
Link Prediction Based on Subgraph Evolution in Dynamic Social Networks 
 

Krzysztof Juszczyszyn
1
, Katarzyna Musiał

2
, Marcin Budka

2
 

 
1
Institute of Computer Science, Wrocław University of Technology, Poland 

2
School of Design, Engineering and Computing, Bournemouth University, UK 

krzysztof@pwr.wroc.pl, kmusial@bournemouth.ac.uk, mbudka@bournemouth.ac.uk 

 

 
Abstract— We propose a new method for 

characterizing the dynamics of complex networks with its 

application to the link prediction problem. Our approach 

is based on the discovery of network subgraphs (in this 

study: triads of nodes) and measuring their transitions 

during network evolution. We define the Triad 

Transition Matrix (TTM) containing the probabilities of 

transitions between triads found in the network, then we 

show how it can help to discover and quantify the 

dynamic patterns of network evolution. We also propose 

the application of TTM to link prediction with an 

algorithm (called TTM-predictor) which shows good 

performance, especially for sparse networks analyzed in 

short time scales. The future applications and research 

directions of our approach are also proposed and 

discussed. 

Link prediction, network evolution, triad transitions 

I. INTRODUCTION 

The complexity and dynamics are inherent 

properties of technology-based social networks. In 

result, they are very difficult to investigate in terms of 

traditional social network analysis methods that can 

effectively cope with static networks of size up to few 

hundred nodes. Currently, the one of the main 

challenges is to investigate the evolution of networks at 

the right level of granularity and the dynamics of this 

evolution. 

In technology-based networks a relation between 

two individuals is a result of set of discrete events (like 

emails, phone calls, blog entries) about which the 

knowledge is available. Because these events have 

some distribution, this adds a new dimension to the 

known problems of network analysis [11]. As shown in 

[9] for various kinds of human activities related to 

communication and information technologies, the 

probability of inter-event times (periods between the 

events, like sending an email) may be expressed as: 

P(t)≈t
-α

 where typical values of α are from (1.5, 2.5). 

This distribution inevitably results with series of 

consecutive events (“activity bursts”) divided by 

longer periods of inactivity.  

These phenomena have serious consequences when 

we try to apply the classic structural network analysis 

(SNA) to the dynamic networks. The most popular 

approach is to divide the time period under 

consideration into time windows, then run SNA 

methods on the windows separately. This should show 

us how the measures like node centrality, average path 

length, group partitions etc. change in time, giving an 

insight into the evolutionary patterns of the network. 

However, the bursty behaviour of the users (long 

inactivity periods mixed with the bursts) causes 

dramatic changes of any measure when switching from 

one time window to another. There is a trade-off: short 

windows lead to chaotic changes of network measures, 

while long windows give us no chance of investigation 

of network dynamics [13][14]. 

In order to address this problem, a number of 

methods, designed to predict changes in the structure 

of dynamic networks, were proposed [15][16]. The 

special case is the so-called link prediction problem – 

the estimation of probability that a link will 

emerge/disappear during the next time window [12]. 

A broad survey of link prediction methods is 

presented in [20]. It should be noted that most methods 

of the link prediction give rather poor results – the best 

predictors discussed in [12] can identify < 10% of 

emerging links. It should be emphasised that the 

networks analysed in [12] were built from arxiv 

publication record which differs significantly from our 

test cases (email social networks) presented below. 

Email networks are highly dynamic in short timescales 

and - for big networks, the number of disconnected 

pairs of nodes increases quadratically (the density of 

real-world networks is small and the graphs are sparse) 

while the number of links grows only linearly [21].  

These phenomena have motivated us to make an 

attempt of description of network dynamics in terms of 

changes in elementary network subgraphs. Basing on 

our previous experience, which shows that the 

distribution of subgraphs in complex networks is 

statistically stable and typical for the considered 

network even in the face of significant structural 

changes [17], we claim that it is possible to 



characterize the network structural changes by 

statistical data about the evolution of its subgraphs. 

These dynamic patterns may be also utilized to propose 

a novel link prediction method.  

In the following sections we propose a method for 

the description of changes in local connection patterns 

of complex network, and link prediction algorithm 

which utilizes these patterns. The approach was 

evaluated on two email social network datasets which 

significantly differ in size and dynamics. 

