
Towards Symmetric Multi-threaded Optimistic
Simulation Kernels

Roberto Vitali, Alessandro Pellegrini and Francesco Quaglia
Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti

Sapienza, Università di Roma

Abstract—In this article we address the reshuffle of the design
of optimistic simulation kernels in order to fit multi-core/multi-
processor machines. This is done by providing a reference
optimistic simulation architecture based on the symmetric multi-
threaded paradigm, where each simulation kernel instance is
allowed to run a dynamically changing set of worker threads
that share the whole load of LPs hosted by that kernel, and
that can run both application-level event handlers and kernel-
level housekeeping tasks. With this organization, CPU-cores can
be dynamically reassigned to the different kernels depending on
fluctuations of the workload, so to maximize productivity in an
orthogonal manner with respect to traditional load balancing
schemes, typically employed in the context of single-threaded
simulation kernels. In order to optimize efficiency and reduce
wait-for-lock-release phases while synchronizing worker threads
running in kernel mode, we borrow from Operating Systems’
theory by readapting the top/bottom-halves paradigm to the
design of optimistic simulation systems. We also present a real
implementation of our multi-threaded architecture within the
ROme OpTimistic Simulator (ROOT-Sim), namely an open-
source C-based simulation platform implemented according to
the PDES paradigm and the optimistic synchronization approach.
Experimental results for an assessment of the validity of our
proposal are presented as well.

I. INTRODUCTION

In this article we focus on maximizing the productivity and
the exploitation of the available computational power when
running an optimistic simulation system on top of multi-
core/multi-processor machines. We consider this to be a fun-
damental aspect nowadays, because this type of architecture
has become accessible at low cost in the wide, by individuals,
societies, departments and institutions. Also, the current tech-
nological trend is towards the production of chips equipped
with an always increasing number of cores (many-core ar-
chitectures), thus requiring optimized design/implementation
approaches in order to be fruitfully exploited in the context of
high performance simulations.

In the traditional approach to the design of optimistic
simulation kernels, multiple LPs run within a same single-
threaded simulation-kernel process (see, e.g., [1]). As a con-
sequence, all the LPs hosted by the same kernel instance are
dispatched and run on top of an individual CPU-core. Overall,
parallel/distributed simulation-kernel layers commonly give
control to the hosted LPs along the same thread running the
CPU-scheduler (and other housekeeping tasks), according to
a classical time-interleaved mode resembling what happens
in traditional Operating Systems targeted at single-core ma-
chines. By this organization, the typical literature approach

aimed at achieving effective parallel/distributed simulation
runs, by optimizing the exploitation of the available resources,
is load balancing. This technique is based on migrating the
application load (i.e. LPs) amongst different simulation-kernel
instances (i.e. different processes). In other words, the only
means to dynamically re-balance the load is to explicitly re-
map the LPs across the kernels, since each kernel instance has
a fixed computational power, namely one CPU-core, allocated
to it.

We hereby propose a reshuffle of the internal organization of
optimistic simulation kernels by presenting a symmetric multi-
threaded architecture closely related to modern kernel-level
Operating Systems’ technologies explicitly targeted at multi-
core machines. This reshuffle supports an optimization tech-
nique orthogonal to load balancing, where the computational
power (expressed in terms of CPU-cores) can be dynamically
reallocated towards different active simulation-kernel instances
depending on proper needs related to fluctuations in locally
hosted LPs’ actual workload. Hence, we allow dynamic scale
up/down in the number of worker threads belonging to each
kernel instance, depending on whether locally hosted LPs
(dynamically) increase/decrease their computational power
demand. Overall, with our reshuffle we enable a load sharing
approach, expressed in terms of dynamic redistribution of
the whole simulation load across the whole set of available
computational resources.

We note that the paradigm shift towards this kind of
symmetric multi-threaded organization is non-trivial, since
(optimistic) simulation platforms are typically expected to
expose a reduced set of services (compared, e.g., to those
offered by a conventional Operating System kernel), internally
handled by the simulation-kernel layer via a relatively reduced
set of data structures. Hence, data conflicts upon simultaneous
execution in kernel mode by multiple worker threads (each
running on top of a different CPU-core) may easily become
a bottleneck. To address this issue, we borrow from the
top/bottom-halves programming paradigm, used for handling
interrupts within modern, multi-core Operating Systems, to
design symmetric multi-threaded optimistic simulation kernels
guaranteeing minimal length of wait-for-lock-release phases,
and high scalability.

We provide a real implementation of the symmetric multi-
threaded architecture within the ROOT-Sim open source op-
timistic simulation package [2], along with some policies
for the dynamic reallocation of the computational power to

the different kernel instances. An experimental study is also
presented in order to support the viability and the effectiveness
of our proposal.

The remainder of this article is organized as follows. In
Section II we discuss related work. The description of the
symmetric multi-threaded architecture in provided in Section
III. Policies for the dynamic reallocation of the computational
power across the different simulation kernel instances are pre-
sented in Section IV. Section V is devoted to the experimental
study.

II. RELATED WORK

The multi-threaded approach has been efficiently used in
simulation platforms for separating the I/O routines from the
computational ones. Similar attempts have been done in the
field of HLA-based simulation platforms (see, e.g., [3]), where
multi-threading has been used to implement non-blocking
interoperability services across federations of simulators. The
main difference from our proposal is that multi-threading has
been used to implement sector-specific functionalities, while
we use it as a means to overtake differentiated operations
(including event processing). In addition, to the best of our
knowledge, changes in the number of worker threads has
never been used to perform dynamic optimizations in response
to workload’s variations, as instead we allow with our pro-
posal. It has only been employed in master-slave simulation
architectures to cope with dynamic increase/decrease of the
amount of available resources (e.g. for simulation platforms
running on top of desktop grids [4]). However, in such a
context, concurrent threads operate on inherently partitioned
data, while we approach multi-threading in the presence of
shared (e.g. kernel-level) data structures.

When considering solutions specifically oriented to im-
prove the performance of simulation platforms on multi-
core machines, one approach related to our proposal can
be found in [5]. However, this approach is targeted at a
specific architecture, namely the IBM cell processor, while our
proposal is general, thus being suited for differentiated multi-
core platforms. Also, the work in [5] is oriented to optimize the
simulation via task parallelization schemes that are orthogonal
to the power reallocation scheme we present in this article.

