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Abstract

Parallel and distributed simulations enable the analysis 
of complex systems by concurrently exploiting the 
aggregate computation power and memory of clusters of 
execution units. In this paper we investigate a new 
direction for increasing both the speedup of a simulation 
process and the utilization of computation and 
communication resources. Many simulation-based 
investigations require to collect independent observations 
for a correct and significant statistical analysis of results. 
The execution of many independent parallel or distributed 
simulation runs may suffer the speedup reduction due to 
rollbacks under the optimistic approach, and due to idle 
CPU times originated by synchronization and 
communication bottlenecks under the conservative 
approach. We present a parallel and distributed 
simulation framework supporting Concurrent Replication 
of Parallel and Distributed Simulations (CR-PADS), as 
an alternative to the execution of a linear sequence of 
multiple parallel or distributed simulation runs. Results 
obtained from tests executed under variable scenarios 
show that speedup and resource utilization gains could be 
obtained by adopting the proposed replication approach 
in addition to the pure parallel and distributed 
simulation.

1. Introduction 

      Many fields of research currently adopt simulation-
based techniques for the analysis, in order to obtain deep 
insight of new systems’ design, tuning and optimization. 
Many systems of interest for the analysis may be 
characterized by complex model definition and dynamic 
interactions among a possibly huge set of model 
components. The accuracy of simulation results requires a 
detailed definition and simulation of every single model 
component of the whole complex system model. To 
overcome the computation and memory bottlenecks of 
mono-processor architectures [22, 23], many practical 
experiences have demonstrated that a solution for the 
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simulation of such systems is achievable by using parallel 
and distributed models and architectures, i.e. a Parallel or 
Distributed Discrete Event Simulation (PDES) approach 
[14, 16]. The IEEE 1516 Standard for Modeling and 
Simulation High Level Architecture (HLA) is a recently 
approved standard dealing with component-oriented 
distributed simulation [7, 12]. It defines rules and 
interfaces allowing for heterogeneous model components’ 
interoperability in distributed simulation.  
In presence of a complex dynamic system, the 
implementation of a parallel or distributed simulation 
would lead to synchronization and communication 
overheads [3, 4]. The research on the optimization and 
overheads reduction in parallel and distributed 
simulations has gained a great interest, leading to the 
design and implementation of parallel and distributed 
models and simulation frameworks [3, 10, 17, 22, 24]. In 
general, an inverse tradeoff exists that determines a 
mutual worsening in the speedup: i) by reducing the 
degree of parallelism in the computation or, conversely, 
ii) by the communication bottlenecks and blocking 
synchronization primitives among many heterogeneous 
simulation components. Many research activities dealt 
with dynamic balancing of logical processes’ executions 
(both cpu-loads and virtual time-advancing speeds) by 
trading-off communication, synchronization and speedup, 
both in optimistic and conservative approaches [8, 10, 
17]. Adaptive behavior in the management of the model 
at runtime, to control the overheads due to the model 
dynamics, have been considered in [3]. A perfect load 
balancing over the execution units is difficult to obtain, 
due to the model dynamics and the asymmetry of the 
physical execution units. For these reasons, a majority of 
rapidly executed components (Logical Processes, LPs) 
may be idle waiting the synchronization of at least one 
single late component. This means that the execution of a 
majority of execution units is often blocked (by wasting 
local CPU time), and the whole simulation process 
proceeds with the speed of the slowest components. The 
frequent synchronizations are usually implemented as 
message passing primitives, and may be heavily affected 
by the overheads for communication management and 
communication bottlenecks.  
In this paper we investigate a new direction for trying to 
maximize the speedup of the simulation processes and the 
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utilization of computation and communication resources 
in the system architecture supporting the parallel or 
distributed simulation. Our assumption, based on a 
common analysis rule, is that a simulation-based analysis 
requires many independent parallel or distributed 
simulation runs, to collect many independent set of 
observations for a correct and significant statistical 
analysis of results. Our proposal is to realize a parallel 
and distributed simulation framework which is able to 
implement Concurrent Replications of Parallel and 
Distributed Simulations (CR-PADS), rather than 
executing a sequence of multiple parallel or distributed 
simulation runs. The replication concept [11, 13, 15, 20, 
21, 22, 24] is intended here as a mechanism that 
duplicates the logical processes (LPs) of parallel and 
distributed simulation runs starting from the initialization 
phase of every single run. Every replica is based on the 
common model definition, and realizes an independent 
execution (i.e. replicas do not require mutual 
synchronization) based on local initial parameters, 
variable factors for the analysis, and different random 
number generation seeds. The CR-PADS is intended as a 
way to maximize the speedup and utilization of system 
resources when implementing a set of parallel and 
distributed simulations of complex dynamic system 
models. This approach is substantially different from the 
simulation Cloning concept [6, 18]. Simulation cloning 
has been demonstrated as a good technique for supporting 
“faster than real time” simulation [18] and “what if” 
analysis [6] being based on the active cloning of multiple 
instances of the initial simulation process at “decision 
points” that may be met during the simulation. The CR-
PADS approach is not intended as a way to investigate all 
the possible evolutions from a “decision point”, like in 
the Cloning approach. The CR-PADS replication 
approach is also different from the Multiple Replications 
in Parallel (MRIP) approach adopted for the concurrent 
execution of independent sequential simulation runs, like 
in the Akaroa2 framework [1, 2, 11, 13, 15, 22]. The aim 
of MRIP in Akaroa2 is basically to give a simple way to 
the modeller for initiating multiple independent runs of 
sequential simulators over different processors. To the 
best of our knowledge, Akaroa2 offers a controlled 
environment for launching multiple independent 
sequential simulations, each one executed over a single 
CPU, without managing the concept of parallel and 
distributed simulation. With respect to CR-PADS 
approach, Akaroa2 and the MRIP approach may have 
limitations in exploiting the aggregate resources of a 
cluster of execution units, and the adoption of distributed 
models, which are some of the motivations in favour of 
the parallel and distributed simulation.  
The implementation of the CR-PADS mechanism has 
been defined and tested over the Advanced RTI System 
(ARTÌS) framework [5]. The ARTÌS framework is a 