II. LOCAL TOPOLOGY OF ONLINE SOCIAL NETWORKS 

A. Triads and network motifs 

Standard approaches exploiting network analysis by 

means of listing several common properties, like the 

degree distribution, clustering, network diameter or 

average path lengths often fail when applied to 

complex networks. In many cases it is possible to 

construct networks with exactly the same (for example) 

degree distribution whose structure and function still 

differ substantially from the target network. However, 

network structures (like social, biological, gene 

networks) may be investigated with more precise and 

structure–sensitive methods [1]. During last years we 

experienced the development of a number of methods 

investigating complex networks by means of their local 

structure (especially – frequent patterns of connections 

between nodes). The simplest, and therefore popular, 

way to characterize the network in the context of local 

connections is to examine the links between the 

smallest non-trivial subgraphs, the triads, consisting of 

three nodes. If we additionally decide to distinguish 

between the nodes (which is our case, for our network 

they are corporate email addresses) we get 64 patterns 

of possible connections between any three identifiable 

nodes (Fig.1). 

 
Fig.1. Three-node triads in a directed labelled graph  

Please note the triad ID (the number inside the 

picture of the subgraph) in Fig. 1, as it will be used 

further on in this paper. 

The basic method utilizing such subgraphs is the 

well-knows triad census, which is enumeration of all 

triads in the network and allows to reason about the 

functional connection patterns of the nodes [18]. 

Another is so-called motif analysis which aims to 

characterize the network by the difference between its 

structures and an ensemble of random networks of the 

same size and degree distribution. A biased distribution 

of local network structures (subgraphs), a.k.a. network 

motifs is widely observed in complex biological or 

technology–based networks. Motif analysis stems from 

bioinformatics and theoretical biology [1][3], where it 

was applied to the investigation of huge network 

structures like transcriptional regulatory networks, 

gene networks or food webs [4][5]. Although the 

global topological organization of metabolic networks 

is well understood, their local structural organization is 

still not clear. At the smallest scale, network motifs 

have been suggested to be the functional building 

blocks of network biology. So far several interesting 

properties of large biological network structures were 

reinterpreted or discovered with help of motif analysis 

[6][7][8].  

In our former research we have investigated the 

local structure of numerous technology-based 

networks, among them an e-mail social network of 

Wroclaw University of Technology (WUT), consisting 

of more than 5 800 nodes and 140 000 links [2]. Our 

aim was to check if the known properties of local 

topology in social networks (known on the basis of 

motif analysis conducted for small social networks [4]) 

are also present in large email–based social structures, 

and if there are some distinct features characteristic to 

the email communication. The most important 

conclusion from these experiments was that the general 

motif profile of the network (expressed by so-called 

triad significance profile – TSP – a vector of the Z-

score measures of the motifs) is stable over long 

periods of time. This was confirmed even for periods 

like summer holidays when the number of links in the 

university network dropped by 50% [17]. Summing up 

– the investigated complex network showed 

statistically stable pattern of local connections as a 

whole, despite the fact that stability of a single link is 

quite low. These observations led to the idea of 

characterizing the evolutionary patterns of the network 

by means of the changes in elementary subgraphs, in 

this particular case – directed triads. In the following 

section we define Triad Transition Matrix as an 

indicator for characterizing inherent network dynamics 

at local topology level. 



B. Triad Transition Matrix 

The idea behind the Triad Transition Matrix is to 

use the data from the history of the network (recorded 

during past time windows) to derive the probabilities 

of transitions between triads (patterns of local 

connections) of chosen network nodes. 

The TTM is a matrix of size g x g, where g is the 

number of considered subgraphs. As we distinguish 

between the nodes, and for three nodes the connections  

A-B-C and A-C-B do not constitute the same 

configuration, the number of directed triads in our 

experiments is g = 64 (see Fig.1). 

The values of TTM entries are defined as follows: 

TTMt (i,j) = P(gi[t] gj[ t+1]) (1) 

TTMt (i,j) is the probability (estimated from full 

triad enumeration for networks created from data 

gathered in [t] and [t+1] time windows), that a 

connection pattern (triad) gi found during [t] will transit 

into gj during [t+1]. The sum of values in TTM row is 

1. Our goal was to check if the stability of motif 

distribution (discussed in the former subsection) is 

followed by the distinguishable evolutionary patterns 

of the network triads. 

III. DESCRIPTION OF EXPERIMENTAL DATA 

For the experiments with the TTM we have chosen the 

two datasets containing the email social network data: 

(1) Enron dataset (http://www.cs.cmu.edu/~enron/), 

one of the popular reference e-mail logs, and (2) 

Wroclaw University of Technology (WUT, 

http://www.portal.pwr.wroc.pl/) mail server logs. 

A. The temporal networks of Enron dataset 

First, the data cleansing process was performed 

(external addresses were removed from the database in 

order to analyze only the corporate social network). 

