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Abstract—In this paper, we analyze the packet session
channel holding time for packet-switched cellular networks.
Channel holding time depends on mobility which is character-
ized by cell residence time in this paper. We apply Hyper-
Erlang distribution model to investigate the packet session
channel holding time in which a session will experience active
and idle periods. In terms of new session, handoff session
in busy mode, handoff session with new arrival packets in
idle mode and handoff session without arrival packet in idle
mode, we demonstrate that the effective channel holding time is
exponentially distributed if and only if the cell residence time is
exponentially distributed. The analytical results provide a new
approach to evaluate traffic performance and system design in
packet-switched cellular networks.

Keywords-channel holding time, packet session, cell residence
time, idle mode, mobility, analysis

I. INTRODUCTION

In cellular networks, channel holding time, which depends
on user’s mobility, is an important quantify for network
design and performance analysis [1]. In traditional Circuit-
Switched (CS) cellular networks, voice traffic is transmitted
in dedicated channel in which the resource is reserved for
the whole duration of the call. In [2]–[4], Fang et al. propose
a new mobility mode, called the Hyper-Erlang distribution
model, to analyze the channel holding time in CS cellular
networks. For an exponential call holding time and Poisson
new call arrivals, they show that the channel holding time
is exponentially distributed if and only if the cell residence
time is also exponentially distributed. Also, the new call
channel holding time and the handoff call channel holding
time have the same distribution if and only if the cell
residence time is exponentially distributed.

In Packet-Switched (PS) cellular networks, however, the
behavior of a packet session is different with that of a voice
call. The major difference is that during a packet session,
sometimes a User Equipment (UE) may sleep. Therefore, the
resource is not reserved for the whole duration of a packet
session. For example, LTE/LTE-A defines Discontinuous
Reception (DRX) [5] to save energy. With DRX, an UE
turns on the receiver at some pre-defined time points while
sleeps at other time periods. In this paper, we propose
a new model to analyze channel holding time for packet
sessions. Same as that in [2]–[4], [6]–[8], channel holding
time depends on user’s mobility which is characterized by
cell residence time. We apply Hyper-Erlang distribution
model to investigate the packet session channel holding time
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Figure 1. Discontinuous reception (DRX) in LTE

in which a session will experience active and idle periods.
Similar to CS cellular networks, we demonstrate: (1) Packet
session channel holding time is exponentially distributed
if and only if the cell residence time is exponentially
distributed, and (2) new packet session channel holding time
and handoff packet session channel holding time have the
same distribution if and only if the cell residence time is
exponentially distributed. Although we use LTE DRX as
an example in this paper, the model we develop can be
used in other PS networks which have similar behavior. The
analytical model presented in this paper can be used as a
guideline for network design and performance analysis.

II. DISCONTINUOUS RECEPTION (DRX) MODE IN LTE

Because the demand of high bandwidth for data transfer
may drain the battery power of an UE quickly, LTE/LTE-A
defines Discontinuous Reception (DRX) [5] to save energy.
With DRX, an UE turns on the receiver at some pre-defined
time points while sleeps at other time periods. It is an
important issue how to select proper DRX parameters, not
only to increase UE’s battery lifetime, but also to better
utilize resource and minimize packet delay. The DRX state
machine in LTE is shown in Fig. 1, in which UE can be in
two different states: RRC CONNECTED and RRC IDLE
to represent whether the Radio Resource Control (RRC) is
connected or idle. In RRC CONNECTED state, the radio
moves from Continuous Reception (CRX) to Short DRX
state, and then Long DRX state when it is waiting for
data. If the channel is idle longer than a, the RRC then
will move from RRC CONNECTED to RRC IDLE. In this
paper, we consider the channel holding time when an UE
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Figure 2. (a) Timing diagram for CS cellular networks, (b) Timing diagram for PS cellular networks

is in RRC CONNECTED state. As shown in Fig. 1, even
in RRC CONNECTED, an UE may still sleep in long/short
DRX state.

