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Abstract

This study presents an analysis of the impact of mitiga-
tion on computer worm propagation in Mobile Ad-hoc Net-
works (MANETS). According to the recent DARPA BAA -
Defense Against Cyber Attacks on MANETS[4], ”One
of the most severe cyber threats is expected to be worms
with arbitrary payload that can infect and saturate MANET-
based networks on the order of seconds”. Critical to the de-
sign of effective worm counter measures in MANET envi-
ronments is an understanding of the propagation mecha-
nisms and the performance of the mitigation technologies.
This work aims to advance the security of these critical sys-
tems through increased knowledge of propagation mecha-
nisms, performance and the effect of mitigation technolo-
gies. We present both analytic and simulation analysis of
mitigation effectiveness. The ultimate goal of these studies
is to develop an accurate set of performance requirements
on mitigation techniques to minimize worm propagation in
tactical, battlefield MANETS.

1. Introduction

The Defense Advanced Research Program Agency
(DARPA) believes that computer worms present a se-
vere security threat against tactical, battlefield Mobile
Ad Hoc Networks (MANETS). There is much empha-
sis within the recently released DARPA Broad Agency An-
nouncement on Digital Cyber-Attacks in MANETS [4]
on computer worm propagation, mitigation and isola-
tion. For this reason we have initiated a program to study
computer worm propagation and mitigation in tactical, bat-
tlefield MANETS. In this paper, we extend previous work
[3] by investigating the effectiveness of mitigation tech-
nologies in military MANETs. The primary goal of this
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research effort is the generation of a set of performance re-
quirements on mitigation technologies in order to ensure
their success in tactical, battlefield MANETS. This objec-
tive drives some of the modeling parameters we choose to
investigate in this study. We present both analytic and com-
puter simulation studies of mitigation effectiveness in
minimizing the spread of the computer worm under a va-
riety of conditions. We study the effects of mitigation re-
sponse time, nodal mobility and channel congestion on the
final state of the worm propagation.

Our initial studies in [3] investigated the impact of com-
munications and mobility effects on worm propagation
mechanisms in MANETS. There we found that network de-
lays and channel congestions had a large impact on the
worm propagation effects. We also found that a set of rel-
atively simple analytic models reproduced these com-
munications effects quite well. In this paper, we extend
our previous work by focusing on the impact of miti-
gation on worm propagation in MANETS under vari-
ous network conditions. We also present a simple analytic
model of mitigation, discuss its predictions and com-
pare these to simulation results. Our main results in this
paper are:

• There are network conditions, i.e., channel congestion,
under which mitigation technologies can actually pro-
mote the spread of infection by reducing competition
between probes on common communications chan-
nels.

• Our simple analytic model of mitigation does a reason-
able job of estimating the steady state infection prob-
ability when compared to our simulation results and
may eventually be useful in developing engineering
tools for the design of mitigation techniques.

• The analytic model of mitigation has some rather inter-
esting properties: a) it has multiple stationary state so-
lutions, onec(∞) = 1 andc(∞) < 1 wherec(t) is the
probability of infection by timet, b) a criticalc(0) ex-
ists,cc(0), for whichc(0) < cc(0) implies thatc(∞) =
cc(∞) < 1 independent ofc(0), while c(0) > cc(0) im-
plies thatc(∞) > cc(∞) < 1 which monotonically in-
creases asc(0) increases.



The rest of this paper is organized as follows. Section
2 provides a brief overview of previous work related to
our studies within this paper. Section 3 provides an anal-
ysis of the Standard Epidemic Model, discusses its assump-
tions and relationship to worm propagation in communica-
tions networks. This section also analyzes our simple ana-
lytic model of mitigation. Simulation studies are then pre-
sented in Section 4, followed by a brief discussion on miti-
gation in Section 5. We end the paper with conclusions.

