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Abstract

The simulation of large–scale multicast networks often
requires a significant amount of memory that can easily ex-
ceed the capacity of current computers, both because of the
inherently large amount of state necessary to simulate mes-
sage routing and because of design oversights in the mul-
ticast portion of existing simulators. In this paper we de-
scribe three approaches to substantially reduce the mem-
ory required by multicast simulations: 1) We introduce a
novel technique called “negative forwarding table” to com-
press mutlicast routing state. 2) We aggregate the routing
state objects from one replicator per router per group per
source to one replicator per router. 3) We employ the NIx–
Vector technique to replace the original unicast IP routing
table. We implemented these techniques in the ns2 simulator
to demonstrate their effectiveness. Our experiments show
that these techniques enable packet level multicast simula-
tions on a scale that was previously unachievable on mod-
ern workstations using ns2.

1. Introduction

Unicast communication allows a sending host on the net-
work to send data to one receiving host. However when a
host needs to send data to many receivers, repeatedly uni-
casting the data will result in wasted bandwidth in the net-
work and heavy computational burden on the sender. Multi-
cast [5] was proposed to economize network bandwidth and
the sender’s workload by transmitting at most one copy of
the data on any link, and only duplicating the data at branch
points in the network where a router has to deliver the data

�This work is supported in part by NSF under contracts number ANI-
9977544 and ANI-0136936

onto two or more output interfaces.
Multicast has a number of potential applications that in-

volve simultaneous delivery of identical data to multiple
hosts, such as video conferencing, multi-user game, and
content-distribution, just to name a few. The multicast re-
search is often concerned with large multicast networks,
where either the multicast group is large, the number of
groups is large, or both. As a result, the scalability of the
multicast network simulators becomes a serious concern.
For example, Nonnenmacher and Biersack [9] used a math-
ematical model to analyze their scalable feedback mecha-
nism for large groups, consisting of up to 1 million mem-
bers. However they were not able to perform packet-level
simulations to validate this analysis. As another example,
Shi and Waldvogel [17] proposed a sender-based congestion
control approach for multicast traffic and used ns2 to eval-
uate their approach. However, they were unable to simulate
large multicast groups while at the same time maintaining a
large number of SRM flows in the simulation.

The limited scalability of existing multicast simulation
methods is primarily due to the large amount of state main-
tained by the simulators, which is often on a high order
of the input size (such as quadratic with the number of
nodes, or the product of the number of nodes and number of
groups). This state requires a proportional amount of mem-
ory in the simulator, which can often exceed the capacity of
any contemporary computer system.

There are two general approaches that can be used to ad-
dress this memory allocation problem in simulations, with-
out loss of accuracy in the simulations:

1. We can distribute the simulation task across a number
of computers, thereby utilizing the memory of a set
of machines. A number of researchers are exploring
methods and techniques for scalable network simula-
tions using parallel and distributed simulation, such as
[16, 15, 12, 11, 8, 4, 20, 1].
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2. We can reduce the memory required to represent the
state of the model. We observe that in typical simu-
lations, a) the superfluous states (that are not needed
by the simulations) often occupy excessive memory,
which can be safely eliminated (e.g. [14, 6]); b) the
necessary states (that are needed by the simulations)
often contain significant amount of redundant infor-
mation, which can be easily compressed/aggregated
(e.g. [14]).

In this paper, we focus primarily on techniques for re-
ducing the state memory requirements to enable large-scale
multicast simulations. We employ both methods described
above to reduce memory requirements: removing superflu-
ous states and aggregating necessary states.

The remainder of this paper is organized as follows. In
section 2 we give a brief overview of multicast routing, ana-
lyze the memory requirements of routing states and related
objects in a typical simulator, and discuss existing work that
has attempted to aggregate multicast routing state. In sec-
tion 3 we discuss three memory saving techniques for mul-
ticast simulation, namely, the “Negative Forarding Table”,
the replicator aggregation, and the NIx–Vectors techniques.
Section 4 presents experimental results demonstrating the
memory savings of these three techniques. And in section 5
we give conclusions of this paper and future directions of
our research.