Similar considerations can be made for other works which
target simulation systems’ performance improvements via the
exploitation of hardware parallelism offered by GPU archi-
tectures (see, e.g., [6]). These approaches are mostly suited
for data parallelism while we deal with more general schemes
proper of the PDES paradigm. Also, dynamic computational
power reallocation across different simulation kernel instances
is not targeted by those works.

Recently, the work in [7] has presented an approach for
improving the effectiveness of optimistic simulations on multi-
core machines via the employment of a global schedule
mechanism relying on a distributed event queue. Differently
from this work, our proposal targets the traditional case
of local schedule, characterized by higher scalability thanks
to the avoidance of cross-kernel synchronization operations

while handling scheduling tasks. Similar considerations can be
made when considering simulation architectures like Thread-
edWarped [8], which uses a global priority queue. Differently
from our proposal, it also uses a manager thread for event
synchronizing and scheduling, which makes the architecture
non-symmetric, as opposed to the symmetric approach we
have devised, which does not entail any manager thread
performing specialized functionalities.

Given that we provide an architectural organization which
allows optimizing the use of the available computational
resources in face of dynamism and fluctuations of the actual
LPs’ workload, our work is naturally related to all literature
solutions which presented policies for load balancing in the
context of either conservative (e.g. [9], [10]) or optimistic
simulation (e.g. [11], [12], [13], [14]). As already hinted, the
main differences between our proposal and these works are in
that (A) we allow computational power reassignment, rather
than workload, across the active simulation kernel instances,
and (B) we rely on an innovative, multi-threading-oriented
paradigm to exploit dynamically scaled up/down power avail-
able to each kernel instance. Also, our proposal can be consid-
ered as orthogonal and complementary to the above results,
when considering that we target multi/many-core machines,
while the aforementioned load balancing schemes can be used
for load-redistribution on distributed memory systems (e.g.
clusters).

III. THE SYMMETRIC MULTI-THREADED ARCHITECTURE

A. Handling Kernel-level Synchronization

A paradigm shift towards the design/implementation of
symmetric multi-threaded optimistic simulation kernels, en-
tailing multiple worker threads that can concurrently run
any of the LPs hosted on top of the same kernel instance,
needs to avoid synchronization phases while running in kernel
mode to become a performance bottleneck. Specifically, while
different worker threads inherently execute according to data
partitioning paradigms once entered application mode (since,
in accordance with the specification of the original Time Warp
protocol [15], each logical process handles its own application-
level data structures), care must be taken to avoid “lock-
everything effects” when running in kernel mode. The risk for
these effects is actually due to the reduced set of subsystems
forming the optimistic simulation kernel (compared, e.g., to
those typically included within the kernel of a general purpose
Operating System), and also to the inherent strict coupling
among the LPs (compared, e.g., to the typical level of cou-
pling of different processes running on top of a conventional
Operating System).

Most notably, the data structures requiring frequent updates,
to be performed coherently via proper kernel-level synchro-
nization mechanisms, are both the input and output queues of
the LPs. Essentially, these data structures represent the core
of cross-LP dependencies, thus involving update operations
caused not only by the activities executed by the worker thread
currently taking care of running the “queue-owner LP”, but
also by the activities carried out by worker threads taking

care of running other LPs. Synchronizing the access to these
data structures via a conventional locking mechanism would
give rise to scalability problems, exactly due to such a strict
coupling. Further, it would give rise to critical sections whose
duration would depend on the actual time-complexity of the
queue-update operation.

We note that the access to the LPs’ state queues (either
for saving or restoring a state image) does not induce thread
synchronization issues since the need for state log/recovery
operations is only an indirect reflection of cross-LP coupling,
caused by events scheduled across the LPs. In other words,
a single worker thread is allowed to safely operate on the
LP’s state queue at any time, namely the worker thread that
has taken care of dispatching that LP for either forward or
rollback execution.

The architectural organization we propose in this paper
to cope with the reduction of synchronization costs while
performing housekeeping operations borrows from the de-
sign principles proper of multi-processor/multi-core Operat-
ing Systems. Specifically, any housekeeping task potentially
crossing the boundaries of individual LPs’ data structures is
dispatched according to the same rules employed to structure
modern Operating System drivers, by organizing it according
to top/bottom-half activities. Hence, whenever the need for
the execution of such a task arises, it (logically) takes place
as an interrupt to be eventually finalized within a bottom-half
module. More in details, upon the interrupt occurrence, we do
not immediately finalize the task, thus not immediately locking
(or waiting for the lock) on the target data structure. Instead
we simply execute a light top-half module which registers
the bottom-half function (and its parameters) associated with
the interrupt finalization within a per-LP bottom-half queue,
resembling the Linux task queue. The critical section accessing
the bottom-half queue takes constant-time since each new
bottom-half associated with the LP is recorder at the tail of the
queue. Also, when the bottom-half tasks currently registered
for a given LP are flushed, the corresponding chain of records
is initially unlinked from the corresponding bottom-half queue,
which is again done in constant time by unlinking the head
element within the chain from its base pointer (1). Given
that the access to the LP bottom-half queue represents in
our architectural organization the only frequently occurring
synchronization point, constant-time for the corresponding
critical sections directly leads to minimizing kernel level
synchronization costs.

The schematization of our proposal is presented in Fig-
ure 1. Basically, our approach can be supported by relying
on a spin-lock array, named LP_LOCKS, having one entry
for each LP hosted by the multi-threaded simulation-kernel.
LP_LOCKS[i] is used to implement the critical section for
the access to the bottom-half queue associated with the i-th
LP hosted by the kernel, either for inserting a new bottom-half

1Actual data structure updates are not performed within the critical section,
but are anyhow safe since, as it will be discussed in Section III-B, for locality
reasons we will allow a single worker-thread at any time to be in charge of
flushing the bottom-halves of a given LP.

symmetric multi-threaded kernel interrupt handling layer

LP_LOCKS

Bottom-Halves Queues

LP forward mode

running

LP rollback mode

running

message antimessage

top-half:
1) lock the recipient LP
2) enqueue bottom half
3) flag the recipient LP
4) unlock the recipient LP

message/antimessage
from a remote kernel

LP_FLAGS

Fig. 1. Top/Bottom-Halves Architecture within the Symmetric Multi-threaded
Optimistic Kernel.

task to be eventually flushed, or for taking care of unlinking
the current chain, in order to flush the pending bottom-halves.