III. ANALYTICAL MODEL OF PACKET SESSION
CHANNEL HOLDING TIME

Fig. 2 (a) shows the timing diagram for the call holding
time and cell residence time in CS cellular networks [2]–
[4]. In Fig. 2 (a), tc is the duration of a channel holding
time. As that in [2]–[4], tc is exponentially distribution with
parameter µ. Let tnh and thh denote the channel holding
times for a new call and a handoff call, respectively. Fang
et al. propose the channel holding for a new call as:

tnh = min{tc, r1} (1)

The channel holding time for a handoff call is:

thh = min{rj , tj} (2)

Next, we present our analytical model for tp, the packet
session channel holding time which is the time an UE in the
RRC CONNECTED state as shown in Fig. 1. As discussed
in Section II, even in RRC CONNECTED state, an UE may
still sleep in long/short DRX state. Fig. 2 (b) illustrates the
DRX cycles of length tp =

∑
tPCj +

∑
tCIj , where j =

1, 2, . . . , for channel holding time and cell residence time of
a packet session. During tPC1, the channel is used for packet
transmission. If there is no packet, the UE enters sleep mode,
which is denoted as tCI1. Once there is a packet arrival, the
UE changes to tPC2. The tPCj essentially is corresponding
to the CRX state in Fig. 1. The tCIj includes the Short DRX
and Long DRX in Fig. 1, in which the channel is idle. The
maximum idle time is denoted as a. If the channel is idle
longer than a, the UE enters RRC IDLE and we consider
the packet session is finished.

Let tCIj be the Connected-Idle time that the UE has no
activity in both downlink (forward link) and uplink (reverse
link). The maximum value of tCIj is the length of the idle
timer a. Let r1 be the period from the time a new packet
session starts to the time the session leaves the serving cell
but this new session is not finished yet. Let tj be the cell
residence time (or dwell time) and rj (j ≥ 2) be the residual
life time distribution of the packet session holding time
while the packet session completes jth handoff successfully.
Table I list the parameters used in this paper.

In PS networks, let te represent the effective packet session
holding time. We then can obtain:

te = tp + a, tCIj > a (3)

From Fig. 2(b), we have the following four effective
channel holding time.

1) tpnh: the effective channel holding time for a new
session [3], [9] is:

tpnh = min{tp + a, r1} (4)

We assume that λ is the new session arrival rate to a
cell.

2) tphh busy: the effective channel holding time for a
handoff session in busy model [3], [9] is:

tphh busy = min{rj + a, tj} (5)

We assume that λhb is the arrival rate to a cell with
handoff session in busy model.

3) tphh idle new: the effective channel holding time for a
handoff session with new arrival packets in idle model
is:

tphh idle new = min{rj + a, tj} (6)

We assume that λhda is the arrival rate to a cell with
handoff session with new arrival packets in idle model.



Table I
LIST OF PARAMETERS

Variable Density function Laplace transform Cumulative function Definition
tp fp(t) f∗

p (s) Fp(t) Packet session channel holding time
tCIj fCIj(t) f∗

CIj(s) FCIj(t) Connected-Idle time, the maximum tCIj is a

tPCj - - - Continuous reception time (CRX)
r1 fr(t) f∗

r (s) Fr(t) Time period from a new session starts to leave the serving cell
rj - - Residual life time after the jth successful handoff
tj fd(t) f∗

d (s) Fd(t) Dwell time (cell residence time)
tpnh fpnh(t) f∗

pnh(s) Fpnh(t) Effective channel holding time for a new session
tphh busy fphh busy(t) f∗

phh busy(s) Fphh busy(t) Effective channel holding time for a handoff session in busy model
tphh idle new fphh idle new(t) f∗

phh idle new(s) Fphh idle new(t) Effective channel holding time for a handoff session
with new arrival packets in idle model

tphh idle no fphh idle no(t) f∗
phh idle no(s) Fphh idle no(t) Effective channel holding time for a handoff session

without arrival packet in idle model
tc Circuit call channel holding time
tnh Circuit call channel holding time for a new call
thh Circuit call channel holding time for a handoff call

Figure 3. Cell residence time and residual life time of a handover session

4) tphh idle no: the effective channel holding time for a
handoff session with no arrival packets in idle model
is:

tphh idle no = min{r
′

j + a, tj} (7)

We assume that λhdb is the arrival rate to a cell with
handoff session without arrival packet in idle model.