2. Multicast Routing Memory Requirements

2.1. Background on Multicast Routing

Multicast data delivery services usually work at the net-
work layer. A multicast group uses an IP address that repre-
sents a set of hosts on the Internet. The sending application
on a host perceives that it is only sending data to this single
address, while the underlying network services are respon-
sible for actually delivering the data to multiple target hosts
represented by this group address.

In order to achieve multicast data delivery, the multicast
routers need to first construct multicast forwarding trees,
then forward the multicast data packets along these trees to
all receivers. The routers construct the trees based on exist-
ing unicast routing tables. More specifically, a router usu-
ally performs an “RPF” (Reverse Path Forwarding) check
in the unicast routing table when the router needs to deter-
mine from which interface a source’s multicast packet will
arrive.

If there are multiple sources in a group, the Source-
Based Tree (SBT) approach[5, 13] constructs a different
tree for every different source, so that packets from each
source are delivered along this source’s tree. Compared to
Core-Based Tree (CBT) approach[2] that designates a core
and constructs a tree from this core to all receivers, SBT has

the advantage of packet delivery efficiency, but suffers when
the size of a group scales up. This is because in SBT, each
router would maintain a separate multicast routing state en-
try for each tree that passes through this router. We are
addressing exactly this scalability problem, hence we will
assume the SBT approach in multicast routing for the re-
mainder of this paper.

A multicast router maintains the multicast routing tables
that contain the routing entries such as:

� grp, src, iif, oifset �
where grp and src are the group address and sender ad-

dress, respectively; iif is the input interface of this �grp� src�
pair; and oifset is the set of output interfaces of this
�grp� src� pair. When a multicast packet of �grp� src� arrives
at a router, the router looks up the �grp� src� in its multicast
routing table: if there is no entry for this �grp� src� pair, or if
there is such an entry but the input interface is wrong, then
this is a stray packet and should be discarded by the router.
Otherwise, the router forwards this packet onto the set of
output interfaces indicated by oifset.

The above multicast routing table entry indicates that,
in a multicast network simulation, the memory required by
multicast routing states is:

� �� � � � �� � � ���

where � is the number of nodes in the simulation; �
is the average number of groups whose trees pass through
each node; � is the average number of senders in each group
whose trees pass through each node; � is the average num-
ber of output interfaces of a �grp� src�pair;� is the overhead
memory required per group per source on the router regard-
less of the number of output interfaces; and� is the amount
of memory required to represent each output interface.

For example, suppose we are simulating 2000 nodes,
with each node carrying an average of 500 groups’ trees,
each group on a node having an average of 100 sources,
each �grp� src� pair having on average 4 output interfaces
on each router, the memory overhead per group per source
on each node is 40 bytes, and the memory requirement of
each output interface is 4 bytes, then the total memory re-
quirement of multicast routing states is:

2000*500*100*(40 + 4*4) bytes = 5.6G bytes
The multicast routing state alone has exceeded the capac-

ity of many contemporary computers, preventing multicast
simulations of this modest scale to be completed.

2.2. Existing Work on Aggregating Multicast Rout-
ing State in Real Networks

There is a significant body of work dealing with the prob-
lem of reducing the memory required to store multicast state
in routers. This body of work is constrained by the concern
with developing techniques that can be deployed in real net-
works. In contrast, we are concerned with memory saving
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techniques to be used in simulations. Nevertheless, we sur-
vey this body of work below since it does provide some
insight into the problem at hand.

An observation that can be made from multicast trees is
that, on a sparse tree, the “branching points” are rare and the
majority of the tree branches are long, unbranched paths.
Storing multicast routing state on the intermediate routers
between branching points is therefore inefficient. There
have been some schemes[18, 7] that attempted to store the
mutlicast state only at the branching points. This can drasti-
cally reduce the memory required for routing state, as most
multicast trees in the Internet are expected to be sparse trees.