Let us now depict when (logical) interrupts to be handled
via this type of organization occur. Basically, an interrupt
occurs as soon as any worker thread currently active within the
symmetric multi-threaded kernel becomes aware of a new mes-
sage/antimessage destined to the i-th locally hosted LP. In such
a case, the worker thread needs to accesses the i-th bottom-
half queue within a critical section that performs the insertion
of the corresponding message/antimessage delivery task, as
explained above. To provide additional details, awareness by
a worker thread of a new message/antimessage destined to a
locally hosted LP arises in three different circumstances:
(i) The worker thread is currently running the locally hosted

LPj in forward mode, and this LP produces a new
event to be scheduled for the locally hosted LPi. Thus
the worker thread enters kernel mode for actuating the
delivery of the corresponding message to LPi’s input-
queue. (Note that j might be equal to i, hence giving
rise to the case where sender and receiver coincide.)

(ii) The worker thread is currently running the locally hosted
LPj in rollback mode (hence it is performing kernel
level housekeeping operations associated with revealed
causality errors), which gives rise to the production of
an antimessage destined to LPi, which requires access to
LPi’s input queue for annihilating the original message.
(Again we might have j = i.)

(iii) The message passing layer notifies the worker thread (e.g.
via an explicit message receive operation executed by this
thread according to a traditional polling scheme) about a
new message/antimessage incoming from some remote
kernel instance.

As shown in Figure 1, we logically mark all the above three
circumstances as interrupts, which will be treated homoge-
neously, and whose associated message/antimessage delivery
operation will be finalized via the bottom-half mechanism.

We note that spin-locks may anyhow exhibit non-minimal
costs since they require the corresponding operations to be

performed via sequences of atomic instructions (e.g. via the
LOCK prefix for the IA-32 instruction set). Additionally, since
they are shared and accessed by different threads, cross-cache
invalidation effects can be induced as soon as one worker
thread gains control on the spin-lock. To reduce these effects,
we have devised the presence of an additional array of flags
LP_FLAGS (see again Figure 1), where LP_FLAGS[i] in-
dicates whether the corresponding bottom-half queue, namely
the one associated with the i-th locally hosted LP, is not
empty. Actually, LP_FLAGS[i] gets updated within a critical
section protected by LP_LOCKS[i], either when a new
bottom-half is inserted within the corresponding queue (in
this case the flag is raised), or when the queue is flushed (in
this case the flag is reset). However, LP_FLAGS[i] is also
accessed before trying to lock the bottom-half queue in order
to avoid spin-lock operations in all the cases where the queue
would reveal empty once accessed within the critical section
leading to flush operations. The exact scheme looks therefore
as follows:

TOP-HALF: BOTTOM-HALF:
lock(&LP_LOCKS[i]); if (LP_FLAGS[i]){
<log bottom-half>; if (try_lock(&LP_LOCKS[i])){
LP_FLAGS[i] = TRUE; <unlink bottom-halves>;
unlock(&LP_LOCKS[i]); LP_FLAGS[i] = FALSE;

unlock(&LP_LOCKS[i]);
<perform bottom-halves>;

}
}

Being LP_FLAGS[i] checked non-atomically wrt lock
acquisition when attempting to perform bottom-halves, we
might experience false negatives in case the top-half finalizes
the insertion of the bottom-half task concurrently with the
check. However, this does not represent a safety problem since
the flag will be rechecked periodically in subsequent attempts
to flush the corresponding bottom-half queue, thus eventually
falling within the case where the bottom-half queue is correctly
reflected into the state of the input queue of the destination
LP. Such a reflection might therefore experience only a de-
lay, which resembles delays introduced by traditional single-
threaded kernels while reflecting the content of cross-kernel
messages into the system state, which is typically affected by
the polling period according to which the messaging layer is
accessed for acquiring not yet delivered messages. Further, as
hinted in footnote 1, a single worker thread at a time will be
allowed to manage flush operations for a given LP, hence no
false positives will ever be experienced.

As a last note, messages/antimessages whose deliveries are
still pending, being them recorded as tasks to be finalized
within bottom-half queues, represent a kind of in-transit data,
whose timestamp needs to be accounted for when computing
the GVT value.

B. Tackling Locality Issues

Given that all the worker threads associated with the same
simulation kernel instance operate within the same address
space, the symmetric multi-threaded kernel allows virtual
addresses related to both application and kernel level data
structures (associated with whichever LP) to be, in principle,

accessible by any worker thread. However, such a level of
sharing would cause frequent invalidation/refill of, e.g., the
top-level private caches of individual cores, even when entail-
ing processor affinity schemes involving the worker threads.
As an example, data structures associated with an LP that
has been lastly accessed by a given worker thread would be
flushed by the corresponding private caching system upon the
first write access by a different worker thread.

Overall, while developing a symmetric multi-threaded opti-
mistic simulation-kernel a core additional issue to address is
related to maintaining an adequate level of locality, so to avoid
harming caching performance. In order to cope with this issue,
we devise the adoption of affinity mechanisms such that a
worker thread belonging to a given simulation-kernel instance
is not allowed to run every LP hosted by that kernel. Instead,
it takes care of running a subset of these LPs, which are
currently selected as being affine to the worker thread. In other
words, we devise the use of temporary binding mechanisms
associating a subset of the locally hosted LPs to a specific
worker thread, which is therefore the only thread taking care of
running these LPs during a specific wall-clock-time window.
We note that this approach resembles what is done by the
scheduler of Linux kernel 2.6, where a temporary binding of
active processes/threads to a specific CPU-core is supported
for both (a) locality and (b) reduction of the CPU scheduling
cost.

Overall, within the affinity scheme, each worker thread is
in charge of:

(i) Flushing the bottom-half queues associated with its affine
LPs, which is executed periodically according to a tradi-
tional polling approach.

(ii) Dispatching its affine LPs for execution in time inter-
leaved mode.

We note anyway that the binding of a specific LP to a
worker thread is not meant to be fixed, but can change over-
time, also in relation to variations of the amount of worker
threads activated within a given symmetric optimistic kernel
instance. The policy according to which the locally hosted
LPs are reassigned to the worker threads will be discussed in
Section IV, together with the performance model we use to
reallocate the computational power (and hence CPU-cores) to
the different symmetric simulation-kernel instances.

