
A Multi-State Q-learning Approach for the
Dynamic Load Balancing of Time Warp

Sina Meraji
School of Computer Science

McGill University
Montreal, Canada

Email: smeraj@cs.mcgill.ca

Wei Zhang
School of Computer Science

McGill University
Montreal, Canada

Email: weizhang@cs.mcgill.ca

Carl Tropper
School of Computer Science

McGill University
Montreal, Canada

Email: carl@cs.mcgill.ca

Abstract—In this paper, we present a dynamic load-balancing
algorithm for optimistic gate level simulation making use of
a machine learning approach. We first introduce two dynamic
load-balancing algorithms oriented towards balancing the com-
putational and communication load respectively in a Time
Warp simulator. In addition, we utilize a multi-state Q-learning
approach to create an algorithm which is a combination of the
first two algorithms. The Q-learning algorithm determines the
value of three important parameters- the number of processors
which participate in the algorithm, the load which is exchanged
during its execution and the type of load-balancing algorithm.
We investigate the algorithm on gate level simulations of several
open source VLSI circuits.

I. INTRODUCTION
According to Moore’s law [13] the complexity of Integrated

Circuits (IC) doubles every 18 months. A major part of the
circuit design process is verification, in which the correctness
and performance of the circuits are ascertained using hardware
and software simulation. Hardware simulators are expensive to
build and it is hard to probe the values of internal signals.
Hence the verification process relies for the most part on
software simulation.
Current digital circuits have millions of gates. As a result

it is difficult to fit the simulation models of these circuits
into a single processor’s memory. In addition to the demand
for memory, the need for decreased simulation time is a
major challenge for the verification process. As a result,
the sequential simulation of digital circuits has become a
bottleneck in the design process. As a consequence, parallel
discrete event simulation has emerged as a viable alternative
to provide a fast, cost effective approach for the performance
analysis of complex systems.
A parallel (or distributed) simulation is composed of a set

of processes which are executed on different processors and
which model different parts of a physical system. Each of
these processes is referred as a Logical Process (LP). They
communicate with each other via time stamped messages.
It is necessary to make sure that the events in a parallel
simulation are executed in the same order as they would be in
a sequential simulation [7], i.e. causality must be maintained.
In order to do so, the LPs must be synchronized. There are two
main approaches to this synchronization: conservative [5] and
optimistic synchronization [9]. Conservative simulations rely

on process blocking. On the other hand, optimistic simulations
process events in the order in which they arrive at an LP. No
attempt is made to assure that events do not violate causality.
Among the optimistic synchronization schemes Jefferson’s
Time Warp [9] is the most widely employed. Time Warp
simulators for digital logic circuits were used in [3], [10],
[11], [21]. In this paper we utilize Verilog XTW (VXTW)
[11], which is XTW with a front end capable of parsing all
Verilog files which are capable of being synthesized.
It is well known that in order to achieve good performance

using a parallel or distributed program, it is necessary to
equalize the load on the processors and to minimize the com-
munication between the processors. Dynamic load-balancing
during run-time has been studied in many literatures [1], [2],
[19], [22]. The dynamic load-balancing of parallel digital
simulation is examined in [4], [17] for small circuits (up
to 25k gates). [4] selects clusters of LPs and moves them
between processors in order to balance the load. A variation
of this algorithm also minimizes the communication between
processors. A central node is responsible for selecting the LPs
which are transferred, a reasonable choice because the circuit
sizes were no larger than 25 K gates. The algorithm was
implemented on a shared memory multi-processor, resulting
in a negligible communication cost for load transferring. This
is not the case for current multi-computers which have dis-
tributed memory. In this paper, we introduce two new dynamic
load-balancing algorithms which utilize a combination of a
centralized and distributed approach to select the LPs which
are to be transferred.
In this paper, we also present a protocol which selects a

load-balancing algorithm and its associated parameters using
a multi-state Q-learning approach. Q-learning is an area of ma-
chine learning [6]. In contrast to adaptive methods, Q-learning
does not depend upon an analytical model of the system being
simulated. Instead, it learns directly from experience with the
system for which it is employed. In our case, the system is
the parallel simulation. An attractive feature of the Q-learning
algorithm is that the runtime and implementation overhead are
low.
The rest of the paper is organized as follows. In section

2, we briefly discuss Verilog XTW (VXTW), our parallel
Verilog simulator. In Section 3 we introduce two dynamic



load-balancing algorithms for Time Warp. Section 4 introduces
a multi-state Q-learning algorithm which builds upon the
algorithms described in section 3. The performance analysis of
the two dynamic load-balancing algorithms and the Q-learning
algorithm is addressed in section 5. Finally, the last section
contains our conclusion and our thoughts for future work.

