
Insider Threat Detection using Stream Mining and
Graph Mining

Pallabi Parveen, Jonathan Evans, Bhavani Thuraisingham,
Kevin W. Hamlen, and Latifur Khan

Department of Computer Science
The University of Texas at Dallas

Abstract—Evidence of malicious insider activity is often
buried within large data streams, such as system logs
accumulated over months or years. Ensemble-based stream
mining leverages multiple classification models to achieve
highly accurate anomaly detection in such streams even
when the stream is unbounded, evolving, and unlabeled.
This makes the approach effective for identifying in-
sider threats who attempt to conceal their activities by
varying their behaviors over time. This paper applies
ensemble-based stream mining, unsupervised learning, and
graph-based anomaly detection to the problem of insider
threat detection, demonstrating that the ensemble-based
approach is significantly more effective than traditional
single-model methods.

Index Terms—anomaly detection; graph-based detec-
tion; insider threat; ensemble

I. INTRODUCTION

There is a growing consensus within the in-
telligence community that malicious insiders are
perhaps the most potent threats to information as-
surance in many or most organizations [1]–[4]. One
traditional approach to the insider threat detection
problem is supervised learning, which builds data
classification models from training data. Unfortu-
nately, the training process for supervised learning
methods tends to be time-consuming and expen-
sive, and generally requires large amounts of well-
balanced training data to be effective. In our exper-
iments we observe that less than 3% of the data
in realistic datasets for this problem are associated
with insider threats (the minority class); over 97% of
the data is associated with non-threats (the majority
class). Hence, models trained from such imbalanced
data are likely to perform poorly on test datasets.

An alternative approach is unsupervised learning,
which can be effectively applied to purely unlabeled

data—i.e., data in which no points are explicitly
identified as anomalous or non-anomalous. Graph-
based anomaly detection (GBAD) is one important
form of unsupervised learning [5]–[7], but has tradi-
tionally been limited to static, finite-length datasets.
This limits its application to streams related to
insider threats, which tend to have unbounded length
and threat patterns that evolve over time. Apply-
ing GBAD to the insider threat problem therefore
requires a model that is sufficiently adaptive and
efficient that effective models can be built from vast
amounts of evolving data.

In this paper we cast insider threat detection as
a stream mining problem and propose an efficient
solution for applying unsupervised learning to de-
tect anomalies in streams. Our approach combines
multiple GBAD models in an ensemble of clas-
sifiers. The ensemble is designed to increase the
classification accuracy relative to any single model
over time. This evolutionary capability improves the
classifier’s survival of concept-drift as the behavior
of both malicious and non-malicious agents varies
over time. In experiments, we use test data that
records system call data for a large, Unix-based,
multiuser system.

Our work makes the following contributions:
First, it shows how stream mining can be effectively
applied to detect insider threats. Second, it proposes
an unsupervised learning algorithm that copes with
changes based on GBAD. Third, we exploit the
power of stream mining and graph-based mining by
effectively combining the two in a unified manner.
This is the first work to our knowledge to harness
these two approaches for insider threat detection.
Finally, we compare our approach with traditional
unsupervised learning approaches and show its su-

perior effectiveness.
The remainder of the paper is organized as fol-

lows. Section II presents related work. Section III
presents our ensemble-based approach, and §IV
discusses its relation to prior work in graph-based
mining. Section V describes our experiments and
testing methodology. Finally, §VI concludes with
an assessment of the viability of ensemble-based
mining for real-world insider threat detection.

II. RELATED WORK

Insider threat detection work has applied ideas
from both intrusion detection and external threat
detection [8]–[11]. Supervised learning approaches
collect system call trace logs containing records of
normal and anomalous behavior [12]–[15], extract
n-gram features from the collected data, and use the
extracted features to train classifiers. Text classifi-
cation approaches treat each system call as a word
in a bag-of-words model [16]. Various attributes
of system calls, including arguments, object path,
return value, and error status, have been exploited
as features in various supervised learning meth-
ods [17], [18]. These supervised approaches require
large quantities of labeled training data and apply
only to static, non-evolving streams.