Additionally, only emails from and to the Enron 

domain were left (we may call the resulting set of 

nodes and the links between them a corporate social 

network).  

The experimental data were divided into 12 time 

windows and for each of them a network was created. 

Each of the time window covers 90 days. The main 

nodeset in our experiment consists of 150 nodes and up 

to 1012 links (in a single time window number 10). 

From Fig. 2 we see that – despite the equal number 

of nodes in each time window – the number of edges 

differs significantly. It is obvious that in terms of the 

number of links, node centrality, etc. the structure of 

the network is changing. However, based on the triad 

dynamics analysis it can be noted that there is some 

pattern behind this change (see sec. B). 

 
Fig.2. Network size for consecutive time windows. 

B. The temporal networks of WUT dataset 

WUT mail server logs were also pruned to contain only 

the emails originated from (or sent to) the staff 

members registered at the mail server of the university. 

The entire set contains data from 605 days of the 

operation, with 5834 active email addresses. The 

networks used in our experiments were created from 

data for 1-day, 3-days and 7-days time windows. 

It should be noted that the email social networks 

undergo rapid structural changes when investigated in 

short time periods. In our experiment the stability of a 

single link is quite low: in WUT dataset 53% for 7-day 

time windows and only 42% for 1-day time windows   

(which means that on average 42% of the links will 

still be present in the next time window). 

On the Fig. 3 we see significant changes in network 

size which correspond to the pattern of activity at 

WUT (the network degenerates during weekends, 

which implies the periodical changes, clearly visible 

for 1-day windows and influencing longer windows as 

well). 

 



 

 
Fig.3. Network size for consecutive time windows of 

different size for WUT dataset. 

IV. TTM ANALYSIS 

In Fig. 4 the mean-value TTM derived from 12 time 

windows for Enron dataset is presented. Despite the 

changes in network size (Fig. 2), all TTMs computed 

for neighbouring time windows showed similar values, 

with standard deviation less than 10%.   

 
Fig. 4. TTM containing the transition probabilities averaged 

for all 12 time windows for Enron dataset. 

 

We may notice that the distribution of transition 

probabilities is not flat, and there are distinctive 

patterns (the coordinates of TTM correspond to the 

triad numbers from the Fig.1). 

First of all, the high value of TTM(1,1) reflects the 

fact that the network is sparse (link density below 1%) 

which means that most of the possible triads contain no 

edges. As the result most of the “empty” triads always 

remain in this state, which gives us a relatively high 

value of TTM(1,1). Similarly, the full triad (#64 from 

Fig.1, containing 6 directed links) is quite stable with 

TTM(64,64) above 0.3. We should also note the high 

values in the first column of the TTM. This means that 

when it comes to disappearing of the links, the 

probability of resetting the entire triad to zero-

connection state is relatively high.  

 

 

 



 
Fig. 5. TTM containing the transition probabilities averaged 

for all time windows for WUT dataset. 

 

From the other hand, it is also visible, that the 

values on the diagonal of TTM are bigger than values 

in their neighbourhood, which shows that the already-

formed triads tend (in general) to stay in their current 

state (which is even more visible in the case of WUT 

dataset, analysed in short time windows). 

The last important observation is that some triads 

are special, they show clearly bigger values in their 

columns of TTM, which means that they are “sinks” of 

the connection evolution patterns.  

An important observation is that the situation is 

similar for WUT dataset (Fig. 5), despite the different 

size and timespan of the analysis. However, for 1-day 

window the network is more stable – it is visible at the 

diagonals of averaged TTMs – the probabilities at the 

diagonal are higher than in other fields of TTMs. The 

similarities between the TTMs of the investigated 

social networks of Enron and WUT also suggest that it 

is reasonable to check if the social networks show 

distinguishable evolutionary pattern, which may be 

different for other classes of dynamic networks, 

however this is not a key topic of this work. 

In the next section we propose the application of 

the discovered network local evolutionary patterns 

(TTMs) to the link prediction problem. 

V. TTM PREDICTOR – THE ALGORITHM 

The evaluation of link prediction methods in our 

experiments was based on the principles proposed in 

[12]. It was assumed there, that all the predictors assign 

a predicted connection weight score(x, y) to unlinked 

pairs of nodes x, y, based on the input graph, and then 

produce a ranked node pair list L in decreasing order of 

score(x, y), whose values are treated as proportional to 

the estimated probability of forming a new link 

between x and y. In this way each link predictor 

outputs a ranked list of node pairs which would 

eventually form predicted new links. From this list 

(sorted in decreasing values of scores) the set of first n 

entries is taken, then the size of its intersection with the 

set of new links (of the same size n) is computed. The 

percentage of the links from the predicted set, which 

are also present in the set of new links, is the prediction 

accuracy. 