middleware currently under implementation, whose 
design is inspired to the High Level Architecture (HLA) 
design and IEEE 1516 Standard. Results obtained for the 
simulation of a complex dynamic system model (i.e. a 
wireless ad hoc network model) demonstrate that a 
speedup gain can be obtained by adopting the proposed 
replication approach as an alternative to a sequence of 
standalone parallel and distributed simulations. The 
speedup is obtained up to a given amount of replicas and 
has evidenced a dependence on the model characteristics. 
Basically, trashing effects are introduced when the 
saturation of the computation power of all the CPUs has 
been achieved. An excessive number of replicas would 
result in additional trashing effects under the management 
viewpoint. Given the light and efficient implementation 
of CR-PADS the number of replicas causing trashing is in 
a range that exceeds the typical amount of runs required 
to achieve a good statistical relevance, i.e. thin confidence 
intervals, from the collected observations.
     The paper structure is the following: in section 2 we 
outline some concepts about the parallel and distributed 
simulation cloning and replication; in Section 3 the key 
issues for the replication mechanism implementation and 
the ARTÌS middleware are defined; in section 4 a 
prototype wireless system’s model and a set of simulation 
results are presented to evaluate the concurrent replication 
approach; in section 5 we summarize our conclusions and 
future work.

2. Cloning and Replication of Parallel and 
Distributed Simulations 

The Multiple Replications in Parallel (MRIP) is a 
technique that we cite here as a reference for our work [1, 
2, 11, 13, 15, 20, 21]. This technique consists in 
launching multiple runs of independent sequential 
simulations in parallel over a set of concurrent CPUs. 
Every simulation run is executed from the beginning up 
to the end on the same CPU, under the control of a single 
scheduler (i.e. a monolithic sequential simulation). Some 
frameworks like Akaroa2 provide support for the MRIP 
when launching simulations based on common sequential 
simulation tools like PTolemy, NS2, OMNET++ [13, 22]. 
To the best of our knowledge, the MRIP approach for 
parallel and distributed simulations is still to be 
investigated.