Past work has also explored unsupervised learn-
ing for insider threat detection, but only to static
streams to our knowledge [19]–[21]. Static GBAD
approaches [5]–[7], [22] represent threat and non-
threat data as a graph and apply unsupervised learn-
ing to detect anomalies. The minimum description
length (MDL) approach to GBAD has been applied
to email, cell phone traffic, business processes, and
cybercrime datasets [23], [24]. Our work builds
upon GBAD and MDL to support dynamic, evolv-
ing streams.

Stream mining [25] is a relatively new category
of data mining research that applies to continuous
data streams. In such settings, both supervised and
unsupervised learning must be adaptive in order to
cope with data whose characteristics change over
time. There are two main approaches to adapta-
tion: incremental learning [26] and ensemble-based
learning [25], [27], [28]. Past work has demon-
strated that ensemble-based approaches are the more
effective of the two, motivating our approach.

TABLE I
COMPARISON OF RELATED WORK

(Un)Super- concept- insider graph-
Approach vised drift threat based

[12], [13] S × X ×
[20] S X × ×
[19], [21] U × X ×
GBAD [5], [6] U × X X
stream [25], [28], [29] S X N/A N/A
ensemble (ours) U X X X

Ensembles have been used in the past to bol-
ster the effectiveness of positive/negative classifi-
cation [28], [29]. By maintaining an ensemble of
K models that collectively vote on the final clas-
sification, false negatives (FN) and false positives
(FP) for a test set can be reduced. As better models
are created, poorer models are discarded to maintain
an ensemble of size exactly K. This helps the
ensemble evolve with the changing characteristics of
the stream and keeps the classification task tractable.

A comparison of the above related works is
summarized in Table I. A more complete survey is
available in [30].

III. ENSEMBLE-BASED INSIDER THREAT
DETECTION

Data relevant to insider threats is typically accu-
mulated over many years of organization and sys-
tem operations, and is therefore best characterized
as an unbounded data stream. Such a stream can
be partitioned into a sequence of discrete chunks;
for example, each chunk might comprise a week’s
worth of data.

Figure 1 illustrates how a classifier’s decision
boundary changes when such a stream observes
concept-drift. Each circle in the picture denotes a
data point, with unfilled circles representing true
negatives (TN) (i.e., non-anomalies) and solid cir-
cles representing true positives (TP) (i.e., anoma-
lies). The solid line in each chunk represents the
decision boundary for that chunk, while the dashed
line represents the decision boundary for the previ-
ous chunk.

Shaded circles are those that embody a new
concept that has drifted relative to the previous
chunk. In order to classify these properly, the de-
cision boundary must be adjusted to account for the

chunk 1 chunk 2 chunk 3

anomaly
non-anomaly
concept-drift victim

old decision boundary
new decision boundary

data stream

Fig. 1. Concept drift in stream data

new concept. There are two possible varieties of
misapprehension (false detection):

1) The decision boundary of chunk 2 moves
upward relative to chunk 1. As a result, some
non-anomalous data is incorrectly classified as
anomalous, causing the FP (false positive) rate
to rise.

2) The decision boundary of chunk 3 moves
downward relative to chunk 2. As a result,
some anomalous data is incorrectly classified
as non-anomalous, causing the FN (false neg-
ative) rate to rise.

In general, the old and new decision boundaries can
intersect, causing both of the above cases to occur
simultaneously for the same chunk. Therefore, both
FP and FN counts may increase.

These observations suggest that a model built
from a single chunk or any finite prefix of chunks
is inadequate to properly classify all data in the
stream. This motivates the adoption of our ensemble
approach, which classifies data using an evolving set
of K models.

The ensemble classification procedure is illus-
trated in Figure 2. We first use static, supervised
GBAD to train models from an individual chunk.
GBAD identifies normative substructures in the
chunk, each represented as a subgraph. To identify
an anomaly, a test substructure is compared against
each model in the ensemble. Each model classifies
the test substructure based on how much the test dif-
fers from the model’s normative substructure. Once
all models cast their votes, weighted majority voting
is applied to make a final classification decision.