As an additional note in relation to locality, we also devise
proper memory layout mechanisms in order to reduce the
false cache sharing problem for kernel-level data structures.
As an example, the entries of both the LP_LOCKS and
LP_FLAGS arrays, which represent frequently accessed syn-
chronization data structures, can be memory bind to different
cache lines, which can be easily achieved by exploiting, e.g.,
the posix_memalign API plus padding schemes. The same
approach can be taken for the meta-data associated with each
single LP hosted by each instance of the symmetric multi-
threaded kernel, so that once an LP is bind to a given worker
thread, cache interference due to accesses to meta-data does
not arise.

IV. COMPUTATIONAL POWER REALLOCATION POLICIES

The symmetric multi-threaded kernel allows scaling
up/down the amount of per-kernel worker threads without
any change in the internal operating mode. This allows for
dynamically reallocating the computational power (in terms
of CPU-cores) to the active kernel instances depending on
fluctuations of the workload and efficiency variations within
the optimistic simulation run. In this section we first provide an
approach for reallocating the CPU-cores to the active kernels.
Then we address the issue of (temporarily) binding the LPs
hosted by a given simulation kernel instance to specific worker
threads.

A. Dynamical Assignment of CPU-Cores to Kernels

Let us denote with Ctot the amount of available CPU-cores,
and with Ktot < Ctot the number of active symmetric multi-
threaded kernel instances (the case Ktot = Ctot trivially boils
down to the traditional scenario where each kernel instance
is allowed to run on a single CPU-core, hence in the typical
single-threaded mode). Our first objective is to determine the
amount of CPU-cores Ci (with 1 ≤ i ≤ Ktot) to be assigned to
kernel instance Ki for a given wall-clock-time window, so to
improve resource exploitation for fruitful processing activities.

In our proposal, the re-evaluation of Ci values can be carried
out periodically, for example upon computing a new GVT
value or after a set of subsequent GVT computations. This also
allows to exploit a set of metrics characterizing the parallel
simulation run, as an example in terms of determination of
the event rate (committed events per wall-clock-time unit)
achieved by each of the symmetric multi-threaded kernel
instances. We denote the event rate achieved by kernel Ki

as evri. This quantity is a measure for the fruitful (non-rolled
back) amount of simulation work carried out by each kernel
instance. In an ideal scenario where the efficiency is maxi-
mized (i.e. where the undone computation is negligible), each
symmetric multi-threaded kernel instance Ki should use an
amount of computational power that suffices to execute exactly
evri events per wall-clock-time unit. In fact, an excess of
computational power could lead to over-optimism and hence to
rolled back computations, thus moving the run-time dynamics
far from the above depicted ideal case. So the idea behind the
determination of Ci values is to dynamically assign an amount
of CPU-cores to kernel Ki which is proportional to the actual
computation requirements of Ki for the achievement of its
relative event rate, compared to the one by the other kernels.
Actually, to also take care of the real CPU requirements on
a given kernel instance (so to also take into account possible
variance of the event granularity across the LPs hosted by
different kernel instances), which is the indicator of the real
usage of computational power for committing the events, the
evri metric can be refined by weighting it via the average CPU
time required for processing the events on a specific kernel Ki,
which we denote as ∆i. Hence we express the weighted event
rate as wevri = evri ×∆i.

In other words, wevri values observed during the last wall-
clock-time period express the relative CPU requirements of

each kernel instance in order to carry out productive simulation
work, in relation to the activities of the other kernels and
the outcoming synchronization dynamics. Hence, assigning
a computational power proportional to the relative weighted
event rate would tend to lead to the situation where each
kernel instance advances its LPs in simulation time in a
“synchronization suited” manner according to what the other
kernels are able to do on their own. This part of the dynamic
reallocation scheme would therefore tend to avoid significant
presence of overoptimistic kernel instances during the various
phases of the run.

It is anyway typical that performance can be further en-
hanced even in cases where the efficiency is already maxi-
mized (or optimized), for example by further reassigning the
computational power depending on the real weight of the
workload associated with the hosted LPs. As an example, for
loosely synchronized models we may have two or more groups
of LPs that do not interact, or stop interacting during the run
(hence eventually not directly impacting synchronization and
efficiency), exhibiting different speed of advancement in simu-
lation time due to, e.g., different weights of the corresponding
events in terms of CPU requirements. In such a case, the
completion of the simulation would be delayed by the slowest
group. Therefore, within the dynamic scheme for resource
assignment, an increase of computational power should also be
envisaged for all those kernel instances exhibiting larger CPU
requirements to advance in simulation time. To this end we
include in our scheme the parameter wctai, which indicates
the wall-clock-time required by kernel Ki to advance a single
simulation time unit. The usage of this parameter within
the dynamic reallocation scheme would tend to complement
the above described one by further attempting to align the
advancement of the different symmetric multi-threaded kernel
instances in simulation time while the run proceeds.

Finally, the amount of cores Ci to be assigned to kernel
Ki should anyway be bounded by the maximum degree of
parallelism that can be accomplished by Ki, which is a
function of the amount of locally hosted LPs. In fact, each
LP is an intrinsically sequential entity, which is not further
parallelized, thus not being allowed to simultaneously use
multiple CPU-cores for its execution.

Overall, we devise the following rules for dynamically
defining the amount of CPU-cores to be reassigned to each
kernel Ki in order to optimize the usage of the available
computational power:

1) For each kernel Ki the parameter αi =
wevri∑Ktot

j=1 wevrj
is computed.

2) A first calculation of Ci is then performed as Ci =
⌊αi × Ctot⌋.

3) For each kernel instance Ki for which the condition
Ci ≥ numLPi is verified (where numLPk identifies
the number of LPs hosted by Ki), then Ci is definitively
set to numLPi. In fact, additional CPU-cores could not
be effectively exploited for parallelization of the locally
hosted LPs.

4) At this point, there could be some CPU-cores left to
be assigned, which we decide to assign on the basis of
(A) the request for allocation remainder of kernel Ki,
namely ri = [(αi × Ctot) − Ci] and (B) the parameter
wctai. In particular, we order the kernels for which the
finalization of Ci values still needs to be performed
(so the ones already finalized in point 3 are excluded)
according to decreasing values of the product ri×wctai,
and we assign the remaining CPU-cores according to a
round-robin rule following the priority defined by such
an ordering.