Noted that in Fig. 3, when a user moves from the left cell
to the right cell in busy model, the user will be in idle mode
when the user completes the data transmission session in the
right cell. On the other hand, in Fig. 4, when a user moves
from the left cell to the right cell in idle model, TCIj <
a and a data transmit requirement are needed in the right
cell. In this case, the cell residence time Tj is part of TCIj .
Because rj is the residual lift time after the j-th successful
handoff and the user will finally be in long DRX mode (i.e.,
the maximum value of tCIj = a), we have (5) ≡ (6).

Next, let the density functions of tp, tCIj , tj , r1,
tpnh, tphh busy, tphh idle new and tphh idle no be fp(t),
fCIj(t), fd(t), fr(t), fpnh(t), fphh busy(t), fphh idle new(t)
and fphh idle no(t), respectively. The corresponding Laplace
transforms of these density functions are f∗

p (s), f∗
CIj(s),

Figure 4. Cell residence time and residual life time of a handover session
in idle mode with a new session

f∗
d (s), f∗

r (s), f∗
pnh(s), f∗

phh busy(s), f∗
phh idle new(s) and

f∗
phh idle no(s), respectively. Their cumulative distribu-

tion functions are Fp(t), FCIj(t), Fd(t), Fr(t), Fpnh(t),
Fphh busy(t), Fphh idle new(t) and Fphh idle no(t), respec-
tively.

A. Handoff Session in Busy Model

In this section, we will show that the effective channel
holding time for a handoff session in busy model (tphh busy)
is exponential distribution if and only if the cell residence
time (tj) is exponentially distributed. First, We can obtain
the conditional probability of (5):

P (tphh busy ≤ t | tCIj > a)

= P (tp ≤ t− a) + P (tj ≤ t)− P (tp ≤ t− a)P (tj ≤ t)

(8)

where we have P ((rj + a) ≤ t , tj ≤ t) = P ((rj +
a) ≤ t)P (tj ≤ t) from the independence of rj , tj and
tCIj [2], [3], [9]. From the Residual Life Theorem [10]
or the argument in [11], we also have P ((rj + a) ≤
t) = P (tp ≤ t − a) from the memoryless property of the



exponential distribution, where rj has the same distribution
as tp.

By differentiating (8), we have the conditional density:

fphh busy(t) = fp(t− a) + fd(t)

− fp(t− a)P (tj ≤ t)− P (tp ≤ t− a)fd(t)

= fp(t− a)− fp(t− a) ·
∫ t

0

fd(τ)dτ

+ fd(t)− fd(t) ·
∫ t

0

fp(τ − a)dτ (9)

Suppose that the cell residence times tj is exponentially
distributed with parameter η, then, from (9), we obtain:

fphh busy(t) = µe−µ(t−a) × e−ηt + ηeηt × e−µ(t−a)

= (µ+ η)e−(µ+η)(t− µa
µ+η ) (10)

which is a Two-Parameter Exponential Distribution [12].
Contrariwise, suppose that the effective channel holding
time for a handoff session in busy model is exponential
distribution with parameter γ. Let Z(t) =

∫∞
t

fd(τ)dτ , then
Z(t)

′
= −fd(t). From (9), we get:

µe−µ(t−a)Z(t) + e−µ(t−a)fd(t) = γe−γτ (11)

From (11), we can derive:

Z(t) = eµ(t−a)Z(0) +

∫ t

0

eµ[(t−a)−τ ]

[
−γe−(γ−µ)τ

]
dτ

= eµa · e−(γ−µ)t (12)

Thus, Z(t)
′
= −(γ − µ)e[−(γ−µ)t+µa]. Finally, we obtain:

f(t) = (γ − µ)e[−(γ−µ)t+µa]

= (γ − µ)e−(γ−µ)(t− µa
γ−µ ). (13)

From (13), we prove that if the effective channel holding
time for a handoff session in busy model is exponential
distribution, the cell residence time must be exponentially
distributed.

B. New Session

Similarly, the conditional probability of (4) is:

P (tpnh ≤ t | tCIj > a)

= P (tp ≤ t− a) + P (r1 ≤ t)− P (tp ≤ t− a)P (r1 ≤ t).