On the other hand, some other researchers also worked
on aggregating multicast routing state without the sparse
tree assumption. Briscoe and Tatham [3] proposed a com-
pletely new multicast address naming scheme that explicitly
provides methods for routers to aggregate multicast rout-
ing state. Radoslavovet et al. [10] introduced a leaky ag-
gregation method to aggregate multicast routing state that
are similar but not exactly the same, sacrificing some band-
width (for excessive packet forwarding) to save router mem-
ory. Thaler and Handley [19] suggested that multicast rout-
ing state can be aggregated with just an “interface-centric”
representation of multicast routing tables, where each inter-
face has a forwarding table that maintains the set of multi-
cast addresses whose packets must be forwarded onto this
interface. This method then tries to aggregate every region
of continuous addresses into one single entry, (e.g., if the
original set of addresses with 5 entries are ��� �� �� �� ���, it
can be aggregated into the form ���� ��� ��� ��� ���� ��� that
has only 3 entries. However the effectiveness of this method
completely relies on the percentage of multicast addresses
maintained on the interface in the entire multicast address
space. On a large network it is difficult to imagine any
router covering a significant percentage of the entire mul-
ticast address space.

3. Techniques to Reduce Memory Requirement
in Multicast Simulation

In this section, we present three techniques to reduce the
memory required by the multicast routing state, multicast-
related objects, and unicast routing state. These constitute
the principle state information required by a multicast sim-
ulation.

3.1. Negative Forwarding Table

First, we propose a novel “Negative Forwarding Table”
approach to compress the multicast routing state. This ap-
proach is based on an interesting observation regarding mul-
ticast trees: trees of the different sources of the same group
often largely overlap each other. This is due to the fact that

different sources all need to deliver data to the same set
of group members. Therefore, for overlapping trees, it is
preferable to maintain the difference between routing trees
of the same group, so long as representing the difference
requires less memory than simply replicating the trees.

To do this, we also take the view point of interface-
centric routing: each interface has a forwarding table that
maintains the �grp� src� pairs whose packets need to be de-
livered onto this interface. The table consists of entries of
the following form:

����� 	 ������ ������ ����

����� 	 ������ ������ ����

where each entry represents a group and the sources of
this group. For example, if the router receives a multicast
packet ������ ������, then this packet needs to be delivered
onto this interface, since ������ ������ is found in this for-
warding table of this interface.

Now call this table the Positive Forwarding Table (PFT),
and introduce a Negative Forwarding Table (NFT) for the
same interface. The NFT entries have the same format as
the PFT, but take the reverse meaning: the multicast packet
of the �grp� src� pair in the NFT should not be forwarded
onto this interface. For example, if an entry in the NFT for
an interface is:

����� 	 ������

then the multicast packet of ������ ������ should not be
forwarded on this interface, since it can be found in the
NFT of this interface. On the other hand, a multicast packet
������ ������ should be forwarded onto this interface, since
it is not in the NFT of this interface.

On each interface, a group is either in the PFT, or the
NFT, or neither, but never both. The router maintains an
overall ����� �����	 table that records all the �grp� src�
pairs that have to be maintained by this router. (This
����� �����	 table also takes the same format as the PFT
and NFT.) Group entries can move between PFT and NFT
when join/leave operations happen on an interface. When
an interface finds that an entry of grp in its PFT has more
than half of the sources of grp in the overall ����� �����	

table, then this entry is moved to the NFT with its comple-
mented content. More specifically, a new entry for grp is
created in the NFT that only contains the sources that are in
the overall ����� �����	 table but not in the PFT for grp,
and the old entry for grp in PFT is deleted. Similarly an
entry in the NFT can also be moved back to the PFT when
it has more than half of the sources of the same group in the
����� �����	 table.

An example illustrates how the PFT and NFT work. As-
sume that in the overall ����� �����	 table of a router,
there are 4 sources for grp1:

����� 	 ������ ������ ������ ����
�

and assume an interface only needs to deliver the pack-
ets of ������ ������. Then the PFT would have the en-
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try ������ ������, and the NFT would not have an entry
for grp1. On the other hand, assume the interface needs
to deliver the packets of ������ ������, ������ ������ and
������ ������ of grp1, then the NFT would have the entry
������ ������ and PFT would not have an entry for grp1.

In other words, each entry in the NFT is in effect an “ex-
ception list”: it tells the interface to deliver packets from all
sources of this group, except for the sources in this list.

The ideal cases where the NFT approach works best are:
for a group grp, the interface needs to deliver packets that
come from either none or all of the sources of grp. If the
interface needs to deliver none, then there is no entry for
grp in either PFT or NFT. If the interface needs to deliver
packets from all sources of grp, then there is an empty entry
in the NFT:

���� ��

which indicates that there is no “exception”, i.e., packets
from all sources of grp must be forwarded onto this inter-
face.