2.1. Parallel and Distributed Simulation 

The architecture of the physical execution units (PEUs) 
can be organized in different ways: from a parallel multi-
processor architecture with shared memory up to a 
distributed cluster of PCs interconnected by LANs or 
even by the Internet. The research community called a 
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parallel simulation the concurrent execution of a single 
simulation run over a tightly coupled multi-processor 
architecture, and a distributed simulation the concurrent 
execution of a single simulation run over a loosely 
coupled set of execution units, each one running on a 
possibly different HW architecture and separate local 
memory. In the optimistic approaches for implementing 
parallel and distributed simulations, several simulation 
components may bet on forecasting and computing one 
out of the possible evolutions, in order to obtain a 
maximum exploitation of the parallel execution. In 
solutions like the Time Warp [19], many model 
components advance their evolution without worrying 
about causality maintenance at least until a violation of 
causality is revealed: in such case a costly process called 
rollback is executed to restore the processes states to a 
global safe-state. Such optimistic implementations were 
thought as a way to maximize the utilization of expensive 
computation architectures. The efficiency of optimistic 
implementations would depend heavily on the 
evolutionary characteristics of the models: highly 
independent, predictable or self-correlated models would 
behave better than unpredictable ones, since independent 
sub-models may have few common “decision points” 
affecting each others’ evolution, and the choices made at 
“decision points” could be performed on the basis of 
more effective “oracles” that could reduce the need for 
frequent rollbacks. Needless to say, rollbacks can reduce 
the efficiency of the simulation process in significant 
way. In the conservative approach, each “time advance” 
in the model evolution is made under the conservative 
assumption that all previous events have been processed 
in correct timestamp order, by all the parallel and 
distributed model components. Frequent synchronizations 
(i.e. blocking and unblocking event executions) of all the 
model components are performed for ensuring a 
conservative implementation of the causal order of 
events.

2.2. IPC Communication for Parallel and 
Distributed Simulation 

The communication among LPs in a parallel simulation is 
usually efficient and reliable because it can be supported 
by the classical mechanisms for local inter-process 
communication (IPC) like pipes, FIFO channels and 
Shared Memory. Possible advantages given by local IPC 
communication mechanisms are: reliable 
communications, ordering maintenance of messages, and 
efficiency, intended as high bitrate and low latency 
channels among LPs. The shared memory solution 
requires a control of the concurrent accesses to mutual 
exclusive areas: the efficient implementation of control 
primitives by the operating system is a necessary 
condition for the efficiency of the communication. 

The distributed simulation approach is based on the 
implementation of concurrent LPs executed over 
distributed physical execution units (PEUs). The 
advantages of distributed simulation architectures can be 
summarized as: i) theoretical scalability, given by the 
arbitrary extension of the PEU architecture, ii) the 
possible geographical distribution of PEUs, which could 
be exploited to deal with management and reliability 
issues, and iii) the fault tolerance based on the possible 
substitution of unreliable or disconnected PEUs. The 
communication among LPs can be supported typically by 
external inter-process communication mechanisms, i.e. 
message passing based on packet-based communication 
over heterogeneous interconnection networks. External 
IPC solutions are usually less reliable and efficient than 
local IPC. The assumptions about the network 
infrastructures to be adopted ranges from efficient LANs 
up to unreliable and high-latency Internet-based 
communication. In some scenarios, both parallel and 
distributed PEUs can be used to execute simulations. 
Given the low performance and reliability of network 
based communication, it is clear that local IPC is 
preferable (if available) to be exploited over parallel 
architectures.

2.3. Parallel and Distributed Simulation Cloning 

The simulation cloning technology was introduced as a 
concurrent evaluation mechanism, in the context of 
parallel simulation [18]. Simulation cloning allows the 
creation of copies of a simulation process (clones) at 
“decision points”, which are evaluated at runtime, but 
need to be defined preliminary in the model design phase. 
When a set of clones is created, each clone would execute 
a different possible evolution of the current scenario, each 
one related to any choice made at the decision point. The 
main flow of events of a simulation may be recursively 
split in separate flows characterizing a different evolution 
of clones, starting from the decision points. The 
advantage of simulation cloning is basically obtained by 
the concurrent investigation of alternative choices, by 
exploiting the concurrent computation of parallel and 
distributed architectures. Clones’ evolutions originated by 
bad choices can be killed at runtime to reduce the 
overheads.
The cloning approach includes the management of 
different time axes in parallel, in order to support a 
runtime forecasting functionality [24]. In [6] the aim to 
support users willing to run existing complex simulation 
models, gave to reusability and transparency issues a top 
role while enabling simulation cloning. This is the reason 
for cloning design on HLA-compliant distributed 
simulations, which led to the introduction of the concept 
of virtual federates [6, 18]. A preliminary discussion of 
the design and implementation challenges and solutions, 
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like virtual logical processes (VLPs) and virtual messages 
(VMs), can be found in [6, 18]. The design and 
implementation of runtime support for cloning of HLA-
based parallel and distributed simulations is quite 
complex and challenging effort. This is even more critical 
under HLA-based and Data Distribution Management 
(DDM) based implementations. 