2. Previous Studies

Previous studies have analyzed and modeled the propa-
gation of computer worms in digital communications net-
works. [13] provides an extensive investigation into the
mechanisms of worm propagation and their performance,
addressing specifically the Code Red I and II worms as well
as the Nimda worm. They also provide an interesting dis-
cussion on potential strategies to build better worms and
efforts necessary to mitigate worm propagation through-
out the Internet. [6] and [7] provide an investigation of the
Code Red worms propagating through the Internet. Rele-
vant to our work, they provide an interesting discussion and
analysis of performance requirements on several mitigation
technologies through simulation studies of Internet-like net-
works.

[16] provides an excellent analysis of mathemati-
cal models of worm propagation through the Internet. No-
tably, they discuss the Kermack-Mckendrick model for the
removal of infected nodes from the system. They also pro-
pose a heuristic expression for inter-worm competition
for Internet bandwidth and develop a “Two Factor Worm
Model” for their studies.

[14] addresses the issues of finite propagation times and
infected node removal (or death) on propagation rates. They
provide both analytic models and simulation results of these
effects for Internet-like environments. [12] provides a thor-
ough literature review of worm propagation models and
studies. Interestingly, they also review various models of
mitigation techniques of computer worm propagation.

[10] presents an analysis and simulation study of the per-
formance of a novel, distributed mitigation technology re-
ferred to asNetwork Telescopes. This study demonstrates
the value of this distributed and collaborative technique for
rapid identification of worm infection and its role in mitiga-
tion. [11] investigates, through analysis and simulation, the
impact of the non-uniform distribution of nodes within the
Internet.

3. Analytic Models

In this section we discuss a relatively simple analyti-
cal model of worm propagation and mitigation in computer

networks. We draw upon previous models, but derive sim-
plified forms while maintaining their critical aspects. Our
hope being to encourage the development of explicit solu-
tions useful to engineers in future studies.

The standard analytic model used in the literature to an-
alyze worm propagation in computer networks is the Stan-
dard Epidemic Model, see, e.g., [1]),

dI(t)
dt

= βI(t)[N− I(t)]/N (1)

whereN is the total size of the susceptible population,I(t)
is the number of infected nodes at timet, andβ is the rate
at which a given infected node probes the total, susceptible
population of nodes.

Key assumptions in the derivation of the Standard Epi-
demic Model applied to worm propagation in computer net-
works are:

• Uniform Medium- all nodes, their nature and distri-
bution, are assumed equivalent. In the MANET envi-
ronments we focus on here, this is true. However, de-
tails of the nodal distribution and non-uniformity can
have a large impact on the nature of the worm propa-
gation and counter measures to prevent its spread, see,
e.g., [11].

• Action at a Distance- as soon as an infected probe
is queued for transmission to another host, it is im-
mediately received by that host. This implies that
all hosts always have routes established to all other
hosts and hence there exists no time required for the
route discovery process. It also implies that there ex-
ists no queuing, transmission or propagation delays
within typical, bandwidth constrained, tactical, bat-
tlefield MANETS. This effect can be significant in
MANETS.

• Independent Infection Agents- there exists no interac-
tion between the infection probes propagating through
the infection media, i.e., the communication network.
In networks, and prominently in MANETS, this ig-
nores two effects, a) sharing access to a common radio
channel and b) probe losses due to overloading the lim-
ited bandwidth and finite sized communication buffers.
These effects can be quite large in MANETS.

• Zero Death Rate- once a node is infected it never dies
or gets cured. Instead, it is forever infected and gen-
erating infection probe packets. This assumption is re-
lated to the modeling of mitigation mechanisms within
the MANETS and to the determination of their effec-
tiveness in protecting the network nodes.

• No Incubation Period- as soon as the infection probe
packet reaches the susceptible computer hosts, it can
immediately begin transmitting infection probes to the



other hosts. This may be significant in modeling stealth
worms.