Ensemble evolution is arranged so as to maintain

λ4

λ6

λ0

x, ? M3

M1

M7

+

+

−

+

input classifiers classifer
outputs

voting ensemble
output

Fig. 2. Ensemble classification

a set of exactly K models at all times. As each
new chunk arrives, a K+1st model is created from
the new chunk and one victim model of these K +
1 models is discarded. The discard victim can be
selected in a number of ways. One approach is to
calculate the prediction error of each of the K + 1
models on the most recent chunk and discard the
poorest predictor. This requires the ground truth to
be immediately available for the most recent chunk
so that prediction error can be accurately measured.
If the ground truth is not available, we instead rely
on majority voting; the model with least agreement
with the majority decision is discarded. This results
in an ensemble of the K models that best match the
current concept.

Algorithm 1 summarizes the classification and
ensemble updating algorithm. Lines 1–2 build a new
model from the most recent chunk and temporarily
add it to the ensemble. Next, Lines 3–9 apply each
model in the ensemble to test graph t for possible
anomalies. We use three varieties of GBAD for
each model (P, MDL, and MPS), each discussed in
§IV. Finally, Lines 10–18 update the ensemble by
discarding the model with the most disagreements
from the weighted majority opinion. If multiple
models have the most disagreements, an arbitrary
poorest-performing one is discarded.

Weighted majority opinions are computed in
Line 11 using the formula

WA(E, a) =

∑
{i |Mi∈E, a∈AMi

} λ
`−i∑

{i |Mi∈E} λ
`−i (1)

where Mi ∈ E is a model in ensemble E that was
trained from chunk i, AMi

is the set of anomalies
reported by model Mi, λ ∈ [0, 1] is a constant
fading factor [31], and ` is the index of the most
recent chunk. Model Mi’s vote therefore receives
weight λ`−i, with the most recently constructed

Algorithm 1: Ensemble classification and up-
dating

Input: E (ensemble)
t (test graph)
S (chunk)

Output: A (anomalies)
E′ (updated ensemble)

1 M ′ ← NewModel(S) // build new model
2 E′ ← E ∪ {M ′} // add model to ensemble
3 foreach M ∈ E′ do // for each model
4 cM ← 0
5 foreach q ∈M do // find anomaly candidates
6 A1 ← GBADP (t, q)
7 A2 ← GBADMDL(t, q)
8 A3 ← GBADMPS (t, q)
9 AM ← ParseResults(A1, A2, A3)

10 foreach a ∈
⋃

M∈E′ AM do // for each candidate
11 if round(WA(E′, a)) = 1 then // if anomaly
12 A← A ∪ {a}
13 foreach M ∈ E′ do // approbate yes-voters
14 if a ∈ AM then cM ← cM + 1
15 else // if non-anomaly
16 foreach M ∈ E′ do // approbate no-voters
17 if a 6∈ AM then cM ← cM + 1
18 E′ ← E′ − {choose(argminM (cM))} // drop worst model

model receiving weight λ0 = 1, the model trained
from the previous chunk receiving weight λ1 (if it
still exists in the ensemble), etc. This has the effect
of weighting the votes of more current models above
those of potentially outdated ones when λ < 1.
Weighted average WA(E, a) is then rounded to the
nearest integer (0 or 1) in Line 11 to obtain the
weighted majority vote.

For example, in Figure 2, models M1, M3, and
M7 vote positive, positive, and negative, respec-
tively, for input sample x. If ` = 7 is the most
recent chunk, these votes are weighted λ6, λ4, and
1, respectively. The weighted average is therefore
WA(E, x) = (λ6 + λ4)/(λ6 + λ4 + 1). If λ ≤ 0.86,
the negative majority opinion wins in this case;
however, if λ ≥ 0.87, the newer model’s vote
outweighs the two older dissenting opinions, and
the result is a positive classification. Parameter λ
can thus be tuned to balance the importance of
large amounts of older information against smaller
amounts of newer information.