2.4. The Concurrent Replication of Parallel and 
Distributed Simulations 

The replication concept is intended here as a mechanism 
that duplicates the logical processes (LPs) of parallel and 
distributed simulation runs starting from the initialization 
phase of every single run. Each replica is based on a 
common model definition, and realizes an independent 
run execution based on local initial parameters, variable 
factors for the analysis, and different random number 
generation seeds. In other words, many independent 
simulation runs are executed concurrently by replicating 
them (just as clones) only at the beginning of the 
simulation process. 

2.4.1. Motivations for the Concurrent Replication. In
the following we are going to explain the motivations for 
our proposal of a Concurrent Replication mechanism for 
Parallel and Distributed Simulation (CR-PADS) by 
sketching the differences among the MRIP, the PDES and 
the CR-PADS approaches, under the computation and 
communication viewpoints.
In figure 1, by assuming that a set of N CPUs are made 
available for computation (no matter if they belong to 
parallel or distributed architectures) we want a set of 
many independent runs to be executed (only two in the 
figure for clarity). Obviously, the aim is to have the 
completion of the overall simulation process in the lowest 
time and with the maximum utilization of computation 
and communication resources. By focusing on the MRIP 
approach (figure 1a), the independent runs can be 
executed by launching in parallel the sequential 
simulations over the available CPUs. It results that the 
possible concurrency of the model execution cannot be 
exploited to obtain simulation speedup, because every 
computation is linearly executed as a sequence of tasks. 
In this scenario, the model data structures and 
computation must fit on the CPU system and may suffer 
memory and computation limitations. Moreover, as the 
figure 1a illustrates, if the available resources are more 
than the number of runs required, the potential associated 
to some resources may remain unexploited.  
The parallel (or distributed) discrete event simulation 
(PDES) approach (see figure 1b) may introduce 
advantages, because every independent run could exploit 
the whole computation architecture, by mapping and 
exploiting the degree of parallelism inherent to the model 

over the concurrent CPUs. This implies that a single run 
may complete in less time than a sequential run. On the 
other hand, the linear execution of two (or many) runs in 
the scenario of figure 1b may result in a speedup 
depending on the number of resources and the number of 
runs required under MRIP and PDES, respectively. It is 
worth noting that the advantages of the aggregate memory 
architecture may assist the model data structures 
management, and that the whole set of computation 
resources (CPUs) can be exploited in parallel.

Figure 1. Comparing MRIP vs. PADS vs. CR-PADS 

The problem arising under the PDES scenario is 
represented in the figure 1b, where frequent 
synchronizations are required among the model 
components (by assuming a conservative event-based or 
time-stepped implementation). Every synchronization 
barrier initially unblocks the concurrent computation of 
CPUs. As soon as the computation phase is terminated, 
every process starts a message passing phase to 
synchronize again its execution with other processes. This 
implies that i) the whole set of processes advance with the 
speed of the slowest (or more computation intensive) one, 
and ii) the final phase before the synchronization barrier 
is communication-intensive and may suffer additional 
delays due to the congestion and delays of the inter-
process communication infrastructure. The 
communication delay may result in a high percentage of 
the whole synchronization delay, under loosely coupled 
distributed architectures (e.g. over CPUs interconnected 
by LAN or Internet technology). In other words, as 
shown in figure 1b, every simulation process may result 
in a sequence of mixed and interleaving bottleneck phases 
originated i) by the CPU computation and ii) by 
synchronization and communications, respectively. 
In this work we investigate how to obtain a more fluent 
computation and communication by merging the 
execution tasks of more than one parallel or distributed 
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simulation replica over the computation and 
communication architecture. By launching multiple, 
independent and concurrent parallel or distributed 
simulation runs, idle CPU time could be avoided by 
switching to the execution of computation requests by the 
other replicas which already completed their 
synchronization phase. The same principle could be 
exploited under the communication system viewpoint, 
because the message passing from all the replicas may 
increase the uniform utilization of the communication 
system. As a result, idle CPU phases, and idle or 
congested communication phases, could be smoothed 
over time. This may result in additional speedup with 
respect to the time required for completing the whole  set 
of simulation runs. The risk in this approach is to spend 
too much time in switching processes’ executions, and in 
the creation of communication bottlenecks and livelocks, 
resulting in trashing effects. Our design is based on a set 
of guidelines that we followed in order to obtain the 
maximum advantage from the replication mechanism, by 
opportunely managing the processes executions and 
communications, and by keeping under control the 
overheads introduced.