The effectiveness of the NFT technique (i.e., how much
saving the NFT approach could achieve over the PFT-only
approach) depends on how likely different trees overlap on
each interface, which largely depends on the following three
factors.

1) Number of sources of a group whose trees pass
through a router. The more sources a group has on a router,
the more likely different trees will overlap on an individual
interface.

2) The receiver density of the group. This density can be
defined as the ratio of the number of receivers of a group
divided by the total number of nodes in the network. It
determines the average number of output interfaces that a
�grp� src� pair can have on a router. The denser a group, the
more output interfaces a tree would require on a router, the
more likely different trees would overlap on an interface.

3) The connectivity of the network, i.e., the availability
of alternative paths between any two nodes in the network.
The fewer alternative paths that exist, the more likely that
different trees will overlap on the same router, hence the
more saving the NFT approach will achieve. The worst case
is a completely-connected graph where every pair of nodes
has a direct link between them. In this case no trees ever
overlap each other. In most cases the network connectivity
is still low enough so that the NFT approach could achieve
fair saving on memory requirement.

Multiple-source multicast is useful for conferencing ap-
plications and multi-user games. In the traditional multicast
routing schemes that operate on the IP layer, the Internet
is so large, and the topology is so widely spread that most
routers on the trees only carry a small number of all the
possible sources of the group, and most trees are sparse, (re-
ceiver density is low,) thus limiting the overall effectiveness
of savings of this NFT approach. However, as the recent

trend of Application Layer Multicast (or End System Mul-
ticast) suggests, it may be more reasonable to put the mul-
ticast responsibility of the conferencing groups on the end
systems, not the Internet routers. The idea is to construct an
overlay network that connects end systems through virtual
links. Thus the end systems function as multicast routers
as well, and this virtual topology is tight enough so that an
NFT-like approach would likely result in significant savings
in the multicast routing state.

3.2. Aggregating the Replicator Objects in ns2

The second technique we propose deals with multicast-
related objects other than the multicast routing states. In
ns2, multicast routing state is carried by the Tcl objects
called replicators. When using Source Based Trees, for
each �grp� src� pair in the simulation, ns2 constructs a short-
est path tree from the source to all the receivers of this
group. On each node that the tree passes through, ns2 cre-
ates a new replicator object for this tree. This replicator
maintains the set of output interfaces for this �grp� src� pair
on this node, and is responsible for duplicating and forward-
ing multicast packets onto the set of output interfaces upon
receiving multicast packets of this �grp� src� pair.

It is reasonable to assume that a different state should
be maintained for each �grp� src� pair on each node through
which the tree of �grp� src� passes. However in ns2 each
replicator takes about 1.5K bytes memory. Using � �
���� in the expression we have seen in Section 2.1, the
total multicast memory requirement is:

2000*500*100*(1.5K + 4*4) bytes = 150G bytes
Therefore, we want to reduce the impact of replicator ob-

ject size by aggregating the replicators. More specifically,
we feel it is more appropriate to create only one replicator
object on one network node for all �grp� src� trees that pass
through this node. Of course, the replicator object has to
be modified to be able to maintain the routing state of more
than one �grp� src� pair, and be able to choose the corre-
sponding routing state to forward multicast packets of more
than one �grp� src� pair.

After this modification, the total size of multicast routing
state becomes: 	 � �
 � � � � ���	. Now that � is no
longer multiplied by
 and�, the total memory requirement
is reduced substantially, and as a result the term
���� �
might become dominant in the second factor if there are
sufficiently many groups and sources in the simulation. Still
using the above example, the total multicast memory is now
1.6G bytes, much more tractable than the previous 150G
bytes

The key point here is to avoid unnecessary repetitions of
large objects. In multicast simulations, though it seems un-
avoidable to maintain state for every �grp� src� pair, we still
want to avoid associating the large objects such as replica-
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tors with each �grp� src� pair on every node. The original
implementation of the replicators in ns2 has the advantage
that the design and program codes are somewhat easier to
understand and maintain, since each replicator handles only
one �grp� src� pair on a network node. However as the sim-
ulations scale up, it may be more desirable to sacrifice this
advantage in order to reduce the excessive memory require-
ment caused by this design. This is the reason we propose
to aggregate the replicator objects, from one replicator per
sender per group per network node, to one replicator per
network node.