Our approach uses the results from previous it-
erations of GBAD iterations to identify anomalies
in subsequent data chunks. That is, normative sub-
structures found in previous GBAD iterations may
persist in each model. This allows each model to

E

A B

C D

E

A B

C D

E

A B

E D

C

A B

E D

E

A B

E D

Fig. 3. A graph with a normative substructure (boxed) and anomalies
(shaded)

consider all data since the model’s introduction to
the ensemble, not just that of the current chunk.
When streams observe concept-drift, this can be
a significant advantage because the ensemble can
identify patterns that are normative over the entire
data stream or a significant number of chunks but
not in the current chunk. Thus, insiders whose ma-
licious behavior is infrequent can still be detected.

It is important to note that the size of the en-
semble remains fixed over time. Outdated models
that are performing poorly are replaced by better-
performing, newer models that are more suited
to the current concept. This keeps each round of
classification tractable even though the total amount
of data in the stream is potentially unbounded.

IV. GRAPH-BASED ANOMALY DETECTION

Algorithm 1 uses three varieties of GBAD to
infer potential anomalies using each model. GBAD
is a graph-based approach to finding anomalies in
data by searching for three factors: modifications,
insertions, and deletions of vertices and edges. Each
unique factor runs its own algorithm that finds
a normative substructure and attempts to find the
substructures that are similar but not completely
identical to the discovered normative substructure.
A normative substructure is a recurring subgraph
of vertices and edges that, when coalesced into a
single vertex, most compresses the overall graph.
The rectangle in Figure 3 identifies an example of
normative substructure for the depicted graph.

Our implementation uses SUBDUE [32] to find
normative substructures. The best normative sub-
structure can be characterized as the one with min-
imal description length (MDL):

L(S,G) = DL(G | S) + DL(S) (2)

where G is the entire graph, S is the substructure
being analyzed, DL(G | S) is the description length
of G after being compressed by S, and DL(S) is

the description length of the substructure being an-
alyzed. Description length DL(G) is the minimum
number of bits necessary to describe graph G [33].

Insider threats appear as small percentage differ-
ences from the normative substructures. This is be-
cause insider threats attempt to closely mimic legit-
imate system operations except for small variations
embodied by illegitimate behavior. We apply three
different approaches for identifying such anomalies,
discussed below.

A. GBAD-MDL
Upon finding the best compressing normative

substructure, GBAD-MDL searches for deviations
from that normative substructure in subsequent sub-
structures. By analyzing substructures of the same
size as the normative one, differences in the edges
and vertices’ labels and in the direction or endpoints
of edges are identified. The most anomalous of
these are those substructures for which the fewest
modifications are required to produce a substructure
isomorphic to the normative one. In Figure 3, the
shaded vertex labeled E is an anomaly discovered
by GBAD-MDL.

B. GBAD-P
In contrast, GBAD-P searches for insertions that,

if deleted, yield the normative substructure. Inser-
tions made to a graph are viewed as extensions of
the normative substructure. GBAD-P calculates the
probability of each extension based on edge and ver-
tex labels, and therefore exploits label information
to discover anomalies. The probability is given by

P (A=v) = P (A=v | A)P (A) (3)

where A represents an edge or vertex attribute and
v represents its value. Probability P (A=v | A) can
be generated by a Gaussian distribution:

ρ(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
(4)

where µ is the mean and σ is the standard deviation.
Higher values of ρ(x) correspond to more anoma-
lous substructures.

Using GBAD-P therefore ensures that malicious
insider behavior that is reflected by the actual data
in the graph (rather than merely its structure) can be
reliably identified as anomalous by our algorithm. In

header,150,2,execve(2),,Fri Jul 31 07:46:33 1998, +
562468777 msec

path/usr/lib/fs/ufs/quota
attribute,104555,root,bin,8388614,187986,0
exec_args,1,
/usr/sbin/quota
subject,2110,root,rjm,2110,rjm,280,272, +

0 0 172.16.112.50
return,success,0
trailer,150

Fig. 4. A sample system call record from the MIT Lincoln dataset

Figure 3, the shaded vertex labeled C is an anomaly
discovered by GBAD-P.

C. GBAD-MPS

Finally, GBAD-MPS considers deletions that, if
re-inserted, yield the normative substructure. To
discover these, GBAD-MPS examines the parent
structure. Changes in size and orientation in the
parent signify deletions amongst the subgraphs. The
most anomalous substructures are those with the
smallest transformation cost required to make the
parent substructures identical. In Figure 3, the last
substructure of A-B-C-D vertices is identified as
anomalous by GBAD-MPS because of the missing
edge between B and D marked by the shaded
rectangle.