The Standard Epidemic Model is derived from the fol-
lowing difference equation,

I(t +∆t)≈ I(t)+βI(t)∆t[N− I(t)]/N+O((∆t)2) (2)

where O((∆t)2) represents terms of order(∆t)2. Here,
βI(t)∆t is the effective number of probes which are
sent into the target network and[N − I(t)]/N repre-
sents the probability that a probe encounters a suscepti-
ble, non-infected node. In the limit that∆t → 0, dividing
through by∆t, we get

dI(t)
dt

= βI(t)[N− I(t)]/N (3)

Defining the probability of infection asi(t) = I(t)/N, we
rewrite the equation as

di(t)
dt

= βi(t)[1− i(t)] (4)

An explicit solution to the Epidemic Model, obtained by
factoring and integration, is given by

i(t) =
eβ(t−T)

1+eβ(t−T) (5)

where T is determined by the initial conditioni(t = 0).
Typically, β is written as

β = β0(
N

232) (6)

whereβ0 represents the rate at which an individual, infected
node probes for other nodes andN/232 represents the like-
lihood that a randomly chosen 32-bit IPv4 address is a sus-
ceptible node. Other strategies are employed and modeled
accordingly through appropriate definitions ofβ. In order to
concentrate on those aspects unique to MANET networks,
we assume that the infected worms only generate probes
to nodes within the MANET. In this case,β will be set to
the rate at which an individual infected node generates and
transmits probes. This represents a worse case strategy from
the perspective of generating performance requirements on
mitigation techniques and assumes that the worms will have
access to a table of nodes comprising the MANET. How-
ever, it is somewhat artificial in the sense that the infected
nodes choose from the table of nodes randomly. Clearly, ad-
ditional node selection strategies should be the subject of fu-
ture investigations.

The Kermack-Mckendrick model [5] addresses the is-
sue of the removal process of infected nodes. In the context
of computer worm propagation, [16] applied the Kermack-
Mckendrick model in their study of the Code Red worm.
This extension to the Standard Epidemic Model addresses

Figure 1. The baseline MANET worm propagation
results in the presence of a mitigation technology.

the Infinite Lifetimeassumption discussed above and is im-
portant in the context of our mitigation technology discus-
sion below. We can derive a relatively simple analytic model
of the performance of mitigation technologies as follows.
Let c(t) be the probability that a host has been infected
by the worm by timet. This represents both the probabil-
ity of hosts currently infected,i(t), and the probability of
hosts either quarantined or rehabilitated (and no longer sus-
ceptible to further infection),r(t). Let us assume a simple
model of the mitigation technology, i.e., that it takes a fixed
amount of time,δ, for the mitigation response to act on the
infected hosts. Then, following the same argument to de-
rive the Standard Epidemic model above, we get

(t < δ)
dc(t)

dt
= βc(t)[1−c(t)] (7)

(t > δ)
dc(t)

dt
= β(c(t)−c(t−δ))[1−c(t)] (8)

Note, this equation can also be derived from the more com-
plex “Two Factor Worm Model” found in [16], by substi-
tuting c(t) = i(t)+ r(t). Further, given that infected nodes
older thanδ seconds are rehabilitated, thenr(t) = c(t− δ).
Finally, we implicitly assume thatc(0) consists of newly
infected nodes, i.e.,c(0) = i(0). The expression in Eq.(8)
modifies the Standard Epidemic model above by arguing
that the total probe rate within the network is modified by
the removal of the nodes which had been infected prior to
t−δ seconds ago.

This equation is written for two separate time regimes
due to the discontinuity in the slope ofc(t) at t = δ,

lim
ε→ 0

dc(δ+ ε)
dt

− dc(δ− ε)
dt

=−βc(0)[1−c(δ)] (9)



Figure 2. The effects of initial conditions on the fi-
nal system state - 1.5 second mitigation response
time.

The value of analytic models of relative simplicity is
the explanation of the system dynamics which they afford.
The steady state (t → ∞) solution to the Standard Epidemic
Model isi(∞) = 1, which is apparent from Eq.(1) by setting
the RHS of the equation to 0 yielding 1− i(∞) = 0. The mit-
igation equation above affords the same solution forc(∞).
The interesting question is whether the mitigation equation
affords other steady state solutions as well. If we perform
a Taylor Series expansion ofc(t− δ) in Eq.(7) in terms of
c(t), we get

dc(t)
dt

= β(δ
dc(t)

dt
)[1−c(t)] (10)

Canceling the derivatives on both side of this expression
yields

c(∞) = 1− (βδ)−1 (11)

Therefore, we suspect that there exist steady state solutions
to Eq.(7) wherec(∞) is less than unity, implying that the
mitigation technology was effective in stopping the spread
of the infection before the entire population was affected.
Further, the faster the mitigation technology in detecting a
infected node, the more effective the technology in limit-
ing the final infection probability.