II. VERILOG XTW (VXTW)

XTW [21] is an object oriented simulation environment for
Time Warp which makes use of a multi-queue event scheduling
mechanism (XEQ) and a rollback mechanism (rb-message).
XEQ has a time complexity of O(1) and rb-message uses
only one anti-message for all of the messages with time-
stamps which are larger than that of a straggler message. This
eliminates sending individual anti-messages for all of these
messages and also eliminates the need for an output queue at
each LP. XTW has a superior performance to that of Clustered
Time Warp.
Unfortunately, XTW can only read bench files. In order to

benefit from the performance of XTW, in [11] we add a front-
end to XTW which can change the data format and generates
bench input data from the HDL descriptions. The architecture
of VXTW is presented in figure 1. It takes a Verilog source file
as the input and utilizes Synopsis DC to create GTECH [15]
modules. These modules are created using GTECH library.
In the next step, the Verilog Parser parses these modules and
creates the bench files. Verilog has a database of rules to create
the bench files.
These bench files can be input to a distributed simulator

(VXTW in this paper). LPs (representing gates) are distributed
among the processors. We initialize the primary inputs with
a set of random input vectors in our experiments. After
these steps the simulation itself can begin. The functions of
the different digital gates are implemented in the simulation
executive. XTW is used as the Time Warp engine. The bottom
layer of VXTW is a communication layer which provides a
communication interface for the processors involved in the
simulation. We use Message Passing Interface (MPI) [14] for
communication between different processors.
DC can synthesize both structural and behavioral descrip-

tions of digital circuits into gate-level designs. The GTECH
library is a standard cell library which contains over 100 basic
modules. DC utilizes these basic modules in the GTECH
library in order to describe the functionality of the original
design. Once these GTECH modules are created, a Verilog
parser is utilized to convert them to a flat bench file which is
readable by XTW.

III. DYNAMIC LOAD-BALANCING

It has been widely observed that one of the most important
factors affecting the performance of parallel programs is
the distribution of load among the processors executing the
program. In order to achieve the best speed up, different
processors should have approximately the same load. As in
[4], we define the load of a processor to be the number of

events which are processed by its LPs since the last load-
balance. During the course of our experiments we observed
that the load on different processors in the simulation differ
a lot during the simulation. Hence a dynamic load-balancing
approach which can equalize the loads during a simulation is
attractive.
As mentioned in the previous section, the communication

time for transferring the load in [4] was negligible because a
shared memory multi-processor was used as the experimental
platform. As a result, we developed two new dynamic load-
balancing approaches for distributed memory multiprocessor
structures which we describe in the next section. We have
a ring topology for the processors and utilize a combination
of centralized and distributed approach to balance the load.
In the following algorithms, each processor sends its load and
communication information to a master node. The master node
utilizes the information in order to select the processors which
are to participate in the load-balancing algorithm. The selected
processors determine which LPs they wish to transfer to other
processors.

A. General Structure of the Algorithms

The algorithms which we introduce in this section are
intended to balance the communication and computational
load of the system respectively. Appropriately enough, we call
them computation and the communication algorithms. In our
algorithms each gate is represented by an LP. We make use
of a Depth First Search (DFS) algorithm to initially distribute
the LPs to processors for both of our algorithms.
We start our description by introducing four parameters

which are made use of by the algorithms:
LP Computation Load (LpLoad): The computational load
for each LP is defined as the number of processed events since
the last load-balance of the simulation.
Processor Computation Load (PLoad): The computational
load for each processor is defined as the sum of the compu-
tational loads of the LPs within that processor.
LP Communications Load (LpComm[]): The communica-
tion load for each LP is represented by an array of length
n − 1 where n is the number of processors in the system.
Each element of this array is the number of messages that the
LP sent to the other processors since the last load-balance of
the simulation.
Processor Communication Load (PComm[]): The commu-
nication load of a processor is represented by an array of length
n − 1 where n is the number of processors. The elements of
the array are the number of messages that the corresponding
processor sent to other processors since the last load balance.
The load-balancing algorithm is initiated every C cycles.

