. How ever, if clients are not uniformly
distributed, the workload will become unbalanced. An-
other problem with the current design is that a client
needs to migrate to a di�erent server when it changes
its partition. In case an area close to a boundary cross-
ing becomes a hot spot, the overhead of clien ts con-
stantly switching betw een servers might be heavy . T o

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

overcome this problem, a hysteresis approach can be
adopted in the de�nition of update and subscription
regions. T ofurther improve the load balance and to
minimize client migration overhead, a hybrid approach
using both virtual w orldand participant subdivision
will also be investigated.

References

[1] T. K. Capin, et. al. A vatarsin networked virtual
envir onmentsWiley & Sons Inc, West Susses, 1999.

[2] Judith Dahmann, F rederic kKuhl and Ric hard
Weatherly. Standards for simulation: As simple as
possible but not simpler - The High Level Architec-
ture for simulation. Simulation, 71:6, pp.378-387,
1998.

[3] C. Diot and L. Gautier. A distributed architecture
for multiplayer in teractiv eapplications on the in-
ternet. IEEE Network, pp.6-15, July/August 1999.

[4] DMSO. Department of Defense High Level Ar-
chitecture speci�cation. V ersion1.3 DMSO, 1999
(available at http://hla.dmos.mil).

[5] C. Heistad and S. Pietrowicz. Y ou-build-it vir-
tual realit y. NCSA Ja va3D Grp., Univ. of Illinois
Urbana-Campaign, 1999 (avail-
able at h ttp://www.ncsa.uiuc.edu/SDG/Softw are
/Java3D/).

[6] F. Kuhl, R. Weatherly and J. Dahmann. Creating
computer simulation systems - A nintr oduction to
the High L evel A rchite ctur e. Prentice Hall PTR,
NJ, 1999.

[7] T. C. Lu, C. N. Lee and W. Y. Hsia. Supporting
large-scale distributed simulation using HLA. ACM
T ransactionson Modelling and Computer Simula-
tion, Vol.10, No.3, pp.268-294, July 2000.

[8] Macedonia et. al. Npsnet: A multi-player 3D vir-
tual environment over the Internet. in Proc. Sym-
posium on Interactiv e 3D Graphics, ACM, pp. 93-
94, 1995.

[9] Sandeep Singhal and Michael Zyda. Networked
virtual environments: Design and implementation.
Addison-Wesley , 1999.

[10] Martin R. Stytz. Distributed virtual en viron-
ments. IEEE Computer Graphics and Applications,
pp. 19-31, May 1996.

[11] reference removed for double-blind review process

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