Each of the above steps is an implementation of the ratio-
nales discussed above in terms of suited CPU-core assignment
vs specific performance aspects.

B. Binding LPs to Worker Threads

As pointed out earlier, a given set of LPs hosted by Ki

gets temporarily bind to a specific worker thread acting within
the kernel, which is in charge of performing bottom-half
operations related to the LPs in the set, and to schedule them
for event processing according to some priority scheme (e.g.
Lowest-Timestamp-First). Once the new value for Ci gets
defined upon reallocating the computational power, a policy is
required to determine which LPs are bind to a specific worker
thread. To achieve a binding that allows balancing the whole
workload related to local LPs onto the whole set of worker
threads, we have devised the below policy. For the j-th LP
hosted by kernel Ki, which we refer to as LP j

i , we compute
the total amount of CPU-time required for committing its
events during the last observation period (e.g. the last GVT
cycle). We refer to this metric as cpuj

i .
The maximum cpuj

i value across all the locally hosted
LPs represents in our scheme a reference knapsack, and the
corresponding LP j

i is assigned to a given worker thread. Then
we exploit the greedy approximation approach proposed by
George Dantzig in [16] which allows a maximum “overflow”
of about 30% over the reference knapsack, in order to build
the other knapsacks of LPs (hence knapsacks characterized
by sums of cpux

i values) to be assigned to the remaining
worker threads. We do this by actually applying a variant of
the original scheme, where the knapsacks are filled according
to a round-robin approach. The procedure is then iterated until
no more LP needs to be further bind to any worker thread.

V. EXPERIMENTAL STUDY

A. Test-bed Platform

We have implemented the proposed symmetric multi-
threaded optimistic kernel architecture within ROOT-Sim,
which is an open source C/MPI-based simulation package
targeted at POSIX systems [2], which implements a general-
purpose parallel/distributed simulation environment relying on
the optimistic synchronization paradigm.

ROOT-Sim offers a very simple programming model based
on the classical notion of simulation-event handlers (both for
processing events and for accessing a committed and globally

consistent state image upon GVT calculations), to be imple-
mented according to the ANSI-C standard, and transparently
supports all the services required to parallelize the execution.
It also offers a set of optimized protocols aimed at minimizing
the run-time overhead by the platform, thus allowing for high
performance and scalability.

Among the main features offered by ROOT-Sim we can
mention completely transparent recoverability of the state of
the LPs achieved through proper hooking of dynamic mem-
ory allocation/release [17], plus ad-hoc code instrumentation
schemes that allow incremental determination of dirty state
portions [18] and that, ultimately, allow dynamical switch
between different state log/restore schemes depending on the
proper dynamics of the application layer [19].

The single threaded version of ROOT-Sim also offers
innovative transparent supports for LP migration and load
balancing [20], which will be considered as a reference for
the assessment of the currently presented symmetric multi-
threaded version in terms of ability to exploit the computa-
tional resources offered by a multi-core machine when the
actual simulation workload dynamically varies over time.

Future steps ahead in the development of ROOT-Sim defi-
nitely entail the integration of the currently presented sym-
metric multi-threaded architecture with the aforementioned
LP migration subsystem, currently supported only when run-
ning in single-threaded mode. This will ultimately provide
an environment where the orthogonal capabilities offered by
the symmetric multi-threaded paradigm (in terms of dynamic
reassignment of the computational power to different kernel
instances) and the traditional migration approach (in terms
of ability to move individual LPs across different kernel
instances) get ultimately combined.

Integration of the multi-threaded approach within ROOT-
Sim has been based on pthread technology, and on the
reorganization of the kernel level data structures in order to (i)
provide per-thread private data, and (ii) cache aligned kernel-
level memory buffers so to avoid false cache sharing across the
worker threads within the same symmetric multi-threaded ker-
nel instance. The latter target has been achieved by exploiting
the posix_memalign API, plus the usage of proper padding
schemes allowing cache alignment for sequences of records,
such as arrays of values. As for the accesses to the MPI layer,
used to transfer messages across different kernel instances, in
our architecture they can be symmetrically issued by any of the
worker thread operating within a given kernel instance. Given
that the MPI layer does not natively support multi-threading,
we have included a wrapper that synchronizes these accesses
transparently towards the worker threads via the embedding
of critical sections protected by spin-locks.

As far as GVT computation and fossil collection are con-
cerned, we have implemented a symmetric scheme where upon
a new GVT computation, all the worker threads operating
within a same kernel instance run a race. The race winner
actually computes the local reduction and interacts with the
master kernel in order to determine the globally reduced
value representing the new GVT. However, once defined the

new GVT value, all the worker threads operating within the
same kernel instance are allowed to perform fossil collection
operations in parallel. Each of these threads takes care of fossil
collecting the obsolete information associated with its affine
LPs.

Finally, the hardware architecture used for testing our pro-
posal is a 64-bit NUMA machine, namely an HP Proliant
server, equipped with four 2GHz AMD Opteron 6128 proces-
sors and 64GB of RAM. Each processor has 8 CPU-cores (for
a total of 32 CPU-cores) that share a 10MB L3 cache (5118KB
per each 4-cores set), and each core has a 512KB private L2
cache. The operating system is 64-bit Debian 6, with Linux
kernel version 2.6.32.5. The compiling and linking tools used
are gcc 4.4.5 and binutils (as and ld) 2.20.0.

B. Application Benchmarks

In order to evaluate different aspects of the proposed
symmetric multi-threaded architecture, we have conducted
experiments on two different application benchmarks, namely
PCS (Personal Communication System) and Traffic, which are
hereby described. The first one has been configured in order
to provide a constant workload across all the LPs during
the whole simulation run. This has been done in order to
measure the actual overhead of the symmetric multi-threaded
architecture, while not taking advantages from its ability to
reallocate CPU-cores just given the constancy of the workload.
The second application benchmark provides instead a highly
dynamic workload that varies over time across the involved
LPs. This type of benchmark has been used in order to assess
the goodness of the symmetric multi-threaded architecture
in terms of its ability to reallocate the computational power
depending on the actual needs.