Of course, it is also possible to further aggregate the
replicators, from one replicator per node, to only one repli-
cator for all nodes in the simulation, since there is lit-
tle node-specific information maintained in the replicator.
Thus the multicast routing state would be further reduced
to: � �� �� � � ��, i.e., � no longer multiplies � . Nev-
ertheless, every network node in ns2 comes natively with
some fundamental ns2 objects such as “node objects”, “link
objects” etc., hence the size of the state and related objects
associated with each node is usually on the order of 30-
40KB. And since each replicator itself only takes 1.5KB,
aggregating all replicators to one replicator for all nodes
would provide the memory saving of at most 1.5/30, i.e.,
5 percent, which would not be a worthwhile effort in our
estimation.

3.3. Running Multicast Simulations without Uni-
cast Routing Tables

The third technique deals with the large unicast rout-
ing memory. As we have seen in Section 2.1, when con-
structing multicast routing trees, the routers need to per-
form “RPF” checks based on existing unicast routing ta-
bles. Each “RPF” check involves a search in the unicast
routing table to determine which interface leads to the next
hop to the source, based on the assumption that the paths
in the network are symmetric, i.e., the reverse of the short-
est path from a node to the source is the shortest path from
the source to this node. Therefore the unicast routing states
must be maintained by the simulator to support the con-
struction of the multicast routing states.

However, the complete unicast routing tables are one
of the major factors that inhibit large scale network simu-
lations, because of the quadratic relationship between the
memory requirement and the number of network nodes in
the simulation. For example, if there are � nodes in the sim-
ulation, each node would maintain��� entries in its routing
table, each entry recording the output interface to one of the
other � � � nodes. Hence the total number of unicast rout-
ing entries is � � ��� ��, i.e., the total required memory is
on the order of �����. When the number of nodes is large,
the simulator would often run out of memory when trying

to construct the complete unicast routing tables, before the
simulation could even start. Therefore, to realize large scale
multicast simulation, the first step would be to remove uni-
cast routing tables. We use the NIx–Vector [14] technique
in place of unicast routing tables to provide unicast routing
support to the multicast tree construction. The NIx–Vector
routing method is a form of source routing that allows the
complete path between a pair of nodes to be stored in a
compact representation. Complete routes between pairs of
nodes are calculated only on–demand, when it is known that
such a route is needed by the simulation. After the route is
calculated, it is cached at the source node, again using the
compact NIx–Vector format, and subsequently re–used as
required. When a node needs to perform an RPF check to-
ward a source for the first time, it computes the NIx–Vector
from this node to this source, then uses this NIx–Vector to
determine the interface leading to the source, and at the
same time caches this NIx–Vector for future reuse. Using
the NIx–Vector method instead of unicast routing tables al-
lows larger topologies to be used in multicast simulations.

Notice that this approach saves memory because of the
fact that in most simulations, only a small fraction of the
�� possible routing states need to be maintained. On the
other hand, some extreme cases do require a majority of the
�� possible routing states. For example, when nearly ev-
ery pair of nodes communicate with each other in a unicast
simulation, or in a multicast simulation when every node is
a receiver that needs to receive data from all the other nodes,
it becomes necessary to calculate and store �� NIx–Vectors.
In extreme cases such as this, skipping unicast routing ta-
ble computation does not provide much benefit, so the sim-
ulationist should choose to use the default unicast routing
tables instead of the NIx–Vector technique for routings in
these cases.

However, in most cases, skipping the unicast routing ta-
ble computation does save substantial memory and CPU
time for large-scale topologies, allowing much larger mul-
ticast simulations to be performed than would be possible
otherwise.

4. Experimental Results

We carried out a series of experiments to test the ef-
fectiveness of the memory saving techniques that we intro-
duced in the previous sections. The platform where our ex-
periments were run is a set of Pentium-III 866MHZ systems
running Red Hat Linux 7.1, with each system having 2GB
memory. We modified ns2.1b7 according to the three dif-
ferent techniques described in the previous section, and ran
various experiments to compare the memory usage with and
without each technique.