V. EXPERIMENTS

We tested our algorithm on the 1998 Lincoln
Laboratory Intrusion Detection dataset [34]. This
dataset consists of daily system logs containing all
system calls performed by all processes. It was
created using the Basic Security Mode (BSM) au-
diting program. Each log consists of tokens that
represent system calls using the syntax exemplified
in Figure 4.

The token arguments begin with a header line
and end with a trailer line. The header line reports
the size of the token in bytes, a version number,
the system call, and the date and time of execution
in milliseconds. The second line reports the full
path name of the executing process. The optional
attribute line identifies the user and group of
the owner, the file system and node, and the device.
The next line reports the number of arguments to the
system call, followed by the arguments themselves
on the following line. The subject line reports the
audit ID, effective user and group IDs, real user and

path

data

ca
ll

return

〈user
audit ID〉

ID
terminalar

gs

proc
ID

token〈path〉

〈data〉

〈call〉

〈return
value〉

〈terminal〉〈args〉 〈proc ID〉

Fig. 5. A token subgraph

group IDs, process ID, session ID, and terminal port
and address, respectively. Finally, the return line
reports the outcome and return value of the system
call.

Since many system calls are the result of au-
tomatic processes not associated with any partic-
ular user, for insider threat detection we limit our
attention to user-affiliated system calls. These in-
clude calls for exec, execve, utime, login,
logout, su, rsh, rexecd, passwd, rexd, and
ftp. All of these correspond to logging in/out or
file operations performed by users, and are therefore
relevant to insider threat detection. Restricting our
attention to such operations helps to reduce extra-
neous noise in the dataset. The subgraph yielded by
extracting attributes from these tokens is depicted
in Figure 5.

Each of the attributes in Figure 5 are important
for different reasons. For example, the path value
may indicate the importance or security level of
the information being accessed. A change in the
file path access locations or the type of system
calls being executed by a given user might indicate
anomalous behavior that should be investigated. File
paths for exec and execve calls reveal the various
programs executed by each user. Process IDs allow
the tracking of all system calls made by any given
process, indicating the behavior of that process
over time. Terminal information provides a form of
locality data for users. If a user logs in from an
unexpected location or displays anomalous behavior
from certain locations, this could indicate the use of
stolen credentials or other malicious activity.

Table II reports statistics for the dataset after
all irrelevant tokens have been filtered out and
the attribute data in Figure 5 has been extracted.
Preprocessing extracted 62K tokens spanning 500K
vertices. These reflected the activity of all users

TABLE II
DATASET STATISTICS AFTER FILTERING AND ATTRIBUTE

EXTRACTION

Statistic Value

vertices 500,000
tokens 62,000
normative substructures 5
users all
duration 9 weeks

TABLE III
TOTAL ENSEMBLE ACCURACY

models TP FP FN

K = 1 9 920 0
K = 3 9 188 0
K = 5 9 180 0
K = 7 9 179 0
K = 9 9 150 0

over 9 weeks. We applied our ensemble learning
algorithm to this data with the number of models
(K) set to 1, 3, 5, 7, and 9 respectively. During
each ensemble iteration, each model chose the best
5 normative substructures to use for anomaly detec-
tion. It is possible to configure the algorithm to use
more than 5, but this default yielded good results so
we left it unchanged.

Performance was measured in terms of total false
positives (FP) and false negatives (FN). We chose
the Lincoln dataset both because of its large size
and because its set of anomalies is well known,
facilitating an accurate performance assessment via
misapprehension counts. Table III summarizes the
results, along with a count of true positives (TP).
The line for K = 1 reflects the performance of a
non-ensemble, single-model GBAD approach. Us-
ing ensemble learning with K = 9 models yielded
84% fewer false positives, significantly reducing the
false alarm rate. In all cases there were no false
negatives; all anomalies were detected.