1) The PCS Benchmark: this application benchmark imple-
ments a simulation model of wireless communication systems
adhering to GSM technology, where communication channels
are modeled in a high fidelity fashion via explicit simulation
of power regulation/usage and interference/fading phenomena
on the basis of the current state of the corresponding cell. The
power regulation model has been implemented according to
the results in [21].

Upon the start of a call destined to a mobile device
currently hosted by a given wireless cell, a call-setup record
is instantiated via dynamically-allocated data structures, which
gets linked to a list of already active records within that same
cell. Each record gets released when the corresponding call
ends or is handed-off towards an adjacent cell. In the latter
case, a similar call-setup procedure is executed at the desti-
nation cell. Upon call-setup, power regulation is performed,
which involves scanning the aforementioned list of records
for computing the minimum transmission power allowing the
current call-setup to achieve the threshold-level SIR value.
Data structures keeping track of fading coefficients are also
updated while scanning the list, according to a meteorological
model defining climatic conditions (and related variations).
The climatic model accounts for variations of the climatic

conditions (e.g. the current wind speed) with a minimum time
granularity of ten seconds.

This simulation model has been developed for execution
on top of ROOT-Sim in a way that each LP models a single
wireless cell. Hence, the event-handler callback involves the
update of individual cells’ states, and cross-LP events are
essentially related to hand-offs between different cells.

To evaluate the overhead due to the symmetric multi-
threaded architecture, when compared to the classical case
of single-threaded optimistic kernel, we have performed a
set of experiments where each wireless cell sustains the
same workload of incoming calls, hence we are in a bal-
anced scenario not requiring dynamical reallocation of the
computational power, which is instead a main target of the
symmetric multi-threaded organization. The call inter-arrival
time is exponentially distributed, and the average call duration
is set to 2 min. The expected rate for call inter-arrival has been
set to achieve channel utilization factor on the order of 30%,
while the residence time of an active device within a cell has a
mean value of 5 min and follows the exponential distribution.
For the above scenario, we have run experiments with 1024
wireless cells, modeled as hexagons covering a square region,
each one managing 1000 wireless channels.

We have measured the cumulated event rate (expressed as
the amount of cumulated committed events vs wall-clock-
time) for different configurations of the symmetric multi-
threaded kernel, comparing it with the one achievable when
running the same ROOT-Sim package in single-threaded mode.
In particular, executions with 4, 8, 16 and 32 symmetric
multi-threaded kernels (each one starting with 8, 4, 2 and
1 worker thread, respectively) have been carried out. Also,
in order to assess the effects of the symmetric multi-threaded
organization, we additionally report statistics related to typical
run-time parameters characterizing optimistic simulation runs,
such as the rollback frequency and the rollback length.

2) The Traffic Benchmark: this benchmark application sim-
ulates a complex highway system (at a single car granularity),
where the topology is a generic graph, where nodes represent
cities or junctions and edges represent the actual highways.
Every node is described in terms of car inter-arrival time and
car leaving probability, while edges are described in terms of
their length.

At startup phase, the simulation model is asked to distribute
the highway’s topology on a given number of LPs. Every LP
therefore handles the simulation of a node or a portion of a
segment, the length of which depends on the total highway’s
length and the number of available LPs.

Cars enter the system according to an Erlang probability
distribution, with a mean interarrival time specified (for each
node) in the topology configuration file. They can join the
highway starting from cities/junctions only, and are later
directed towards highway segments with a uniform probability.
Whenever a car is received, it is enquequed in the LP’s list
of traversing cars, and its speed (for the particular LP it is
entering in) is determined according to a Gaussian probability
distribution, the mean and the variance of which are specified

at startup time. Then, the model computes the time the car
will need to traverse the node, adding traffic slowdowns which
are again computed according to a Gaussian distribution. In
particular, the probability of finding a traffic jam is a function
of the number of cars which are currently passing through the
node.

Accidents are derived according to a probability function
as well. In particular, they are more likely to occur when the
amount of cars traversing an LP is about half of the cars which
can be hosted altogether. In fact, if few cars are in, accidents
are less frequent. Similarly, if there are many, the traffic
factor produces a speed slowdown, entailing the probability
of an accident to occur to be reduced. Therefore, the model
discretizes a Normal distribution, computing the Cumulative
Density Function in a contour defined as cars in the node± 1

2 ,
having as the mean half of the total number of cars which
are at the current moment in the system, and as variance a
factor which can be specified at startup. The total number of
cars which can be hosted by an LP is computed according to
the actual length of the simulated road, which is determined
when the model is initialized. When an accident occurs, the
cars are not allowed to leave the LP, until the road is freed.
The duration of an accident phase is determined according to
a Gaussian distribution, the mean and the variance of which
are again specified at startup.

In our execution, we have simulated the whole Italian
highway network on top of 1024 LPs. We have discarded
the highways segments in the islands in order to simulate an
undirected connected graph, which allows to have the actual
workload migrating overall the highway. The topology has
been derived from [22], and the traffic parameters have been
tuned according to the measurements provided in [23]. The
average speed has been set to 110 Km/h, with a variance of
20 Km/h, and accident durations have been set to 1 hour, with
30 minutes variance. This model has provided results which
are statistically close to the real measurements provided in
[24].

We consider this second application benchmark to be signif-
icant for showing how our proposed symmetric multi-threaded
architecture is able to capture unbalance in the load, and react
via computational power reallocation across the active kernels
in order to drive the system back into an evenly-distributed
workload processing scenario, which would lead to enhanced
fruitful exploitation of the computational resources.

For this benchmark application we still report the event
rate, this time comparing it with both the one achieved when
considering the classical single-threaded execution mode of
ROOT-Sim, and the one achievable when activating within
such a single-threaded mode the load balancing mechanisms
described in [20]. We recall again that these load balancing
facilities are in principle orthogonal to the facilities offered by
the symmetric multi-threaded organization, since their target is
the move of LPs across the kernels, not the reassignment of the
computational power to the multi-threaded kernels. Anyway,
we feel that taking load balancing facilities properly offered
by the single-threaded version of ROOT-Sim into account in

the comparison provides a relevant reference for assessing the
potential offered by the symmetric multi-threaded organiza-
tion in terms of its ability to fruitfully exploit the available
computational power with dynamic workloads.