2.4.2. Advantages of the Replication approach. Among 
the advantages of a concurrent replication approach for 
parallel and distributed simulations, at the top layer we 
identify the possible speedup obtainable when executing a 
set of many independent runs, or the possible concurrent 
analysis of different scenarios (defined at the beginning 
of the run). Specific implementation guidelines could lead 
to additional advantages. As an example, we defined the 
structure of the ARTÌS framework such that a separation 
of the simulation and replication management is 
specifically devoted to a clean design and to the 
exploitation of management techniques that reduce the 
communication overheads. 
Replicas are created by replicating virtual LPs that realize 
a simulation run. A set of replicas of virtual LPs is 
managed as a single LP by the runtime management. This 
simplifies the management under the ARTÌS viewpoint 
and allows an optimization and balancing of the 
utilization of communication resources, based on queue 
management, priority and fairness protocols. The 
management of Random Numbers Generators (RNGs) is 
simpler than in the cloning approach, because seeds can 
be chosen at the beginning of the runs, without 
originating correlated sequences whose effect could bias 
the analysis of results at the end of a set of simulation 
runs.
3. The CR-PADS Implementation

Recently proposed and implemented middleware 
solutions based on the IEEE 1516 Standard have shown 
that the parallel and distributed simulation of massive and 

complex systems can result in relevant overheads [3, 4]. 
Overheads are due to the complex and full management 
of a wide set of runtime services and to the latency due to 
distributed communication bottlenecks. Specifically, the 
implementation of the interprocess communication 
services has been implemented in sub-optimal way, 
without considering the heterogeneity of the simulation 
execution platforms [3, 4]. 
The HLA implementation criticisms [3, 4, 7, 9]  and the 
lack of efficient Open Source runtimes are the main 
motivations behind the design and implementation of a 
new parallel and distributed simulation middleware 
named Advanced RTI System (ARTÌS) [5]. The aim of 
the ARTÌS middleware is to support parallel and 
distributed simulations of complex systems, based on a 
minimal set of efficiency-oriented middleware services. 
The ARTÌS design is oriented to support the model 
components’ heterogeneity, distribution and reuse, and to 
increase the simulation performances, scalability and 
speedup, in parallel and distributed simulation scenarios. 
Another design issue of the ARTÌS framework is the 
dynamic adaptation of the interprocess communication 
layer to the heterogeneous communication support 
offered by possibly different simulation-execution units. 
Specifically, the ARTÌS design is based on the adaptive 
evaluation of the communication bottlenecks and support 
for multiple communication infrastructures and services, 
from shared memory to Internet-based communication. 
The ARTÌS implementation follows a component-based 
design, that results in easily extendable middleware (see 
figure 2a). The solutions proposed for time management 
and  synchronization in distributed simulations have been 
widely analyzed and discussed in the design phase. 
Currently, ARTÌS supports the conservative time 
management based on both the time-stepped approach, 
and the Chandy-Misra-Bryant (CMB) algorithm. The 
extension of ARTÌS to support optimistic time 
management algorithms (Time Warp) is ongoing work.  