The type of the load-balancing algorithm (computation or
communication) and the value of C are defined by the user
at the beginning of the simulation. We use a combination
of centralized and distributed control in the algorithms. The
main structure of the algorithms is as follows: each processor
sends the values of PLoad and PComm to a central node.



Design Compiler 

GTECH based Verilog 
file

GTECH

Verilog Source File 

Verilog Parser 

Bench file 

Circuit Simulator 

Parsing Rules 

Simulation Results 

Practitioner 

Input Vector Creator 

Simulation Executive 

XTW Engine 

MPI 

Fig. 1. The main structure of the simulator

This node matches the top P% of the over and under-loaded
processors, where P is a user defined input parameter.
In the next step, for each pair of nodes which are matched

together, the over-loaded node is informed about its cor-
responding under-loaded node. When an over-loaded node
receives a notice, it selects up to L (an input parameter) of
its LPs and sends them to the corresponding under-loaded
processor. The next two subsections describe the details of the
computation and communication load-balancing algorithms.

B. Computation Load-balancing Algorithm

The computation load-balancing algorithm utilizes
PLoad, LpLoad, PComm[] and LpComm[] to balance the
load. Each processor sends its PLoad and PComm values
to a central node every C cycles. The central node selects the
top P% of the processors which have the maximum PLoad
and puts them in O. The lowest P% of the processors which
have the minimum Pload are put in U . The processors of the
sets U and O create a bipartite graph in which the weights of
the edges are the values of PComm[]. This means that if P1
sent 1000 messages to P2 since last execution of the dynamic
load-balancing algorithm, there will be a link from P1 to
P2 with a weight of 1000. Basically, this graph shows the
communication history of the top P% over-loaded and bottom
P% under-loaded processors. We utilize a graph bipartite
matching algorithm [8] to match the processors of these two
sets. After this matching, the central node informs the over-
loaded processors about their corresponding under-loaded
processors with a Dynamic Destination message. Whenever
a processor Pi receives a dynamic destination message, it
selects up to L LPs which have the most communication with
the destination processor, packs them into messages and then
sends them to the destination processor. It is possible that P i

later receives messages intended for LPs which were already
transferred. In this case, Pi forwards these messages to their
new processors.

C. Communication Load-balancing Algorithm
The communication load-balancing algorithm has the same

structure as the computation load-balancing algorithm. The
main difference is that it attempts to first balance the com-
munication and then the computation. The algorithm uses
PLoad, LpLoad, PComm[] and LpComm[] to balance the
load. Every C cycles, each processor Pi sends its PLoadi and
PCommi[] values to a central node. PCommi[j] contains the
communication load between nodes i and j. The central node
finds the maximum value of PCommi[j] among all of the
values of PCommi[] that it received from different proces-
sors. If processors Pi and Pj had the most communication
during last C cycles the algorithm attempts to transfer LPs
between these two processors. In order to take into account
the effect of the computation, the processor with the highest
value of the PLoad is chosen as the sender processor and
a Dynamic Destination message is sent to it. This process is
continued until 2P% (P% over-communicating and P% as
under-communicating) of the processors are matched together.
Upon receipt of a dynamic destination message at processor

Pi, it selects up to L LPs which have the most communication
with the destination processor. These LPs are sent to the
destination processor. As in the computation algorithm, if P i

later receives a message which belongs to the LPs which were
already transferred, it forwards the message to their processor.
Algorithm 2 summarizes the communication algorithm.

IV. REINFORCEMENT LEARNING AND THE MULTI-STATE
Q-LEARNING ALGORITHM

Reinforcement Learning (RL) is an area of the machine
learning which is concerned with the interaction of an agent
with its environment. At each interaction the agent senses the
current state s of the environment, and chooses an action a to
execute. This action causes changes in the environment and the
environment, in its turn, sends a scalar reinforcement signal r
(a reward or penalty) to the agent indicating the effectiveness



of its actions. In this way, ”The RL problem is meant to be
a straightforward framing of the problem of learning from
interaction to achieve a goal” [12]. The RL problem can
be solved by dynamic programming and the optimal policy
determined if the probability of rewards and state transitions
are known. However, this is not often the case, and statistical
sampling methods were developed. One such approach is Q-
learning.
In Q-learning agents learn to act optimally in a Markovian

domain by experiencing the consequences of their actions. An
agent can utilize Q-learning to acquire an optimal policy using
delayed rewards. The agent can find the optimal policy even
when there is no prior knowledge of the effects of its actions
on the environment [20]. Q-learning utilizes the reward and
the best value of the current state to improve the estimate of
the previous state-action pair. The Q-learning update rule is:

Q(st, at) ← (1−α)Q(st, at) +α [rt+1 + γmaxaQ(st+1, a)] .
(1)

where α and γ are the learning step and the discount rate,
respectively. In order to select an action in a state, one simple
solution is to select the action which has the best value.
We call this method exploitation and the selected action the
greedy-action. On the other hand, exploration means taking
an action other than the greedy action. Exploration helps to
avoid being trapped in local minima. A method to combine
these two approaches is the ε-greedy approach which attempts
to balance exploration and exploitation. The ε-greedy approach
chooses a greedy action with probability 1 − ε, where ε is a
small number. It has been shown that the ε-greedy approach
outperforms the greedy approach Q-learning algorithm [18].
Algorithm 3 shows the basic ε-greedy Q-learning algorithm.

Algorithm 1 The Q-learning
Repeat for each episode
Initialize s
Repeat for each step
Choose a from s using policy derived from Q(e.g.,
ε − greedy)
Take action a, observe r, s

′

Q(st, at) ← (1 − α)Q(st, at) + α[rt+1+
γmaxaQ(st+1, a)]
s ←− s

′

A. Q-learning and the Dynamic Load-balancing of Time Warp
As already alluded to, the advantages of using Q-learning

for the dynamic load-balancing of Time Warp is that it does
not need knowledge of the environment and does not need an
analytical or statistical model for the environment. Instead, it
develops a control policy based on a history of feedback from
the environment. In addition, it does this with a low runtime
overhead as well as a low implementation cost.
1) Single Agent vs. Multi-agent: RL can formulate the

dynamic load-balancing of Time Warp as a single agent or
multi- agent [16] problem. In a multi-agent problem, different

nodes can have different values of the control parameters of a
problem. In this approach the learning of one agent affects the
learning of other agents-the agents have to cooperate with each
other in order to find optimal values for the control parameters.
In a single agent approach we have one agent and all of the
nodes share the values of the control parameters. Basically,
there is a central node which gathers the data from all of the
nodes, runs the RL algorithm and informs the other nodes
about the values of the control parameters. In this paper, we
utilize the single agent approach for our RL algorithm. We
leave the multi-agent approach for future work.
2) Dynamic Load-balancing Design: We make use of three

control parameters for the multi-state Q-learning algorithm:

• A: The choice of dynamic load-balancing algorithm.
• P : The percentage of nodes which participate in the load-
balancing algorithm.

• L: The number of LPs which are transferred from one
node to another one in each cycle of the dynamic load-
balancing algorithm.

Our reasoning for these choices were based upon several
observations gleaned from preliminary experiments.
As to our choice of the type of load balancing algorithm

note that we had implemented two dynamic load-balancing
algorithms, the computation and communication algorithms.
The main aim of the computation algorithm was to balance
the computational load, while the communication algorithm
tried to balance the communication load between the nodes.
From our experimental results, we noted that the computation
and communication algorithms produced different results for
a different number of processors. In addition, different circuits
required different algorithms.
In both the computation and communication algorithms, we

make use of a parameter P , the percentage of nodes which
participated in the algorithm. We noted that when we used
a small number of processors (e.g. 2-6) in the computation
algorithm we could not have a large value for P because
the more nodes which participated in the algorithm the more
LPs are transferred in each load-balancing cycle, thereby
increasing the communication overhead in a small network.
If this increase is more than the speed-up that we can achieve
because of load-balancing, the total simulation time increases.
For obvious reasons, different values of L had a significant
impact on the simulation.
We define 4 states of the simulation. A state is determined

by comparing the average load differences (computation and
communication) between the processors to specific threshold
values. If this difference is less than a certain threshold, the
simulation is considered to be balanced.

• BcompBcomm(Balanced Computation and Balanced
Communication): Both of the computation and the com-
munication loads are balanced.

• BcompUcomm(Balanced Computation and Unbalanced
Communication): The computation load is balanced but
the communication load is unbalanced.