In Figure 3 we show the results of a numerical integra-
tion of Eq.(7). Here, we setc(0) = 0.01 and use 10,000 in-
tegration points over the range of the plot. We see that in-
deed there are steady state solutions wherec(∞) < 1 and
that the final value ofc(∞) decreases as the value ofδ de-
creases.

In Figures 2 and 3 we show the results of varying the
initial conditions on the final steady state solution. These

Figure 3. The effects of initial conditions on the fi-
nal system state - 2.0 second mitigation response
time.

Table 1. Numerical tests forcc(∞).

δ No. Int. Pts. c(0) cc(∞)
1.5 2x105 2x10−12 0.51
2.0 2x105 2x10−12 0.77
3.0 2x105 2x10−12 0.93
4.0 2x105 2x10−12 0.98
5.0 2x105 2x10−12 0.99

plots exhibit some interesting behavior. For small values
of c(0), i.e., c(0) < cc(0), the steady state solution is in-
dependent of the initial condition. However, for larger ini-
tial conditions, i.e.,c(0) > cc(0), the steady state solution
uniformly increases with larger initial conditions until fi-
nally the steady state solution ofc(∞) = 1 is approached.
Based upon this behavior, we know that our simple expres-
sion in Eq.(11) is wrong, as it is independent upon initial
conditions. We know this not to be the case from these fig-
ures. Further, if we try to interpret Eq.(11) ascc(∞), we see
from Table 1, that it does not well represent this value ei-
ther. In Table 2, we investigate the impact of integration step
sizes in determiningcc(∞). From these results, we are con-
fident that the numerical integration results are correct. It
remains an open area of investigation as to why the Tay-
lor Series expansion ofc(t) fails to find the correct steady
state.



Table 2. Numerical tests in search ofcc(∞).

δ No. Int. Pts. c(0) cc(∞)
1.5 2x105 0.04 0.57
1.5 2x105 0.02 0.54
1.5 2x105 0.002 0.51
1.5 2x105 2x10−4 0.51
1.5 2x105 2x10−8 0.51
1.5 2x105 2x10−12 0.51
1.5 2x107 2x10−12 0.51

4. Simulation Studies

We present a comparison of the above model to a set
of mitigation simulation studies. The NS2 simulation tool
[8] was used to simulate the spread of the worm infection
throughout a MANET. The version 2.27 of NS2 already
contained an application which simulated the spread of a
computer worm. We modified the NS2 application in or-
der to a) simulate an isolated MANET, b) allow us to plant
the initial infection seed at random in the MANET at time
zero and c) allow us to define a fixed, finite lifetime to an in-
fected node (which dies at a lifetime ofδ).

Because the dynamics specific to a MANET are of inter-
est, we simplified the simulation and analysis in the follow-
ing ways:

• Simple Worm Model - we assume the worm propa-
gates through the transmission of a single UDP packet
of sizeP. We simulate the effects of bandwidth com-
petition by varying the channel bandwidth while hold-
ing the size of the infection data constant.

• MANET Aware Model - the worm chooses nodes at
random to infect, but only targets nodes within the
MANET. We wanted to focus this study on MANET
specific issues, without the added complexity of mod-
eling and simulating on-MANET versus off-MANET
probe traffic.

• Modified Random WayPoint Mobility Model - we as-
sume that the nodes move independent of one another
according to the Random WayPoint model, modified
in order to address the concerns raised in [15]. Other,
more realistic, mobility models will be studied in the
future, see, e.g. [2].

• AODV Routing Protocol - the NS2 simulation tool
supports a number of MANET routing protocols. For
our initial studies we choose the AODV routing proto-
col [9]. Future studies will include other routing proto-
cols.

Table 3. Baseline case parameter definitions.