C. Results

In Figure 2 we show the experimental results that have
been obtained for the PCS application benchmark. We recall
that this benchmark exhibits balanced workload during the
whole run, hence it is suited for assessing the overhead of the
symmetric multi-threaded architecture when considering that
its capabilities to redistribute the computational power across
the different kernel instances are not actually exploited. By
the curves related to the cumulated committed events (where
all the samples have been obtained as the average over 10
runs all done with different pseudo-random seeds) we see that,
unless for the case of 4 multi-threaded kernels (each running
8 worker threads), the additional latency for reaching the
completion of the simulation run, compared to the traditional
case of single-threaded kernel, is no more than 13%. This
is an indication of limited performance intrusiveness by the
top/bottom-half architecture while managing the input/output
queues of the LPs, as well as limited performance intrusiveness
by other synchronization mechanisms (e.g. for the access to
the MPI layer), at least when the scale of the multi-threaded
configuration is bounded by the value 4. On the other hand,
the multi-threaded configuration with 4 kernels and 8 worker
threads for each kernel exhibits a non-minimal overhead (on
the order of 25%).

We note that, although the workload is constant, small
fluctuations due to the probability distribution ruling the gen-
eration of the events can arise, which are therefore captured
by our symmetric multi-threaded architecture. Nevertheless,
this sensibility enhances the reassignment overhead, as long
as the time spent in this operation is not rewarded by the new
worker threads’ configuration. This is more likely to occur
exactly when the average number of worker threads per kernel
instance gets increased. In addition, we note that these data
have been achieved by considering a model with medium-
to-fine event granularity, on the order of 30/40 microsecs,
thus further supporting the viability of our proposal, since
applications exhibiting coarser-grained events would absorb
better the actual overhead of the multi-threaded architecture.

Also, we note that the parallel runs provide a super-scalar
speedup with respect to the serial executor (based on the
calendar-queue scheduler), which indicates that the experi-
mentation has been carried out when considering competitive
parallel runs.

For completeness, in Figure 2 we also report the observed
values for rollback frequency and rollback length for the
PCS application benchmark. By these data we can observe
how the symmetric multi-threaded kernel tends to exhibit a
slightly throttled execution profile, compared to the single-
thread case. In particular, we note a clear reduction of the
rollback frequency, with a less significant increase of the
rollback length. For the case of the symmetric multi-threaded

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 10 20 30 40 50 60

C
um

ul
at

ed
 C

om
m

itt
ed

 E
ve

nt
s

Wall-Clock Time (seconds)

PCS Application Benchmark

Multithread (4k)
Multithread (8k)

Multithread (16k)
Multithread (32k)

Single Thread

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 10 20 30 40 50 60 70

Serial Executor

(a) Cumulated Committed Events

 0.002

 0.0022

 0.0024

 0.0026

 0.0028

 0.003

 0.0032

 0.0034

 0.0036

R
ol

lb
ac

k
F

re
qu

en
cy

PCS Application Benchmark

Single Thread
Multithread 32K
Multithread 16K
Multithread 8K
Multithread 4K

(b) Rollback Frequency

 70

 72

 74

 76

 78

 80

 82

 84

 86

 88

 90

R
ol

lb
ac

k
Le

ng
th

PCS Application Benchmark

Single Thread
Multithread 32K
Multithread 16K
Multithread 8K
Multithread 4K

(c) Rollback Length

Fig. 2. Results for the PCS Application Benchmark.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 10 20 30 40 50 60 70 80

C
um

ul
at

ed
 C

om
m

itt
ed

 E
ve

nt
s

Wall-Clock Time (seconds)

Traffic Application Benchmark

Multithread (4k)
Multithread (8k)

Multithread (16k)
Multithread (32k)

Load Balancer
Single Thread

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 10 20 30 40 50 60 70

Serial Executor

(a) Cumulated Committed Events

 0

 5000

 10000

 15000

 20000

 25000

 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06 2.2e+06

C
om

m
itt

ed
 E

ve
nt

s

Simulated Time (seconds)

Traffic Application Benchmark

Multithread (4k)
Multithread (8k)

Multithread (16k)
Multithread (32k)

Single Thread

(b) Punctual Event Rate

Fig. 3. Results for the Traffic Application Benchmark.

configuration with 4 kernels, such a throttling is an expression
of the above noted overhead, which leads to less favorable run-
time dynamics.

In Figure 3 we report the results for the case of the
Traffic application benchmark. This time we have compared
the cumulated event rate by our symmetric multi-threaded
architecture with a classical single-threaded organization, a
serial execution of the same application-level software running

on top of a calendar-queue scheduler, and also results of the
load balancing architecture based on the migration approach
presented in [20]. Again, the parallel approaches provide a
super-scalar speedup. The multi-threaded versions of the sim-
ulation kernel provide a speedup wrt the single-threaded one,
which ranges in between 35% (for the 4 kernels configuration)
and 73% (for the 16 kernels configuration).

As for the 32 multi-threaded kernels execution, we note that

the speed down is in the order of 37%. This is related to the
fact that in this configuration no actual power reallocation is
possible on the 32-core server machine that has been employed
(in fact, each simulation kernel must have at least one worker
thread in order to proceed in the simulation). Therefore, we
are again simply measuring the symmetric multi-threaded
architecture pure overhead.

The last comparison shown by the plots is the one wrt
the traditional load balancer. Although we note that the load
balancer configuration provides a speedup in the order of 30%
wrt the single-threaded approach, it’s throughput is comparable
with the 4 kernels multi-threaded configuration, while the 8
and 16 kernels configurations of the multi-threaded architec-
ture are still 30% faster than the traditional load balancer
configuration.

As a final note, always in Figure 3 we report the punctual
variation of the event rate over time for the case of a single
run (hence not mediated over different runs). These data
show how the dynamical reassignment of resources, depending
on fluctuations of the workload, leads the symmetric multi-
threaded architecture to provide punctual improvements in the
amount of committed events per wall-clock-time unit, which
are quantified by these plots and are then ultimately reflected
in the above discussed performance improvements.