• UcompBcomm(Unbalanced Computation and Balanced
Communication): The computation load is unbalanced
but the communication load is balanced.

• UcompUcomm(Unbalanced Computation and Unbal-
anced Communication): Both the computation load and
the communication load are unbalanced.

In the first state, both the computation and communication
loads are balanced so we don’t need to run the Q-learning
algorithm. In the second and third states, the communication
load and computation load are both unbalanced. Accordingly,
we run the communication load-balancing algorithm in second
state and the computation load-balancing algorithm in the third
state. We also need to learn the values of L and P in these two
states. If P and L have m and n different values respectively,
then there aremn combinations for the control parameters and
we define mn different actions in each of these two states. In
the last state both the computation and communication loads
are unbalanced, and as a result the algorithm should learn the
values of the all of the control parameters. A has two values;
it can be either communication or computation. If P and L
havem and n different values respectively, then we can define
2mn different actions for this state.
The transition between states is performed by comparing the

average difference in the computation and commutation loads
between processors with two predefined threshold values,
Tcomp and Tcomm. As an example, if in the first state both
the computation and communication loads become higher
than Tcomp and Tcomm, we transit to state 4. If just the
communication load became higher than Tcomm we switch
to the second state. Finally, in the event that the computation
load became higher than Tcomp, we transit to the third state.
This is shown in figure 2.
The RL algorithm is executed after each C cycles, where C

is a user input parameter. After C cycles all of the nodes send
their data to a central node which executes the RL algorithm.
After computing new values for the control parameters, it
broadcasts them to all of the nodes. C is not included in the
learning algorithm because its value does not vary a great deal.
3) Q-learning and dynamic load balancing: The reward

function is of fundamental importance to a Q-learning algo-
rithm. If the reward function does not reflect the main goal of
the system, the learning algorithm may fail to find the optimal
policy. In Time Warp, the long-term goal is to reduce the
simulation time. Hence the reward should be related to the
wall-clock time of the simulation.
If ti is the wall clock time at the ith cycle, Ci, the Event

Commit Rate (ECR) of the ith interval (the interval from C i−1

to Ci) is defined as:

ECRi = NCi/(ti − ti−1), (2)

where NCi denotes the number of committed events in the
i-th interval.
In order to define a reward, we use a reference point. We

define ECRref as the average event commit rate since the
beginning of the simulation:

  Bcomp 
Bcomm     

(1)

  Bcomp 
  Ucomm 

(2)

Ucomp 
Bcomm 

(3)

Ucomp 
Ucomm 

(4)

Compload>Tcomp 

Commload>Tcomm

Commload>Tcomm 
Compload>Tcomp 

Commload<Tcomm 
Compload<Tcomp 

Fig. 2. The states and transition from the first state in Q-learning algorithm

ECRref = (
D∑

i=1

ECi)/(tD − t0). (3)

In the above formula, D is a small number between 10
and 20. This is a choice based on experimental evidence. The
reward of the i-th cycle is then defined as:

Ri = ECRi − ECRref . (4)

From this definition, the reward is positive if the simulation
is faster than the reference rate during the last cycle, otherwise
the reward is negative. The event commit rate represents the
speed of the simulation.
We use Q-learning to control the dynamic load balancing

of Time Warp. As previously discussed, in different states
we have a different number of actions to tune the control
parameters. We utilize formula 3 as the value function. After
calculating ECRref , the reward is calculated every C cycles
and the value of the current state-action pair is updated. As
mentioned in section 4-b, we use the best value of the new
state, st+1, to update the value of the current state-action pair.
At each cycle of the dynamic load-balancing algorithm,

we either select the state-action pair with the largest average
reward or with a probability of ε we randomly pick a state-
action. Algorithm 4 presents the general structure of the Q-
learning algorithm.