The greatest impact of increasing the model count
was observed from K = 1 to K = 3. This shows
that ensemble learning provides significant improve-
ments over single-model approaches even when the
ensemble size is small. It also reveals that when
computation time is at a premium, small ensembles
can potentially provide high classification accuracy
with reasonable runtimes. In our experiments, using

1 2 3 4 5 6 7 8 9

5

10

15

20

25

30

35

40

45

week

fa
ls

e
p

os
it

iv
es

(F
P

)

K = 1

K = 2

K = 3

K = 4

Fig. 6. Distribution of false positives

K = 3 models achieved almost the same reduction
in false positives (an 80% reduction) as the K = 9
case, but with less than a 10th of the running time.

Figure 6 shows the distribution of false posi-
tives raised by each ensemble over time. In this
dataset, all true insider threat activity occurs during
week 6, leading to the spike in false positives for
that week. During the first 5 weeks, the ensemble
approaches progressively improve as they learn le-
gitimate patterns of behavior, whereas the single-
model approach struggles, oscillating wildly. When
the malicious insider behavior appears in week 6,
the false positive rate rises for both approaches as
they attempt to learn the new concept. The ensem-
ble approaches largely succeed, yielding low false
positive rates for the ensuing weeks, but the single-
model approach has become corrupted. It cannot ad-
equately encode concepts related to both legitimate
and illegitimate behavior in the same model, leading
to the steep increase in false positives by week 9.

We next investigate the impact of parameters K
(the ensemble size) and q (the number of normative
substructures per model) on the classification ac-
curacy and running times. To more easily perform
the larger number of experiments necessary to chart
these relationships, we employ the smaller datasets
summarized in Table IV for these experiments.
Dataset A consists of activity associated with user
donaldh during weeks 2–8, and dataset B is for
user william during weeks 4–7. Each of these
users displays malicious insider activity during the
respective time periods. Both datasets evince similar
trends for all relationships discussed henceforth;
therefore we report only the details for dataset A

TABLE IV
SUMMARY OF DATASETS A AND B

Statistic Dataset A Dataset B

user donaldh william
vertices 269 1283
edges 556 469
week 2–8 4–7
weekday Friday Thursday

1 2 3 4 5 6 7 8

10

20

30

40

normative structure limit (q)

ti
m

e
(s

ec
s)

Fig. 7. The effect of q on
runtimes for fixed K = 6 on
dataset A

1 2 3 4 5 6

10

20

30

40

ensemble size (K)

ti
m

e
(s

ec
s)

Fig. 8. The effect of K on
runtimes for fixed q = 4 on
dataset A

throughout the remainder of the section.
Figure 7 shows the relationship between the cut-

off q for the number of normative substructures
and the running time in dataset A. Times increase
approximately linearly until q = 5 because there are
only 4 normative structures in dataset A. The search
for a 5th structure therefore fails (but contributes
running time), and higher values of q have no further
effect.

Figure 8 shows the impact of ensemble size K
and runtimes for dataset A. As expected, runtimes
increase approximately linearly with the number of
models (2 seconds per model on average in this
dataset).

Increasing q and K also tends to aid in the
discovery of true positives (TP). Figures 9 and 10
illustrate by showing the positive relationships of q
and K, respectively, to TP. Once q = 4 normative
substructures are considered per model and K = 4
models are consulted per ensemble, the classifier
reliably detects all 7 true positives in dataset A.
These values of q and K therefore strike the best
balance between coverage of all insider threats and
the efficient runtimes necessary for high responsive-
ness.

Increasing q to 4 does come at the price of raising
more false alarms, however. Figure 11 shows that
the false positive rate increases along with the true

1 2 3 4 5 6

2

4

6

8

normative structure limit (q)

tr
u

e
p

os
it

iv
es

(T
P

)

Fig. 9. The effect of q on
TP rates for fixed K = 6 on
dataset A

1 2 3 4 5 6

2

4

6

8

ensemble size (K)

tr
u

e
p

os
it

iv
es

(T
P

)

Fig. 10. The effect of K
on TP rates for fixed q = 4
on dataset A

1 2 3 4 5 6

50

100

150

normative structure limit (q)

fa
ls

e
p

os
it

iv
es

(F
P

)

Fig. 11. The effect of q on FP rates for fixed K = 6 on dataset A

positive rate until q = 4. Dataset A has only 4
normative structures, so increasing q beyond this
point has no effect.