Parameter Description Range Base Case

Number of Hosts 50 50
Address Block Search 50 50

Transmission Rate (Mbps) 0.1 - 2.0 2.0
Transmission Range (m) 250 250
Topographic Range (m2) 10002 10002

Nodal Mobility (mps) 1 - 10 1
Routing Protocol AODV AODV

Probe Size (bytes) 400 400
Probe Rate (probes/sec) 1 1

• 802.11 MAC and Physical Layer - The NS2 simulation
tool provides models of the 802.11 MAC and Physi-
cal layer protocols. Further, we utilized the NS2 Two
Ray radio propagation model with an effective trans-
mission range of 250 meters.

The parameters in Table 3 define our Baseline MANET
simulation model.

Several simulations of the Baseline Case were conducted
for δ values of 1.5, 2.0, 3.0, 4.0 and 5.0 seconds. For each
set of conditions, we ran thirty independent simulation runs
and averaged their results. These averaged results are pre-
sented in Figure 4. These simulation results show the same
qualitative behavior as shown in the numerical results of
Figure 3. We see that the impact of a mitigation technology
applied to this environment is negligible for response times,
i.e., δ’s, larger than 3 seconds. Remember that we have as-
sumed a focused search strategy for our infection agents and
that the probe rate per infected node, i.e.,β, is unity. In Fig-
ure 5 we overlay the model predictions from Figure 3 onto
the simulation results from Figure 4. The model seems to do
a reasonable job in predicting the steady state value for the
infection probability for values ofδ equal to 2 seconds and
higher. However, for the case ofδ = 1.5 seconds, the model
over estimates the steady state value of the infection proba-
bility.

We know from our discussion of the Standard Epidemic
Model in the Section 3, that Eq.(7) is an extremely simpli-
fied model within the context of its application to MANET
environments. In [3] we explicitly discussed the impact of
the various assumptions inherent to the Standard Epidemic
Model and analyzed the effectiveness on enhanced mod-
els incorporating the effects of network delays and band-
width competition on worm propagation. As an example, in
Figure 6 we modeled the impact finite network delays us-
ing Eq.(6) from [3]. Here we setδ = 2 seconds and varied
the network delays, ranging from 0 seconds (implicitly as-
sumed previously in this paper) to 0.5 seconds. We see that



Figure 4. The results from the simulation studies
of the MANET.

Figure 5. Overlay of the analytic model results on
the simulation results.

the finite network delay slows the initial spread of the worm
due to the finite delays in time between an infected node
sending out an infection probe and an infected node receiv-
ing the probe. This propagation delay reduces the resultant
overall infection probability. Other effects impact the longer
term behavior of the worm propagation, e.g., mobility and
bandwidth competition.

In Figure 7 we investigate the impact of nodal mobility.
Our baseline case set the nodal mobility to 1.0 meters per
second (mps). The mobility model used is the Random Way
Point model modified according to the discussion found in

Figure 6. Effects of network delay on worm infec-
tion results.

[15]. We present simulation results for mobilities ranging
from a low of 1.0 mps to a high of 10.0 mps. Here we set
the mitigation response time to 2.0 seconds, which seems
to be within the range of interesting effects for the baseline
parameter set. The impact of mobility within the range in-
vestigated, seems to have little impact of the nature of the
worm propagation. For low probabilities of infection, the
curves are essentially indistinguishable. At high probabil-
ities of infection, there may be some slight differences in
c(∞) between the various mobilities, but not enough to see
any clear relationship.

In Figure 8 we present results for channel bandwidth of
200 Kbps. We discussed the effects of competition between
worm probes under conditions of limited bandwidth in the
MANET in [3]. In this study, we choose to reduce the chan-
nel bandwidth 10 fold, from our baseline of 2.0 Mbps down
to 200 Kbps. Our previous investigations showed this band-
width to result in severe channel congestion due to the rel-
atively high number of infection probes being injected into
the network as the probability of infection grows. All other
parameters are set to their baseline parameter set values. In
this figure we vary the mitigation response time from a high
of δ = 20 seconds to a low ofδ = 1.5 seconds. From above,
we expect that a mitigation response time greater than 5.0
seconds will have little impact on the final infection proba-
bility. From the figure we see little difference between the
δ = 20.0 and theδ = 5.0 seconds behavior; perhaps the
δ = 5.0 seconds showing a slightly higher final infection
probability as compared to theδ = 20.0 seconds results.
This trend continues as we reduce the mitigation response
time down to aδ = 2.0 seconds. Finally, whenδ = 1.5 sec-
onds, the final probability of infection drops way down as