We constructed the network topology in the simulation
as follows: first we constructed a tree topology with a fanout
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Memory usage against techniques: 200 groups
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Figure 1: Simulation topology: fanout=6, depth=5,
CrossLinkRate=100, with 200 multicast groups, each
group having 100 senders and 200 receivers.

parameter and a depth parameter, and then we added ran-
dom links between non-leaf nodes. The leaf nodes repre-
sent the end systems, and the non-leaf nodes represent the
Internet routers. Only the end systems (leaf nodes) can be
senders or receivers of the multicast groups. The intermedi-
ate routers (non-leaf nodes) will carry the traffic that passes
through them, but they never become senders or receivers
of any multicast group. The purpose of creating a tree first
is to ensure that the graph is a connected graph. However,
in a tree topology, there is only one path between any two
leaf nodes, which would have been the ideal case for our
NFT approach. But in the real Internet, there are almost
always redundant paths, and the ideal case would seldom
occur. That is the reason we added random links between
non-leaf nodes, ensuring that there are alternative paths be-
tween non-leaf nodes. This makes topology construction
very fast, easy to understand, and the scale of experiments
easy to adjust.

The number of random links between non-leaf nodes
is controlled by another parameter which we call
����������	
�. Suppose there are � links in the origi-
nal tree, then the number of random links to be added is
� �����������	
�����. This parameter reflects the con-
nectivity of the network. Large ����������	
� values re-
sult in more alternative paths between nodes.

Each experiment first creates  multicast groups. Then
for each group, � leaf nodes are selected from a uniform
distribution as the receivers, and � leaf nodes are similarly
selected as sources, where , �, � are all parameters used
to control the scale of simulation. Each source continually
multicasts UDP CBR traffic to all receivers of its group.

Figure 1 shows the memory usage of the 6 different com-
binations of the 3 techniques:

1. Original: the original ns.

2. RA: only using Replicator Aggregation technique.

3. RA, NFT: using RA and NFT techniques together.

4. Nix: using only Nix technique.

5. Nix, RA: using Nix and RA techniques together.

6. Nix, RA, NFT: using Nix, RA and NFT techniques to-
gether.

Each memory usage column is divided into four cate-
gories. From bottom up, these categories are:

1. Memory used by unicast routing states(either the uni-
cast routing table in the case without the NIx–Vector
technique, or the NIx–Vectors in the case with the NIx–
Vector technique).

2. Memory used by multicast routing states(including the
NFT, PFT, group source table etc. in the case of
interface-centric routing, or traditional multicast rout-
ing table otherwise).

3. Memory used by the other multicast routing related ob-
jects, such as replicator objects.

4. Memory used by the other parts of the simulation.
Since �	���
 � �� ���
� � �, there are in total 1555

nodes, and among them 1296 are leaf nodes. In the figure,
we can see that using NIx–Vectors significantly reduces the
memory used by unicast routing states (shown by the low-
est block of the columns). This network is not very large,
and the unicast routing states only take 423MB memory(as
in the first three columns). Using NIx–Vectors reduces the
unicast routing states to about 61MB (as shown in the last
three columns).

The chart also shows that the multicast routing states
themselves do not require a significant amount of mem-
ory in these simulations, as indicated by the second low-
est blocks of the columns. Without the NFT technique,
the multicast routing states take 95MB (in the case without
NIx–Vectors as shown in the first and second columns) or
82MB (in the case with NIx–Vectors, as shown in the fourth
and fifth columns) of memory. With the NFT technique, the
multicast routing states take about 57MB and 56MB mem-
ory, respectively, as shown in the third and sixth columns.

However, the third lowest blocks of the columns show
that there are originally too many multicast related objects
such as replicators in the simulation, because the numbers
of groups(200) and senders(100) are both large. Without
the Replicator Aggregation technique, the simulations ex-
haust the 2Gb of available memory because the replica-
tors and other multicast-related objects require an exces-
sive amount of memory. (The columns labeled Inf indicate
that the memory requirement for those cases exceeded the
available memory on our systems, and was therefore not
measurable. However it could be estimated that the repli-
cators alone would have taken 17Gb memory if they are all
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Figure 2: Simulation topology: depth=5, fanout=8,
CrossLinkRate=100. All three techniques Nix, RA and
NFT are applied. Each multicast group has 100 senders
and 200 receivers.

created.) With the Replicator Aggregation technique, the
memory required by the replicators and multicast-related
objects is only about 133MB (without NIx–Vectors, sec-
ond and third columns) or 145MB (with Nix, fifth and sixth
columns) of memory.