Table V considers the impact of weighted versus
unweighted majority voting on the classification
accuracy for fixed q = 3. The unweighted columns
are those for λ = 1, and the weighted columns use
fading factor λ = 0.9. The dataset consists of all
tokens associated with user donaldh. Weighted
majority voting has no effect in these experiments
except when K = 4, where it reduces the FP
rate from 124 (unweighted) to 85 (weighted) and
increases the TN rate from 51 (unweighted) to
90 (weighted). However, since these results can
be obtained for K = 3 without weighted voting,
we conclude that weighted voting merely serves to
mitigate a poor choice of K; weighted voting has
little or no impact when K is chosen wisely.

VI. CONCLUSION AND FUTURE WORK

The ensemble-based approach to insider threat
detection succeeded in identifying all anomalies in
the 1998 Lincoln Laboratory Intrusion Detection
dataset with zero false negatives and a lower false
positive rate than related single-model approaches.
The technique combines the non-supervision advan-
tages of graph-based anomaly detection with the
adaptiveness of stream mining to achieve effective,

TABLE V
IMPACT OF FADING FACTOR λ (WEIGHTED VOTING)

K = 2 K = 3 K = 4

λ=1 λ=0.9 λ=1 λ=0.9 λ=1 λ=0.9

TP 10 10 10 10 14 14
FP 79 79 85 85 124 85
TN 96 96 90 90 51 90
FN 4 4 4 4 0 0

practical insider threat detection for unbounded,
evolving data streams.

Future work should consider a wider range of
tunable parameters in an effort to further reduce
false positive rates, for which there is still substan-
tial room for improvement. In addition, a more so-
phisticated polling algorithm that weights the votes
of better models might have significant accuracy
advantages.

Reducing classifier runtimes is also important
for rapidly detecting and responding to emerging
insider threats. The experiments in this paper were
conducted with a purely serial implementation, but
the ensemble algorithm includes substantial room
for parallelization. Future work should therefore
investigate the application of distributed and cloud
computing technologies to improve efficiency.

Finally, although practical insider threat detection
mechanisms must realistically assume that ground
truth in the form of labeled data points is gen-
erally unavailable, it would be beneficial to take
advantage of such labels if they become available
over time. Future research should therefore exam-
ine techniques for updating the models within an
ensemble with supervised learning to improve the
classification accuracy for partially labeled streams.

ACKNOWLEDGMENT

This material is based upon work supported
by The Air Force Office of Scientific Research
under Award No. FA-9550-09-1-0468. We thank
Dr. Robert Herklotz for his support.

REFERENCES

[1] R. C. Brackney and R. H. Anderson, Eds., Understanding the
Insider Threat. RAND Corporation, March 2004.

[2] M. P. Hampton and M. Levi, “Fast spinning into oblivion?
recent developments in money-laundering policies and offshore
finance centres,” Third World Quarterly, vol. 20, no. 3, pp. 645–
656, 1999.

[3] S. Matzner and T. Hetherington, “Detecting early indications
of a malicious insider,” IA Newsletter, vol. 7, no. 2, pp. 42–45,
2004.

[4] M. B. Salem and S. J. Stolfo, “Modeling user search behavior
for masquerade detection,” in Proc. Recent Advances in Intru-
sion Detection (RAID), 2011, forthcoming.

[5] D. J. Cook and L. B. Holder, Eds., Mining Graph Data.
Hoboken, New Jersey: John Wiley & Sons, Inc., 2007.

[6] W. Eberle and L. B. Holder, “Mining for structural anomalies in
graph-based data,” in Proc. International Conference on Data
Mining (DMIN), 2007, pp. 376–389.

[7] D. J. Cook and L. B. Holder, “Graph-based data mining,” IEEE
Intelligent Systems, vol. 15, no. 2, pp. 32–41, 2000.

[8] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M. Theus,
and Y. Vardi, “Computer intrusion: Detecting masquerades,”
Statistical Science, vol. 16, no. 1, pp. 1–17, 2001.