3.1. Implementation of Replication in ARTÌS 

Given the top level structure of ARTÌS shown in figure 
2a, ARTÌS supports the execution of LPs over the RTI 
kernel. The RTI kernel implements time management 
policies, object ownership and declaration management, 
data distribution management, federation management 
and other functions. At the bottom layer of the RTI, the 
Runtime Communication layer (RTIComm) manages the 
communication based on the underlying communication 
system that connects the PEUs’ architecture. Specifically, 
communication is implemented over shared memory for 
parallel processors, over Reliable-UDP for LANs and 
TCP/IP for Internet-based communication.  
In ARTÌS, many design optimizations have been applied 
to obtain adequate protocols for synchronization and 
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communication over Local Area Networks (LAN) or 
Shared Memory (SHM) multiprocessor architectures. In 
our vision the communication and synchronization 
middleware should be adaptive and user-transparent 
about all the optimizations required to improve 
performances. The current scheme adopts an incremental 
straightforward policy: given a set of LPs on the same 
physical host, such processes always communicate and 
synchronize via read and write operations, performed 
within the address space of LPs, in the shared memory 
(see PEU X on figure 3). To implement these services we 
have designed, implemented and tested many different 
solutions, based on inter-process communication (IPC) 
semaphores and locks, busy-waiting, and "wait on 
signals" with a limited set of temporized spin-locks. The 
latter solution has demonstrated very low latency and 
limited CPU overhead, good performances obtained in 
multi-CPU systems, good scalability, and no need to 
reconfigure the operating system kernel level. 
Two or more LPs located on different hosts (i.e. no 
shared memory available), on the same local area network 
segment, communicate by using a light Reliable-UDP (R-
UDP) transport protocol over the IP protocol. Two or 
more LPs located on Internet hosts rely on standard 
TCP/IP connections (see PEUs X and Y in figure 3).
Given the ARTÌS design, the abstractions of LPs, 
messages, channels and simulation-runs appear as objects 
implemented over the RTI kernel. In order to manage 
efficiently the management of messages among LPs, an 
active thread is waiting for messages on each channel, 
and demultiplexes messages to the above layers by 
adopting an efficient callback mechanism. The time 
management layer also adopts callback techniques to 
avoid polling techniques over the RTIComm layer, that 
may reduce performances. 
The Replication mechanism has been inserted in ARTÌS 
directly over the RTIComm layer. This facilitates the 
need to maintain transparency to the LPs, and light 
implementation of the replication mechanism. The choice 
to realize replication at the above layers would have given 
benefits under the optimization viewpoint, at the 
additional expenses of ad hoc re-implementation of the 
replication services for each time management policy.  
The Replication management layer is the funnel for 
replicas over the RTIComm layer (see figure 2b). The 
Replication layer generates the replicas of each LP, and 
manages messages from/to LPs of each replica. The set of 
processes and threads of each simulation replica has been 
designed as a tree-like structure, whose inter-process 
communication is based on highly efficient UNIX pipes. 
UNIX pipes have been preferred to shared data structures, 
because messages have limited size and the consistency 
management of shared data structures would introduce 
latency and additional overheads. 

a b
Figure 2. The ARTÌS and Replication architecture 

Figure 3. Parallel and distributed CR-PADS structure

The proposed implementation architecture allows 
optimization of the communication management locally 
to the LPs. Alternative architectures aiming to reduce the 
communication bottleneck are currently under evaluation. 
In the following, we sketch the dynamic behavior of the 
Replication management layer when replicating a LP in a 
parallel or distributed simulation run. 

1) the user’s simulator code is compiled with ARTÌS 
2) the simulation run is started 

a) execute initialization 
b) call ARTIS_init() API who creates LP_father 

3) ARTIS_init() calls Replication_init() 
4) LP_father calls RTI_kernel_init() 

a) RTI_kernel_init() creates threads for 
communication and initialization of LP replicas 
that will be created by the LP_forker thread 

b) each LP replica create a new pipe_listener thread 
to receive messages from the LP_father 

5) the LP_father creates the LP_ forker process 
a) LP_forker process generates new replicas (upon 

request from the user) 
6) LP_father waits on its own communication pipes 
7) Simulation run starts 
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a) once LP replicas send messages, the Replication 
layer sends the message to the LP_father pipe 

b) once the LP_father receives messages, it adds 
headers for multiplexing and manage the 
message by adopting the standard RTI kernel 
functions to send the message to the receiver LP. 

c) once a message is received by the thread of the 
receiver LP, the receiver LP demultiplexes the 
message to the pipes of the LP replicas, where 
the message is handled 

The set of operations 7.a.b.c is executed until the LP 
process terminates, and all its resources are freed. 