V. EXPERIMENTAL RESULTS
In this section we present performance results for the

dynamic load-balancing algorithms. In all of the graphs,
A=1 and 2 indicate whether the type of the load-balancing
algorithm is computation or communication respectively. P is
the percentage of nodes which participate in the load-balancing
algorithm and L indicates the number of LPs transferred in
each cycle of the algorithm. In the multi-state Q-learning



Algorithm 2 The Q-learning and Dynamic load-balancing
Master Node (P0):

{After each C cycles}
Update the state using Tcomp and Tcomm thresholds
if (STATE==1) then
Skip and do the normal simulation

else if (STATE==2) then
A=Communication
Run the Q-learning algorithm to select the values of P and L

else if (STATE==3) then
A=Computation
Run the Q-learning algorithm to select the values of P and L

else if (STATE==4) then
Run the Q-learning algorithm to select the values of A, P and
L

end if
if (A == Computation) then
Run the computation load-balancing algorithm

else
Run the communication load-balancing algorithm

end if

algorithm, the values of ε, γ, α and C are 0.1, 0.9, 0.1
and 5 respectievly. L can have the following 4 values: 50,
100, 150,and 200 and P could be either 10% or 20%. Hence,
considering the two possible values of A, 1 and 2, we will
have 16 actions in state 4 and 8 actions in states 2 and 3.
Each experiment result is the average of 10 simulation runs.
We utilized VXTW as our parallel Verilog simulator.

The Verilog source files utilized in this simulation are the
OpenSparc T2, the LEON processor and two Viterbi decoders
designed at the Rennsalaer Polytechnic Institute (RPI). The
OpenSparc and LEON designs are open source designs. LEON
is a 32-bit microprocessor which is based on the SPARC-
V8 RISC architecture and instruction set. It was originally
designed by the European Space Research and Technology
Center, part of the European Space Agency. One of the
specifications of the LEON processor is its configurable core,
making it suitable for System-on-Chip (SOC) designs. The
LEON processor has around 200k gates. We used one core of
the OpenSPARC T2 which is synthesizable by Synopsis DC
and has 400k gates. The other circuits which were used in
our simulations are two Viterbi decoders with 100k and 800k
gates from Rensselaer Polytechnic Institute (RPI).
Our experimental platform consists of 32 dual core, 64 bit

Intel processors. Each of these processors has 8 Gigabytes of
internal memory. Load distribution between the two cores of a
processor is automatically performed by the operating system.
The processors are connected to each other by means of a 1
Gigabyte per second Ethernet. We utilized Message Passing
Interface (MPI) as the communication platform between pro-
cessors. MPI provides a reliable mechanism for sending and
receiving messages between different processors.
Figure 3-a shows the performance of the computation dy-

namic load-balancing algorithm (A = 1) for different values of
L when P =10% on the OpenSparc T2 processor. The average
load difference between all of the processors is decreased by
up to 60% and we achieved up to an 18% improvement in the

400

800

1200

1600

2000

2400

2800

0 10 20 30

S
im

ul
at

io
n 

Ti
m

e

Number of Processors

Static

L=100

L=150

L=400

(a)

400

800

1200

1600

2000

2400

2800

0 10 20 30

S
im

ul
at

io
n 

Ti
m

e

Number of Processors

Static

L=100

L=150

L=400

(b)

Fig. 3. The average simulation time of the computation load balancing
algorithm for different values of L and P : a)P =20%, b)P =10%

simulation time with L =150. As can be seen, increasing the
number of LPs from 100 to 150 results in better performance
of the algorithm. On the other hand, increasing the number of
LPs to 400 worsens the situation. The reason for this is that
when we transfer many LPs in each round, the communication
time for transferring the LPs increases and overwhelms the
performance gain which we achieved from balancing the load.
Figure 3-b shows the same result when P is changed to
20%. The simulation time of the OpenSparc T2 processor
is up to 4% better with P =10% than with P =20%. The
reason is that when we select more nodes to send LPs the
communication time for transferring the LPs increases. We
do not put the results of the communication load balancing
algorithm because of page limit. Different parameter values
result in different simulation times for the communication load
balancing algorithm as well.
The effect of changing A (type of the load-balancing

algorithm), L and P on the other circuits is not shown here.
However, we did many experiments on all of the circuits
with different values of A, P and L. We found that for a
different number of processors and for different circuits, we



needed to utilize different load-balancing algorithms and their
corresponding parameters to get the best performance. Hence,
our major objective for the Q-learning algorithm was to learn
the type of the dynamic load-balancing algorithm (A) for
a specific configuration (different number of processors that
participate in the load-balancing algorithm) and circuit and
then to learn the corresponding parameters (P and L) for that
algorithm.
Let us define the commit rate as the number of non-

rollbacked messages divided by the total number of events.
Figure 4-a and 4-b depicts the commit rate vs. the number of
processors for the LEON and the Small RPI circuits with and
without the Q-learning algorithm. The number of rollbacked
messages increases with the number of processors. The reason
for this is that spreading out more of the LPs among the
processors results in a longer time for event cancellation. As
can be seen, the learning algorithm has a better commit rate
than the simulation with static load-balancing for different
numbers of processors.