(14)

By differentiating above equation, we obtain:

fpnh(t) = fp(t− a) + fr(t)

− fp(t− a)P (r1 ≤ t)− P (tp ≤ t− a)fr(t)

= fp(t− a)− fp(t− a) ·
∫ t

0

fr(τ)dτ

+ fr(t)− fr(t) ·
∫ t

0

fp(τ − a)dτ. (15)

Suppose that the effective channel holding time of a new
session is exponentially distributed with parameter µ1. From
a similar derivation of the effective channel holding time
for a handoff session in busy model which is exponential
distribution, we can deduce that:

fr(t) = (µ1 − µ)e−(µ1−µ)(t− µa
µ1−µ ) (16)

which is also an exponential distribution.

C. Handoff Session in Idle with New Arrival Packets

The effective channel holding time for a handoff session
with new arrival packets in idle model in (6) is the same
as that for a handoff session in busy model in (5). Based
on III-A, we can derive that the effective channel holding
time for a handoff session with new arrival packets in idle
model is exponential distribution if and only if the cell
residence time is exponential distribution.

D. Handoff Session in Idle without Arrival Packet

From (7), we get the conditional probability:

P (tphh idle no ≤ t | tCIj > a)

= P (tp ≤ t− a) + P (tj ≤ t)

− P (tp ≤ t− a)P (tj ≤ t) (17)

where we have the independence of tCIj and tj [3], [9],
and the independence of tj and r

′

j [3], [9]. We also apply
P ((r

′

j + a) ≤ t) = P (tp ≤ t − a) from the memoryless
property of the exponential distribution. Thus, r

′

j has the
same distribution as tp. Therefore, we have the same condi-
tional density and the Laplace transform with (8) and (19),
respectively.

Theorem 1: For a PS network with exponential session
holding time and Poisson new session arrivals, we can state:

1) The effective channel holding time for a new session
is exponentially distributed if and only if the cell
residence time is exponentially distributed.

2) The effective channel holding time for a handoff
session in busy model is exponentially distributed if
and only if the cell residence time is exponentially
distributed.

3) The effective channel holding time for a handoff
session in idle model with new or no arrival packets
is exponentially distributed if and only if the cell
residence time is exponentially distributed.

4) The effective channel holding time is exponentially
distributed if and only if the cell residence time is
exponentially distributed.

Let tp denote the packet session channel holding time (i.
e., the channel holding time no matter whether the session
is new or handoff session). Thus tp = tpnh with probability
λ/(λ+λhb + λhda +λhdb), tp = tphh busy with probability
λhb/(λ+ λhb + λhda + λhdb) and so on. We obtain that:



f∗
p (s) =

λ

λ+ λhb + λhda + λhdb
f∗
pnh(s)

+
λhb

λ+ λhb + λhda + λhdb
f∗
phh−busy(s)

+
λhda

λ+ λhb + λhda + λhdb
f∗
phh−idle−new(s)

+
λhdb

λ+ λhb + λhda + λhdb
f∗
phh−idle−no(s). (18)

We assume that λhda = λhb and λhdb = 0. From (18) we
have:

f∗
p (s) =

λ

2λ+ λhb
(f∗

pnh(s) + f∗
phh idle new(s))

+
λhb

2λ+ λhb
f∗
phh busy(s).

Applying Laplace transform to (9), we obtain:

f∗
phh busy(s)

= f∗
d (s) + e−asf∗

p (s)−
∫ ∞

0

e−st[fd(t)

∫ t

0

fp(τ − a)dτ ]dt

−
∫ ∞

0

e−st[fp(t− a)

∫ t

0

fd(τ)dτ ]dt

= e−as µ

s+ µ
+ eµa(

s

s+ µ
)f∗

d (s+ µ) (19)

where we apply the theorem that L(g′(t)) = sL(g(t))−g(0)
if g is continuous at t = 0. Here, g(t) = Fd(t), g′(t) = fd(t)
and fd(0) = 0.