4. Performance Evaluation 

To test our framework we implemented a time-stepped, 
conservative, parallel and distributed discrete-event 
simulation of a mobile wireless system. 

4.1. Simulation system and simulation model 

Our simulation testbed consists of two different 
environments: i) parallel and ii) distributed discrete-event
simulation of model components. In the parallel 
environment for simulation the model components are 
executed as logical processes over a dual processor 
physical execution unit (PEU). Specifically, the PEU is an 
Intel Dual Xeon Pentium IV 2800 Mhz, with 3 GB RAM, 
Debian GNU/Linux OS with kernel version 2.6. 

In the distributed environment the logical processes are 
mapped over a set of physical execution units (PEUs), 
connected by a physical LAN network. Specifically, the 
execution architecture is composed by three 
homogeneous units defined like the aforementioned PEU. 

As a testbed for our replication framework, we realized a 
conservative, time-stepped simulation of a complex and 
dynamic model. The simulation model we considered for 
the simulations is a wireless mobile ad hoc network 
model. The mobile ad hoc network is realized by 
Simulated Mobile Hosts (SMHs), each one characterized 
by random mobility and CBR traffic (that is, ping 
messages sent to all the neighbor SMHs in their reception 
area). The number of simulated SMHs has the effect of 
controlling the average SMH density in the system. The 
SMH mobility causes changes in the network topology 
and the SMH dynamics. Since the model design is out of 
scope in this paper, we simply characterize the model 
execution by noting that: i)  the computation required for 
each SMHs per timestep is in the order of O(#SMH^2) 
and, ii) the communication and synchronization required 
among SMHs is in the order of O(K*#SMHs) per 
timestep. All the model choices have been defined in 

order to realize a stressing test for our simulation 
framework. 

4.2. Performance results 

    In this section we present the results of some testbed 
simulation experiments executed to analyze the 
performance of the proposed CR-PADS approach in 
presence of parallel and distributed environments.  

We performed multiple runs of each experiment, and the 
confidence intervals obtained with a 95% confidence 
level are lower than 5% the average value of the 
performance indices shown.  

    In the following we define M as the number of physical 
execution units (PEUs) supporting the simulation 
execution, and N as the total number of logical processes 
(LPs) implemented for each simulation run. As mentioned 
above, each PEU is composed by a dual processor 
machine. With the “CR-PADS OFF” label we identify a 
legacy parallel and distributed simulation approach: that 
is, simulation runs are executed in sequential order, by 
activating N LPs at a time. With “CR-PADS ON” we 
identify a parallel or distributed simulation executed 
under the effect of the CR-PADS replication approach 
described in previous sections. The “number of 
replications” is intended as the number of independent 
simulation runs executed (both sequentially when CR-
PADS is OFF, and in concurrent way when CR-PADS is 
ON).

    In figures 4, 5 and 6 we report results for the parallel 
simulation environment (M=1, N=2). Each figure shows 
the Wall Clock Time (WCT) required for completing the 
x simulation processes. Figure 4 shows the effect of 500 
SMHs involved in the simulation (250 SMHs over the 
N=2 LPs executed over the M=1 dual processor PEU). 
Figure 5 and 6 show the same index with 1000 and 2000 
SMHs, respectively. Results confirm that the CR-PADS 
approach outperforms the sequential approach by 
considering the WCT required to complete a whole set of 
simulation runs. Each run is defined with fixed size of 
300 timesteps. In figure 4, by increasing the number of 
concurrent replications (up to 20), the CR-PADS results 
are better than the traditional parallel simulation 
approach. By increasing the number of SMHs up to 1000 
(fig. 5) and 2000 (fig. 6) we are increasing the percentage 
weight of local computation, with respect to the 
percentage weight of communication, in the sequence of 
synchronization steps, for each SMH during the 
simulation runs. This means that we are pushing the 
computation to saturate all the CPUs computation power. 
When the computation load for LPs asymptotically 
saturates the CPU computation power, the CR-PADS 
approach becomes less efficient than the legacy PADS 
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approach, because it does not longer exploit any idle CPU 
time in order to execute more concurrent replicas.  
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Parallel simulation scenario: M=1, N=2, 1000 SMHs
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Parallel simulation scenario: M=1, N=2, 2000 SMHs

It is worth noting that the break-even in the number of 
replicas is around 15 in figure 5 and around 6 concurrent 
replicas in figure 6.  As it was expected, the CR-PADS 
approach introduces overheads when the number of 
replicas is high and the computation of few replicas 
saturates the computation power of all PEUs. It is worth 
noting that in all the proposed scenarios, the CR-PADS 
approach can give a speedup effect, at least limited to the 
initial subrange in the number of concurrent replicas. By 
focusing our attention to the distributed environment 
(with M=3 and N=6), in figures 7, 8 and 9 we illustrate 
the same results shown for the parallel simulation 
scenario.