VI. CONCLUSIONS AND FUTURE WORK

In this article we have presented the design and imple-
mentation of a symmetric multi-threaded optimistic simulation
kernel targeted at multi-core/multi-processor machines, where,
similarly to what happens in multi-core oriented Operating
Systems in terms of process management, multiple threads
operate symmetrically in order to sustain the whole workload
associated with the LPs hosted by a kernel instance. This
type of organization allows to transparently scale up/down the
amount of worker threads operating within a same instance of
the optimistic simulation kernel. Hence, it allows for dynamic
reassignment of the computational power, namely CPU-cores,
to the different kernel instances involved within the optimistic
run, depending on variations of the workload associated with
the hosted LPs. Policies suited for the reassignment have been
also presented, and the whole system has been tested with
different application benchmarks.

As future work we plan to integrate the symmetric multi-
threaded architecture with traditional load balancing facilities,
thus eventually allowing the optimistic kernel to reconfigure
its run-time behavior towards an optimal use of the available
resources by jointly exploiting CPU-core reassignment facili-
ties and traditional LP migration schemes.

REFERENCES

[1] D. E. Martin, T. J. McBrayer, and P. A. Wilsey, “WARPED: A Time
Warp simulation kernel for analysis and application development,” in
Proceedings of the 29th Hawaii International Conference on System
Sciences (HICSS), Volume 1: Software Technology and Architecture.
IEEE Computer Society, 1996, p. 383.

[2] F. Quaglia, A. Pellegrini, and R. Vitali, “ROOT-Sim: The ROme Op-
Timistic Simulator: http://www.dis.uniroma1.it/∼hpdcs/root-sim/,” Oct.
2011.

[3] L. Mellon and D. West, “Architectural optimizations to advanced dis-
tributed simulation,” in Proceedings of Winter Simulation Conference,
1995, pp. 634–641.

[4] A. Park and R. Fujimoto, “Optimistic parallel simulation over public
resource-computing infrastructures and desktop grids,” in Proceedings of
the 12th IEEE/ACM International Symposium on Distributed Simulation
and Real Time Applications (DS-RT), 2008, pp. 149–156.

[5] Q. Liu and G. Wainer, “Multicore acceleration of discrete event
system specification systems,” SIMULATION, 2011. [Online]. Available:
http://sim.sagepub.com/content/early/2011/06/28/0037549711412237.abstract

[6] T. Hamada and K. Nitadori, “190 tflops astrophysical n-body simulation
on a cluster of gpus,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. IEEE
Computer Society, 2010, pp. 1–9.

[7] L. li Chen, Y. shuai Lu, Y. ping Yao, S. liang Peng, and L. da Wu,
“A well-balanced Time Warp system on multi-core environments,” in
Proceedins of the 25th ACM/IEEE Workshop on Principles of Advanced
and Distributed Simulation (PADS), 2011, pp. 154–162.

[8] R. J. Miller, Optimistic Parallel Discrete Event Simulation on a Beowulf
Cluster of Multi-core Machines. Cicinati University: Master Disserta-
tion, 2010.

[9] A. Boukerche and S. K. Das, “Dynamic load balancing strategies for
conservative parallel simulations,” in Proceedings of the 11th ACM/IEEE
International Workshop on Parallel and Distributed Simulation (PADS),
1997, pp. 20–28.

[10] G. D’Angelo and M. Bracuto, “Distributed simulation of large-scale
and detailed models.” International Journal of Simulation and Process
Modelling (IJSPM), vol. 5, no. 2, pp. 120–131, 2009.

[11] D. W. Glazer and C. Tropper, “On process migration and load balancing
in Time Warp,” IEEE Transactions on Parallel and Distributed Systems,
vol. 4, no. 3, pp. 318–327, 1993.

[12] C. D. Carothers and R. Fujimoto, “Efficient execution of Time Warp
programs on heterogeneous, NOW platforms,” IEEE Transactions on
Parallel and Distributed Systems, vol. 11, no. 3, pp. 299–317, 2000.

[13] P. L. Reiher and D. Jefferson, “Virtual time based dynamic load
management in the Time Warp operating system,” Transactions of the
Society for Computer Simulation, vol. 7, pp. 103–111, 1990.

[14] S. Meraji, W. Zhang, and C. Tropper, “A multi-state q-learning approach
for the dynamic load balancing of Time Warp,” in Proceedings of the
24th ACM/IEEE International Workshop on Principles of Advanced and
Distributed Simulation (PADS), 2010, pp. 1–8.

[15] D. R. Jefferson, “Virtual Time,” ACM Transactions on Programming
Languages and System, vol. 7, no. 3, pp. 404–425, Jul. 1985.

[16] G. B. Dantzig, “Discrete-variable extremum problems,” Operational
Research, no. 5, pp. –, 1957.

[17] R. Toccaceli and F. Quaglia, “DyMeLoR: Dynamic memory logger and
restorer library for optimistic simulation objects with generic memory
layout,” in Proceedings of the 22nd ACM/IEEE International Workshop
on Principles of Advanced and Distributed Simulation (PADS). IEEE
Computer Society, 2008, pp. 163–172.

[18] A. Pellegrini, R. Vitali, and F. Quaglia, “Di-DyMeLoR: Logging only
dirty chunks for efficient management of dynamic memory based
optimistic simulation objects,” in Proceedings of the 23nd ACM/IEEE
International Workshop on Principles of Advanced and Distributed
Simulation (PADS). IEEE Computer Society, 2009, pp. 45–53.

[19] R. Vitali, A. Pellegrini, and F. Quaglia, “Autonomic log/restore for
advanced optimistic simulation systems,” in Proceedings of the 18th
Annual IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS).
Los Alamitos, CA, USA: IEEE Computer Society, 2010, pp. 319–327.

[20] S. Peluso, D. Didona, and F. Quaglia, “Application transparent migration
of simulation objects with generic memory layout,” in Proceedings of
the 25th ACM/IEEE International Workshop on Principles of Advanced
and Distributed Simulation (PADS). IEEE Computer Society, 2011, pp.
169–177.

[21] S. Kandukuri and S. Boyd, “Optimal power control in interference-
limited fading wireless channels with outage-probability specifications,”
IEEE Transactions on Wireless Communications, vol. 1, no. 1, pp. 46–
55, 2002.

[22] “Atlante stradale italia,” http://www.automap.it/.
[23] http://www.autostrade.it/studi/studi traffico.html.
[24] “Aci - dati e statistiche,” http://www.aci.it/?id=54.