In [12] it is also assumed that it is reasonable to 

seek new links only between the nodes already 

connected by existing links, therefore the parameter 

ktraining is defined (and set to 3) and only possible links 

joining nodes adjacent to at least ktraining existing links 

are predicted. 

However, we argue that in the case of sparse and 

dynamic networks (like the one used in our 

experiment) this assumption restricts link prediction 

only to the densely connected areas of network graph 

(which may be called the network core) and excludes a 

number of possible links from prediction.  

Therefore, for evaluation of all methods considered 

in this work ktraining = 1 was used (we do not seek 

predictions only for the pairs of nodes which are 

disconnected from the rest of the network).    

In our link prediction algorithm (from this point 

called TTM-predictor) we assume the following: for 

the social network graph G=E, V and a node pair 

p=x, y; x,yV; xy let us denote the set of all non-

empty triads that p belongs to as p  (non-empty 

means: containing at least one directed link, but not 

necessarily the link between x and y). In this way, in 

the course of prediction, we check only triads which 

contain at least one link. This is justified by the huge 

number of empty triads which, according to the values 

of TTMs gathered in experiments in most cases will 

remain empty (the TTM entry (1,1) is typically close to 

1). In order to avoid the attraction of the prediction 

results by zeros (disappearing links) we exclude them 

from analysis. Moreover we consider the prediction of 

links which are not connected to existing network (by 

means of having at least one of their endpoints adjacent 

to any link, ktraining = 1) unjustified. 

Assuming that the TTM (or its estimation – in our 

experiments we have used the average values of the 

TTMs computed for the 30 time windows of respective 

size preceding the current window for WUT dataset, 

and the average TTM computed for all 12 time 

windows for Enron) is known, we want to check the 

evolution patterns for all the triads in p for each p 

adjacent to at least one link in existing network.  

Let tp be a single triad containing p (one of the 

64 considered), and TTM(t) – the row of TTM matrix 

number t. The set of 64 values contained in TTM(t) 



(corresponding to transition probabilities of t) may be 

divided into two disjoint sets TTM
0
(t) and TTM

1
(t), 

where: 

 TTM
0
(t) is a the set of TTM entries from the row 

t corresponding to triads in which there is no link 

between the nodes of p. 

 TTM
1
(t) is a the set of TTM entries from the row 

t corresponding to triads in which there is a link 

between the nodes of p.  

The algorithm for computing the score for node 

pair p – from here on denoted as scoreTTM(p), given the 

known G (network graph for current time window) and 

the TTM is as follows. For a given p: 

scoreTTM(p)=0; 

Step 1:  

Determine p; 

Step 2:  

For each tp determine TTM
0
(t) and TTM

1
(t); 

Step 3:  

             ∑ ∑         
   

 

As one can see, the proposed algorithm is a kind of 

“voting procedure” in which all the triads from p vote 

for the existence of link between the nodes in p 

according to the values in their TTM rows. The votes 

are weighted and the weight of each vote is equal to the 

probabilities from the TTM. Having computed the link 

scores we can propose an algorithm of the TTM-

predictor. 

The TTM prediction algorithm: 

For given G, n, and TTM: 

Step 1: 

Determine the set P of node pairs, such that for 

each pP: 

 there is no link in G between the nodes of p, 

 there is at least one link in G adjacent to the 

nodes in p. 

Step 2: 

For each pP compute scoreTTM(p) 

Step 3: 

Create the list LP of pP. Sort LP in decreasing 

order of the values of scoreTTM(p) 

Step 4: 

Pick the first n elements from LP which are 

predicted new links. 

 

For the evaluation of the prediction algorithms the 

value of n is assumed to be known, however for 

practical applications it may be estimated with good 

accuracy from the time series of the numbers of new 

and disappearing network links once the history of the 

network is known. It corresponds to the inference of n 

from the changing number of links in successive time 

windows - see Fig. 2 and Fig. 3. 

VI. TTM PREDICTION – EVALUATION 

The evaluation of link prediction methods in our 

experiment gave the results presented in Fig.6. We 

have compared the TTM-predictor (TTM) with the two 

standard methods: preferential attachment (PA) and 

common neighbours (CN) predictor, defined exactly as 

in [12] (where CN was one of the best) and, 

additionally, the simple random predictor (RN, for 

which the scores are just random values from [0,1]). 