E. New Session

Thus, the Laplace transform of (15) is:

f∗
pnh(s)

= f∗
r (s) + e−asf∗

p (s)−
∫ ∞

0

e−st[fr(t)

∫ t

0

fp(τ − a)dτ ]dt

−
∫ ∞

0

e−st[fp(t− a)

∫ t

0

fr(τ)dτ ]dt

= e−as µ

s+ µ
+ eµa(

s

s+ µ
)f∗

r (s+ µ). (20)

If the residual life time r1 of t1 is exponentially distributed
with parameter µr, the Laplace transform of r1 (f∗

r (s)) is
µr/(s+ µr). Taking this into (20), we obtain:

f∗
pnh(s) = e−as µ

s+ µ
+ eµa(

s

s+ µ
)f∗

r (s+ µ)

= e−as µ

s+ µ
+ eµa

µrs

(s+ µ)(s+ µ+ µr)
. (21)

Applying simple poles (see Appendix) or looking up (20) in
the table of inverse Laplace transforms, we can obtain:

fpnh(t)

= ua(t)µe
−µ(t−a) + eµa

µr(−µe−µt − (−µ− µr)e
−(µ+µr)t)

−µ− (−µ− µr)

= ua(t)µe
−µ(t−a) − eµaµe−µt + eµa(µ+ µr)e

−(µ+µr)t. (22)

Similarly, if tj is exponentially distributed with parameter
µd,

fphh(t)

= ua(t)µe
−µ(t−a) + eµa

µd(−µe−µt − (−µ− µd)e
−(µ+µd)t)

−µ− (−µ− µd)

= ua(t)µe
−µ(t−a) − eµaµe−µt + eµa(µ+ µd)e

−(µ+µd)t. (23)

F. Handoff Session in Idle with New Arrival Packets

The effective channel holding time for a handoff session
with new arrival packets in idle model in (6) is the same as
that for a handoff session in busy model in (5). We have the
same conditional density and the Laplace transform with (8)
and (19), respectively.

G. Handoff Session in Idle without Arrival Packet

Because the conditional density function of the handoff
session in idle without arrival packet in (17) is the same as
the conditional density function of the handoff session in
busy in (8), the Laplace transform of (17) is also the same
as (19).

Theorem 2: For a PS network with exponential session
holding time and Poisson new session arrival rate λ, we
have the following statements:

1) The Laplace transform of the probability density func-
tion of the effective channel holding time for a new
session is given by:

f∗
pnh(s) = e−as µ

s+ µ
+ eµa(

s

s+ µ
)f∗

r (s+ µ). (24)

2) The Laplace transform of the probability density func-
tion of the effective channel holding time for a handoff
session in busy model or a handoff session with new
arrival packets or a handoff session without arrival
packet in idle model is given by:

f∗
phh busy(s) = f∗

phh idle no(s) = f∗
phh idle new(s)

= e−as µ

s+ µ
+ eµa(

s

s+ µ
)f∗

d (s+ µ). (25)

3) The Laplace transform of the probability density func-
tion of the effective channel holding time is given by:

f∗
p (s) =

λ

2λ+ λhb
(f∗

pnh(s) + f∗
phh idle new(s))

+
λhb

2λ+ λhb
f∗
phh busy(s). (26)

4) The effective channel holding time of the new session
and the handoff session have the same distribution if
and only if the cell residence time is exponentially
distributed.



IV. ANALYTICAL MODEL OF CONDITIONAL
DISTRIBUTION WITH PACKET SESSION CHANNEL

HOLDING TIME

We study the conditional distribution of new packet ses-
sion holding time and handoff packet session holding time
while the packet call completes in its current cell and the
timer is timeout (the length of timer is a).

Let fcnh(t) and fchh(t) denote the conditional density
functions condition for the channel holding time of new
packet session and the channel holding time of handoff
packet session in busy model, respectively. The correspond-
ing Laplace transforms of these density functions are f∗

cnh(t)
and f∗

chh(t), respectively; and with cumulative distribution
functions Fcnh(t) and Fchh(t). We first start from the
channel holding time of handoff packet session condition
on timer is timeout and tj ≥ rj + a. we have

A. handoff session (in busy mode)

Fchh(h) = Pr(tphh busy ≤ h|rj + a ≤ tj)

=

∫ h−a

0
fp(t)

∫∞
t+a

f(τ)dτdt

Pr(rj + a ≤ tj)

=

∫ h−a

0
fp(t)[1− Fd(t+ a)]dt

Pr(rj + a ≤ tj)

(27)

Differentiating both sides, we obtain the conditional density
function

fchh(h) =
fp(h− a)[1− Fd(h)]