Figure 7. Effects of mobility on the performance of
the mitigation technology.

we initially would expect. Therefore it seems that there is
a range ofδ’s for which a mitigation technology may actu-
ally increase the performance of the worm propagation un-
der conditions of channel congestion. This effect is similar
to the situation in population dynamics where the presence
of predation actual improves the health of the population.
In our study, the predation is the mitigation technology and
the population is the infected nodes. Future studies are nec-
essary to a) better analyze the conditions under which this
behavior occurs and b) develop analytic models for the pre-
diction of this behavior.

5. Discussion of Mitigation Technologies in
MANETS

Modeling investigations presented thus far have fo-
cused on greedy worm propagation mechanisms whereby
the worms propagate at a high rate, eventually stress-
ing the underlying communication infrastructure. In
these situations, it is reasonable to expect that intru-
sion detection monitoring systems would detect the worm
propagation traffic patterns and could be used to initi-
ate some form of response, e.g., nodal quarantines, nodal
patches, etc. However, as our discussion of impact of con-
gestion on worm propagation rates above suggests, there
may be conditions where the presence of a mitigation tech-
nology actually encourages the propagation of the worms
by reducing channel congestion. More work is neces-
sary to better understand this effect.

The above numerical model addresses only the mean be-
havior of the propagation. In order to derive meaningful re-
quirements for mitigation technologies, we need to inves-

Figure 8. Effects of congestion on the perfor-
mance of the mitigation technology.

tigate the effectiveness of the mitigation technologies in
keeping the worm infection probability below some value,
say, 95 percent of the time. [7] studied this question in
the context of the larger, wired Internet. They examined,
through simulation of several potential mitigation technolo-
gies such asAddress BlacklistingandContent Filtering, the
spread of a computer virus through a large scale network.
The focus of [7] was on the effectiveness of these mitiga-
tion technologies in reducing the worm infection versus the
probing rate of the worm. They evaluated the effectiveness
of these technologies in terms of various confidence levels.

Clearly this is the direction we need to take our stud-
ies in order to generate performance requirements on poten-
tial mitigation technologies. Figure 9 gives us an idea of the
variability in the worm propagation in our baseline MANET
by plotting out the individual histories from a set of 30 sim-
ulation runs. The parameters used for this set of runs were
theBaseline Casewith theδ = 4 seconds. The mean value
numerical models may not satisfy our needs to generate use-
ful requirements on mitigation technologies. Our future in-
vestigations will require further simulation studies and per-
haps the development of meaningful stochastic differential
equations for worm propagation in computer networks.

6. Conclusions

We have presented a brief study of mitigation of com-
puter worm propagation in MANETS. We investigate the
validity of a simple mitigation model through simulation
studies. Our simple model, however, is shown to have rather
interesting behavior. We suspect that models of this type
will be useful in developing engineering rules for design



Figure 9. The individual state traces from the sim-
ulation study of the MANET with a mitigation re-
sponse of 4 seconds.

and deployment of mitigation technologies. We discussed
efforts to extract steady state solutions from this model.
Clearly further work in this area is warranted. We compared
the model predictions with simulations of an idealized mit-
igation technology in a MANET environment. The simpli-
fied analytical model of these environments predicted rea-
sonably well the long term effectiveness of the mitigation
technologies. Or simulation studies showed conditions un-
der which the presence of mitigation actually aided the over-
all spread of the worm.

Our ultimate goal is to generate performance re-
quirements on potential mitigation technologies in these
MANET environments. We concluded this report with a
brief discussion of the effectiveness of mitigation tech-
nologies and future investigations. Clearly, there is a
subtle interplay between the worm agent, the mitiga-
tion technology and the communications infrastructure.
More work is necessary to better understand these sub-
tleties.
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