The experiments were performed for the 12 Enron time 

windows, and, respectively, 25, 9 and 9 windows of 

1,3 and 7 days for WUT.   

In the case of 12 time windows of Enron dataset 

TTM predictor outperforms the others (with an 

exception of the transition from time window 11 to 12, 

where CN was better). An interesting observation is 

that for the 1
st
 time window the result of TTM is 

exceptionally high, in the opposite to CN – this is the 

forming stage of the network and this suggests that at 

this time the network dynamics is far from the rules of 

CN predictor. In this and the following cases the values 

for RN are given only for reference (for large network 

of WUT its typical result is zero predicted links). 

For the WUT dataset the performance of TTM is 

similar for the 7-day time windows, but for narrowing 

time windows (3 and 1-days corresponding to growing 

sparsity and the variance of the link number) it can be 

seen that the performance of all predictors is going 

down (which is expected), however not equally. When 

the network undergoes periodic changes connected 

with rapid reduction of link number (Sundays: 1-day 

windows 4, 11, 18, 25 and their preceding days - 

weekends) the TTM performance, however reduced, is 

still at the level higher than 2% (in contrary to PA and 

CN). In the periods of “network growth” (from 

Sundays on), unlike the weekends, the non-zero 

performance of PA and CN is also visible. This case 

may be interpreted as the moment in which the rules of 

PA and CN (that the unlinked nodes show affiliation to 

hubs or tend to form a link when having a number of 

common friends) start to “work” again which results in 

the increase of the number of accurate predictions.  

Summing up, we have checked the performance of 

the TTM-predictor for two networks (for the second, 

WUT, for three different timescales) which 

significantly differ in the size, dynamics and the period 

covered by their datasets. Its performance was 

confirmed to be generally better than that of CN and 

was proved to be relatively immune (in comparison to 

CN and PA) to the periods when the networks changes 

its mode of operation which results in rapid structural 

changes. The observations described in this section 

suggest the ways of further developing our method.  

 



 

 

s 
Fig. 6. Comparison of different link prediction methods. 

 

 



VII. CONCLUSIONS AND FUTURE WORK 

The concept of TTM joins the statistical features of 

network links with their topological connection 

patterns. The method, although based on graph 

analysis, utilizes the inherent network dynamics based 

on the observations of the recorded network history. In 

this way it is adaptive with respect to the behaviour of 

the network components (nodes). For we do not 

assume any prior knowledge about the nature of 

relations and network nodes (TTM bases on the 

structural changes in the network only), this allows the 

future classification of the different dynamic networks 

(social, biological, etc.) according to their local 

evolutionary schemes expressed by the TTMs. 

The method shows good performance especially in 

the case of sparse, dynamic networks analyzed in short 

time scales. 

This paper reports the preliminary experiments 

which were carried on to check the possibility of 

modelling network evolution by means of structural 

changes in its elementary subgraphs. It should be noted 

that the triad voting scheme applied in the TTM-

predictor is one of the simplest possible solutions. The 

promising results of these experiments (the 

performance of TTM-predictor) open possibilities of 

further developing of our approach, the most appealing 

directions are: 

Including link weight in the analysis; in an e-mail 

network a link exists as a consequence of sending one 

or many messages, and in most cases it is far more 

stable in the second case. This issue will be used to 

tune our method in the next stage of experiments and 

should improve the performance of TTM prediction, 

especially for longer time windows (in which case the 

incidental communication – links of weight 1 – may be 

clearly distinguished). 

Time series analysis of TTM values. From the first 

experiments we know that the values in TTMs undergo 

periodic changes which was visible especially for short 

(1-day) time windows. Accurate estimation of the 

future TTM values may greatly improve the prediction 

(in this work we have used mean TTM values from the 

number of past time windows). 

Reducing the complexity of the method by using 

effective algorithms for triad enumeration, for example 

applying the modified approach presented in [19], 

which also should allow to analyse large networks. The 

software developed for first experiments uses only 

simple algorithms for triad enumeration (however all 

reported experiments were run on state-of-the-art PC, 

taking less than three hours to complete). 

Modelling node behaviour by means of defining 

triad trajectories (the sequences of connection patterns 

for given triple of nodes), then using predictive 

methods for estimation of link evolution in the 

neighbourhood of given node (which belongs to the 

number of triads). In this case the Markov chain 

models were chosen for the first experiments which are 

under preparation.  

Further experiments on various networked systems 

of different origin are also planned in order to develop 

methodologies for modelling the evolution of networks 

with the dynamic subgraph mining.   
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