Pr(rj + a ≤ tj)
(28)

We observe that

Pr(rj + a ≤ tj) =
∫∞
t=a

∫ t−a

0
fd(t)fp(τ)dτdt

=
∫∞
t=a

fd(t)[1− e−µ(t−a)]dt
= 1−

∫∞
t=a

fd(t)e
−µ(t−a)dt

= 1− Fd(a)− eµaf∗
d (µ)

(29)

Taking this into (28), we obtain

fchh(h) =
[1− Fd(h)]µe

−µ(h−a)

1− Fd(a)− eµaf∗
d (µ)

(30)

Hence,

f∗
chh(s) =

µ
∫∞
0

e−(s+µ)(h−a)[1− Fd(h)]dh

1− Fd(a)− eµaf∗
d (µ)

=
µe(s+µ)a

s+ µ

1− f∗
d (s+ µ)

1− Fd(a)− eµaf∗
d (µ)

(31)

B. New Session

In a similar fashion, we obtain the following result for the
new session channel holding time:

fcnh(h) =
[1− Fr(h)]µe

−µ(h−a)

1− Fr(a)− eµaf∗
r (µ)

(32)
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Figure 5. Compare of the Laplace transform function of unconditional
and conditional probability density function of new session holding time.

f∗
cnh(s) =

µ
∫∞
0

e−(s+µ)(h−a)[1− Fr(h)]dh

1− Fr(a)− eµaf∗
r (µ)

=
µe(s+µ)a

s+ µ
· 1− f∗

r (s+ µ)

1− Fr(a)− eµaf∗
r (µ)

(33)

The conditional channel holding time distribution fch(t) is
the (weighted) average of the conditional new session and
handoff session channel holding time distribution.

f∗
ch(s) =

µe(s+µ)a

s+ µ
(

λ

2λ+ λh
· 1− f∗

r (s+ µ)

1− Fr(a)− eµaf∗
r (µ)

+
λh

2λ+ λh
· 1− f∗

d (s+ µ)

1− Fd(a)− eµaf∗
d (µ)

)

(34)
Let Tcnh, Tchh, and Tch denote the expected conditional new
session, handoff session, channel holding time, respectively,
then we have

Tchh =
−eµa

µ
(
1− µa− f∗(µ)

1− eµaf∗(µ)
+ f∗(1)(µ)) (35)

Tcnh =
−eµa

µ
(
1− µa− f∗

r (µ)

1− eµaf∗
r (µ)

+ f∗(1)
r (µ)) (36)

Tch = −eµa

µ {1− µa− f∗
r (µ)

1− eµaf∗
r (µ)

+ f
∗(1)
r (µ))

+
λh

2λ+ λh
(
1− µa− f∗(µ)

1− eµaf∗(µ)
+ f∗(1)(µ))}

(37)

When the residual life time r1 of t1 is exponentially
distributed with parameter µr, then its Laplace transform
f∗
r (s) = µr/(s+ µr). From (31) we obtain

f∗
cnh(s) =

µe(s+µ)a

s+ µ
· 1− f∗

r (s+ µ)

1− Fr(a)− eµaf∗
r (µ)

=
µe(s+µ)a

s+ µ
·

s+ µ

s+ µ+ µr
µµr

µ+ µr

=
e(s+µ)a

s+ µ+ µr
· µ+ µr

µr

(38)
In Fig. (5), we found that in the packet switch system, the

new session holding time has different probability density
distribution in unconditional and conditional distribution.
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Figure 6. Probability density of handoff session holding time (solid line)
and its exponential fitting (dashed line) when cell residence time is Erlang
distributed with parameter (µ,η)
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Figure 7. Probability density of handoff session holding time (solid line)
and its exponential fitting (dashed line) when cell residence time is Hyper-
Erlang distributed with parameter (m1,m2,η)

V. NUMERICAL RESULTS

In 1996, Jedrrzycki and Leung showed that the distribu-
tion of circuit switch channel holding time is approximated
with the log-normal distribution after removing the spikes
of data [13]. Orlik and Rappaport derived the results for
conditional distributions for the channel holding time when
the cell residence time is SOHYP distributed [14], [15]. In
2007, Chen et al. observed that the mobile VoIP channel
holding time distribution can be accurately approximated by
a mix of two log-normal distributions [16]. To avoid complex
computation with log-normal or SOHYP distribution in cell
residence time, we use a more general distribution model
for cell residence time.