It is worth noting that the average communication latency 
of distributed environments is at least one order of 
magnitude bigger than the average latency experienced in 
the parallel architecture. 
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Distributed simulation scenario: M=3, N=6, 2000 SMHs

A significant latency implies long time required to 
achieve synchronization at every timestep. This would 
translate in better opportunities for CR-PADS to optimize 
the concurrent execution of many runs, by exploiting a 
better utilization of the PEU computation power, and by 
reducing the global WCT required for completing the 
simulations. The results confirm the expectations: for a 
number of concurrent runs ranging from 1 up to 20, the 
CR-PADS mechanism is able to give significant speedup 
both in the 500 and 1000 SMHs scenarios (figures 7 and 
8). When the scenario becomes computation-intensive 
(2000 SMHs in figure 9) the CR-PADS approximates the 
same results than the legacy PADS approach, and does 
not introduce significant overheads in the range of 1 up to 
10 concurrent replications. 

Figure 10 illustrates the rate of event processing under 
both parallel and distributed scenarios obtained for 10 
simulation runs executed with and without the CR-PADS 
framework in background. By looking at the figure 10, 
CR-PADS allows a high event computation density when 
the computation load in each timestep does not saturate 
the available CPUs (that is, when SMH=500..1000). 
When the computation load increases (SMH=2000) the 
trashing effect of CR-PADS appears, basically because 
there is not space for additional concurrency in the 
computation. In the distributed scenario, the high latency 
of communication reduces the computation concurrency 
in legacy distributed simulations. As expected, the CR-
PADS mechanism is able to maintain a high computation 
concurrency.

Figure 11 shows the effect of the communication layer 
during the execution of distributed simulations. It is clear 
how the CR-PADS mechanism is able to increase the 
throughput of communication channels even when the 
computation load is low. Conversely, when CR-PADS is 
off, the communication channels are under-utilized. 
When the computation load asymptotically saturates the 

available CPUs, both the CR-PADS On and CR-PADS 
Off implementations converge to the same network 
utilization. This is due because the network 
communication is generated as a function of the events 
processed (that is the computation performed, which is 
the system bottleneck in the current scenario). 
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5. Conclusions and future work 
    In this paper we propose and investigate a new 
direction for increasing both the speedup of a parallel or 
distributed simulation process and the utilization of 
computation and communication resources. A typical 
implementation of a simulation-based investigation 
requires to collect many independent observations for a 
correct and significant statistical analysis of results. On 
the other hand, the execution of many independent 
parallel or distributed simulations may suffer the speedup 
reduction due to rollbacks under the optimistic approach, 
and due to idle CPU times originated by synchronization 
and communication bottlenecks under the conservative 
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approach. We present a parallel and distributed 
simulation framework supporting Concurrent Replication 
of Parallel and Distributed Simulations (CR-PADS), as an 
alternative to the execution of a linear sequence of 
multiple parallel or distributed simulation runs. The 
implementation of the CR-PADS mechanism has been 
defined and tested over the Advanced RTI System 
(ARTÌS) framework, which is inspired to the HLA 
architecture. Results obtained from tests executed under 
variable scenarios show that speedup gains could be 
obtained by adopting the proposed replication approach 
in addition to the pure parallel and distributed simulation. 
Our future work will include the optimization of the 
proposed framework, and the investigation of adaptive 
automation of concurrent replication. We plan to 
investigate the adoption of CR-PADS under other 
conservative and optimistic approaches for parallel and 
distributed simulation, and under massive parallel 
computation architectures. We also plan to integrate CR-
PADS with a framework for adaptive load balancing and 
migration of simulated entities, and with the components 
for runtime transient and steady-state analysis of data, 
confidence interval estimation, and run termination 
management. 
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