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30

Number of Processors

Co
m

m
it 

Ra
te

Static
Q-Learning

(a)

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30

Number of Processors

Co
m

m
it 

R
at

e

Static
Q-Learning

(b)

Fig. 4. The average commit rate for different number of processors a)LEON
b)Small RPI
Figure 5-(a to d) shows the performance of different

load-balancing algorithms and the Q-learning method on the
large RPI circuit, the small RPI circuit, the OpenSparc T2
and LEON processors respectively. A =1, 2 correspond to
computation and communication load-balancing algorithms
respectively. In all of the graphs, we depict the best results

which could be achieved by setting A (1 or 2), P and L.
As can be seen, in almost all of the cases the Q-learning
improves the simulation time more than other methods. If
the Q-learning algorithm does not find a better result, its
simulation time is at least as good as the best result of the other
algorithms. An interesting point is the simulation time of the
algorithms with two nodes. As can be seen, with two nodes the
dynamic load-balancing algorithms not only cannot improve
the simulation time but actually worsens the situation in some
cases. The reason for this is that when we have two nodes,
the communication overhead of transferring LPs is larger than
the benefit we achieve from load-balancing. When we have
more than four processors, the problem disappears in most of
the cases and we can improve the simulation time. Using the
Q-learning method, we can improve the simulation time up
to 89%, 89%, 87% and 85% for large RPI, OpenSparc T2,
LEON and small RPI circuits respectively.

VI. CONCLUSION

In this paper, we present a dynamic load balancing algo-
rithm for Time Warp based upon reinforcement learning. A
major advantage of reinforcement learning is that it does not
rely upon a model; instead it depends upon learning from its
environment. We introduce two dynamic load-balancing algo-
rithms for balancing the computation and communication load
during a Time Warp simulation of digital circuits described by
Verilog. We utilized VXTW as our simulation engine (it is the
only Time Warp simulator which can read all synthesisable
Verilog circuits) and examined the performance of the two
dynamic load-balancing algorithms for four large circuits.
The results showed that for different circuits and different
topologies (different number of processors) we needed to
utilize different algorithms with different parameter values in
order to obtain the best possible performance. As a result,
we developed a reinforcement learning algorithm which learns
to select the algorithm (communication or computation) and
which adjusted the parameters of the algorithm. We utilized
the multi-state Q-learning method in our implementation.
As for our future work, we plan to study the effect multi-

agent technique in which we have more than one learning
agent and in which the agents communicate with each other
to learn the control parameters.

REFERENCES

[1] Elie El Ajaltouni, Azzedine Boukerche, and Ming Zhang. An efficient
dynamic load balancing scheme for distributed simulations on a grid
infrastructure. In DS-RT ’08: Proceedings of the 2008 12th IEEE/ACM
International Symposium on Distributed Simulation and Real-Time Ap-
plications, pages 61–68, Washington, DC, USA, 2008. IEEE Computer
Society.

[2] Shailendra S. Aote and M. U. Kharat. A game-theoretic model
for dynamic load balancing in distributed systems. In ICAC3 ’09:
Proceedings of the International Conference on Advances in Computing,
Communication and Control, pages 235–238, New York, NY, USA,
2009. ACM.

[3] Hervé Avril and Carl Tropper. Clustered time warp and logic simulation.
SIGSIM Simul. Dig., 25(1):112–119, 1995.

[4] Hervé Avril and Carl Tropper. The dynamic load balancing of clustered
time warp for logic simulation. SIGSIM Simul. Dig., 26(1):20–27, 1996.



[5] Yi bing Lin and Paul A. Fishwick. Asynchronous parallel discrete event
simulation. IEEE Transactions on Systems, Man and Cybernetics, 26,
1996.

[6] J. G. Carbonell, editor. Machine learning: paradigms and methods.
Elsevier North-Holland, Inc., New York, NY, USA, 1990.

[7] Richard M. Fujimoto. Parallel and Distribution Simulation Systems.
John Wiley & Sons, Inc., New York, NY, USA, 1999.