In this section, we apply the Hyper-Erlang distribution
model [2]–[4] to analyze the packet session channel holding
time. Refer to [2]–[4], the Hyper-Erlang distribution has the
following probability density function and Laplace trans-

form:

fhe(t) =

M∑
i=1

αi
(miηi)

mitmi−1

(mi − 1)!
e−miηit, t ≥ 0

f∗
he(s) =

M∑
i=1

αi(
miηi

s+miηi
)mi . (39)

Furthermore, we need to investigate the relationship be-
tween f∗

r (s) and f∗
d (d). Because the residual life time r1 can

be viewed as the residual life of the cell residence time, from
the Residual Life Theorem [10], [17] and [3], we obtain:

f∗
r (s) =

η[1− f∗
d (d)]

s

where η = [
∑M

i=1 αi/ηi]
−1.

From [2]–[4], the density function and Laplace transform
of the Hyper-Erlang distribution with one parameter are as
follows:

f(t) =
βmtm−1

(m− 1)!
e−βt, f∗(s) = (

β

s+ β
)m (40)

First, we use the Hyper-Erlang distribution model of one
parameter for our numerical study. We take the Hyper-Erlang
and exponential cell residence time into Theorem 2. We
than can obtain the probability density of the handoff packet
session holding time from our analytical results. In Fig. 6, we
use one Erlang parameter and one exponential parameter in
our Hyper-Erlang model. We vary the shape parameter (m).
It can be seen that the exponential model does not have
good fit for the real handoff packet session holding time
distribution when the shape parameter (m) increases larger.

Second, we apply the cell residence time of Hyper-Erlang
distributed with two parameters as follows:

f∗(s) = α1(
m1η

s+m1η
)m1 + α2(

m2η

s+m2η
)m2

Fig. 7 shows the Hyper-Erlang distribution model with
two parameters. This figure indicates more mismatches
between the handoff packet session holding time distribution
and its exponential fitting.

VI. SUMMARY

In this paper, we propose a new packet session model
with DRX idle mode to analyze the channel holding time
for packet sessions in PS networks. We show that if cell
residence time is exponentially distributed, packet session
channel holding time is exponentially distributed. We also
demonstrate that the cell residence time can capture user’s
mobility. Besides, the Hyper-Erlang distribution models can
be used to characterize user’s mobility when a PS network
has exponential packet session holding time, Poisson new
session arrival, and Hyper-Erlang cell residence time.
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APPENDIX

Simple poles [18]: Suppose that we have Laplace
transform F (S) = L(f(t)) for

F (s) =
P (s)

Q(s)
=

P (s)

(s− α1)(s− α2) · · · (s− αn)
, αi ̸= αj ,

where P (s) is a polynomial of degree less than n. In the
terminology of complex variables, the αis are known as
simple poles of F (s). A partial fraction decomposition is:

F (s) =
A1

(s− α1)
+

A2

(s− α2)
+ · · ·+ An

(s− αn)
. (41)

Multiplying both sides of (41) by s−αi and letting s → αi

yield:

Ai = lim
s→αi

(s− αi)F (s). (42)

Therefore,

f(t) = L−1(F (s)) =
n∑

i=1

L−1(
Ai

s− αi
) =

n∑
i=1

Aie
αit.

Putting in (42) for Ai gives a quick method to find the
inverse:

f(t) = L−1(F (s)) =
n∑

i=1

lim
s→αi

(s− αi)F (s)eαit. (43)

Applying to (21) to find:

L−1(
µrs

(s+ µ)(s+ µ+ µr)
) = L−1(

µrs

(s− (−µ))(s− (µ− µr))
).

Thus, from (43) we can obtain:

f(t) = L−1(F (s))

= lim
s→−µ

(s+ µ)F (s)e−µt + lim
s→−µ−µr

(s+ µ+ µr)F (s)e−(µ+µr)t

=
−µ · µr

−µ+ µ+ µr
· e−µt +

µr · (−µ− µr)

(−µ− µr) + µ
· e−(µ+µr)t. (44)