The remainder of the memory required by the simula-
tion is indicated by the uppermost block of the columns.
It ranges between 420MB and 525MB. With all the tech-
niques applied, as indicated by the last column, the uni-
cast/multicast routing states and related objects are occu-
pying an insignificant amount of memory compared to the
remainder of the memory usage, which means the majority
of the memory usage is spent on other parts of the simula-
tions, exactly the goal we wanted to achieve in this research.

The above topology with 1555 nodes is about the limit
that our platform would allow without the NIx–Vector tech-
nique. When we increase node numbers, the unicast rout-
ing table would exceed the 2G capacity at the scale of about
3000 nodes. Above this scale, the simulation can only be
carried out with the NIx–Vector technique.

Figure 2 shows the memory usage as the number of
groups increases, with all three techniques applied. This
topology contains 4681 nodes, and simulation can only be
carried out with the NIx–Vector technique. In this chart the
multicast memory roughly doubles as the number of groups
doubles, suggesting that the multicast memory usage with
all three techniques applied increase linearly with the num-
ber of groups.

Figure 3 shows how the network connectivity im-
pacts the effectiveness of the NFT technique. As the
����������	
� increases, the multicast routing memory
also increases. With the provided number of senders(100)
and density of receivers (200/1555), when CrossLinkRate

Memory usage against Crooslinks:  200 groups
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Figure 3: Simulation topology: fanout=6, depth=5, with
200 multicast groups, aach group having 100 senders
and 200 receivers. All three techniques Nix, RA and NFT
are applied.
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Figure 4: Simulation topology: fanout=8, depth=4,
CrossLinkRate=100. Nix and RA are both applied. There
are 100 multicast groups. Each multicast group has 100
senders.

is ��, the multicast routing states take about 33MB mem-
ory; when the CrossLinkRate is ����, the multicast routing
states take up about 56MB memory. This confirms our ex-
pectation that the more alternative paths the network has,
the less effective NFT would be.

Figure 4 shows how the density of the receivers impact
the effectiveness of the NFT technique. The topology is rel-
atively small, with 587 nodes in total, among them 512 leaf
nodes. As the number of receivers increases, the multicast
routing state of the PFT-only approach increase more or less
linearly. On the other hand, although the multicast routing
states of the NFT approach also increases, it increases much
more slowly, and in the end, as the density(receivers/total
nodes) tends to 1, the memory of the NFT approach tends
to a constant number, which is idealistic for End-System
Multicast where the density is exactly 1.
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5 Conclusions and Future Work

In this paper we analyzed the memory requirement of
multicast simulation, and presented three techniques to
reduce memory requirements of a simulator in order to
achieve large-scale multicast simulations.

1. We introduced a new data representation technique
called Negative Forwarding Table based on the notion
of interface-centric routing to compress the multicast
routing states.

2. We aggregate the replicator objects, from one replica-
tor per group per source per node, to one replicator per
node, thus drastically reducing the memory require-
ment by the replicator objects.

3. We remove the unicast routing table, so that simula-
tions of large network topology do not run out of mem-
ory simply because of the ����� memory requirement
of the unicast routing tables.

Through experiments, we show that each of our tech-
niques is effective in its own right. Combining all three
techniques reduces the size of routing states from a pro-
hibitively large amount to an insignificant amount com-
pared to the total memory size required by the simula-
tion, thus allowing large-scale multicast simulations to be
performed without routing state alone exhausting available
memory.

As future work, we will attempt to distribute the mul-
ticast simulations onto multiple systems using pdns[15],
which each system running a portion of the entire simula-
tion, in order to achieve even larger multicast simulations.

Also, the NFT technique introduced in this paper can be
used not only in simulations, but also potentially within ac-
tual multicast routers to reduce the routing state memory
requirement of multi-source multicast groups. We plan to
explore this possibility on actual multicast routers or Appli-
cation Layer Multicast end systems.
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