[8] Harold Gabow and Robert Tarjan. Almost-optimum speed-ups of
algorithms for bipartite matching and related problems. In STOC ’88:
Proceedings of the twentieth annual ACM symposium on Theory of
computing, pages 514–527, New York, NY, USA, 1988. ACM.

[9] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst.,
7(3):404–425, 1985.

[10] Lijun Li, Hai Huang, and Carl Tropper. Dvs: An object-oriented
framework for distributed verilog simulation. In PADS ’03: Proceedings
of the seventeenth workshop on Parallel and distributed simulation, page
173, Washington, DC, USA, 2003. IEEE Computer Society.

[11] Sina Meraji, Wei Zhang, and Carl Tropper. On the scalability of parallel
verilog simulation. In THE 38th INTERNATIONAL CONFERENCE ON
PARALLEL PROCESSING (ICPP-2009), pages 1064–1069, 2005.

[12] Silvano Mignanti, Alessandro Di Giorgio, and Vincenzo Suraci. A model
based rl admission control algorithm for next generation networks. Next
Generation Mobile Applications, Services and Technologies, Interna-
tional Conference on, 0:303–308, 2008.

[13] Gordon E. Moore. Cramming more components onto integrated circuits.
pages 56–59, 2000.

[14] mpi. Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/,
Accessed on January 2009.

[15] Samir Palnitkar. Verilog R©hdl: a guide to digital design and synthesis,
second edition. Prentice Hall Press, Upper Saddle River, NJ, USA, 2003.

[16] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state
of the art. Autonomous Agents and Multi-Agent Systems, 11(3):387–434,
2005.

[17] Rolf Schlagenhaft, Martin Ruhwandl, Christian Sporrer, and Herbert
Bauer. Dynamic load balancing of a multi-cluster simulator on a network
of workstations. SIGSIM Simul. Dig., 25(1):175–180, 1995.

[18] R. Sutton and A. G. Barto. Reinforcement Learning: an introduction.
The MIT Press, 2003.

[19] Xiaonian Tong and Wanneng Shu. An efficient dynamic load balancing
scheme for heterogenous processing system. Computational Intelligence
and Natural Computing, International Conference on, 2:319–322, 2009.

[20] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine
Learning, 8(3-4):279–292, 1992.

[21] Qing XU and Carl Tropper. Xtw, a parallel and distributed logic
simulator. In ASP-DAC ’05: Proceedings of the 2005 conference on
Asia South Pacific design automation, pages 1064–1069, New York,
NY, USA, 2005. ACM.

[22] BaoYin Zhang, ZeYao Mo, GuangWen Yang, and WeiMin Zheng.
Dynamic load balancing efficiently in a large scale cluster. Int. J. High
Perform. Comput. Netw., 6(2):100–105, 2009.

0

1000

2000

3000

4000

5000

6000

1 2 4 8 12 16 20 24 31

Number of Processors

A
ve

ra
ge

 S
im

ul
at

io
n 

Ti
m

e

Normal Simulation

A=2,P=10,L=50
A=1,P=10,L=50

A=1,P=20,L=100

A=2,P=20,L=100
Multi-State Q-Learning

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 12 16 20 24 31

Number of Processors

Av
er

ag
e 

S
im

ul
at

io
n 

Ti
m

e

Normal Simulation
A=1,P=10,L=50
A=2,P=10,L=50
A=1,P=20,L=100
A=2,P=20,L=100
Multi-State Q-Learning

(b)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 12 16 20 24 31
Number of Processors

Si
m

ul
at

io
n 

Ti
m

e

Normal Simulation

A=1,P=10,L=150

A=2,P=10,L=50
A=1,P=20,L=150

A=2,P=20,L=100

Multi-State Q-Learning

(c)

0

500

1000

1500

2000

2500

3000

1 2 4 8 12 16 20 24 31

A
ve

ra
ge

 S
im

ul
at

io
n 

Ti
m

e

Number of Processors

Normal Simulation

A=1,P=10,L=50

A=2,P=20,L=50

A=1,P=20,L=100

A=2,P=10,L=200

Multi-State Q-Learning

(d)

Fig. 5. The average simulation time of computation and communication
load-balancing algorithms and the multi-state Q-learning method a) large RPI
circuit, b) Small RPI circuit, c) OpenSparc T2 and d)LEON