[9] K. Wang and S. J. Stolfo, “One-class training for masquerade
detection,” in Proc. ICDM Workshop on Data Mining for
Computer Security (DMSEC), 2003.

[10] R. A. Maxion, “Masquerade detection using enriched command
lines,” in Proc. IEEE International Conference on Dependable
Systems & Networks (DSN), 2003, pp. 5–14.

[11] E. E. Schultz, “A framework for understanding and predicting
insider attacks,” Computers and Security, vol. 21, no. 6, pp.
526–531, 2002.

[12] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff,
“A sense of self for Unix processes,” in Proc. IEEE Symposium
on Computer Security and Privacy (S&P), 1996, pp. 120–128.

[13] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion de-
tection using sequences of system calls,” Journal of Computer
Security, vol. 6, no. 3, pp. 151–180, 1998.

[14] N. Nguyen, P. Reiher, and G. H. Kuenning, “Detecting insider
threats by monitoring system call activity,” in Proc. IEEE
Information Assurance Workshop (IAW), 2003, pp. 45–52.

[15] D. Gao, M. K. Reiter, and D. Song, “On gray-box program
tracking for anomaly detection,” in Proc. USENIX Security
Symposium, 2004, pp. 103–118.

[16] Y. Liao and V. R. Vemuri, “Using text categorization techniques
for intrusion detection,” in Proc. 11th USENIX Security Sym-
posium, 2002, pp. 51–59.

[17] C. Krügel, D. Mutz, F. Valeur, and G. Vigna, “On the detection
of anomalous system call arguments,” in Proc. 8th European
Symposium on Research in Computer Security (ESORICS),
2003, pp. 326–343.

[18] G. Tandon and P. Chan, “Learning rules from system call ar-
guments and sequences for anomaly detection,” in Proc. ICDM
Workshop on Data Mining for Computer Security (DMSEC),
2003, pp. 20–29.

[19] A. Liu, C. Martin, T. Hetherington, and S. Matzner, “A com-
parison of system call feature representations for insider threat
detection,” in Proc. IEEE Information Assurance Workshop
(IAW), 2005, pp. 340–347.

[20] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo,
“A geometric framework for unsupervised anomaly detection:
Detecting intrusions in unlabeled data,” in Applications of Data
Mining in Computer Security, D. Barbará and S. Jajodia, Eds.
Springer, 2002, ch. 4.

[21] E. Eskin, M. Miller, Z.-D. Zhong, G. Yi, W.-A. Lee, and
S. Stolfo, “Adaptive model generation for intrusion detection
systems,” in Proc. ACM CCS Workshop on Intrusion Detection
and Prevention (WIDP), 2000.

[22] X. Yan and J. Han, “gSpan: Graph-based substructure pattern
mining,” in Proc. International Conference on Data Mining
(ICDM), 2002, pp. 721–724.

[23] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank,
J. Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle,
“GrIDS—a graph based intrusion detection system for large
networks,” in Proc. 19th National Information Systems Security
Conference, 1996, pp. 361–370.

[24] E. Kowalski, T. Conway, S. Keverline, M. Williams, D. Cap-
pelli, B. Willke, and A. Moore, “Insider threat study: Illicit
cyber activity in the government sector,” U.S. Department
of Homeland Security, U.S. Secret Service, CERT, and the
Software Engineering Institute (Carnegie Mellon University),
Tech. Rep., January 2008.

[25] W. Fan, “Systematic data selection to mine concept-drifting data
streams,” in Proc. ACM International Conference on Knowledge
Discovery and Data Mining (KDD), 2004, pp. 128–137.

[26] P. Domingos and G. Hulten, “Mining high-speed data streams,”
in Proc. ACM International Conference on Knowledge Discov-
ery and Data Mining (KDD), 2000, pp. 71–80.

[27] M. M. Masud, Q. Chen, J. Gao, L. Khan, C. Aggarwal,
J. Han, and B. Thuraisingham, “Addressing concept-evolution
in concept-drifting data streams,” in Proc. IEEE International
Conference on Data Mining (ICDM), 2010, pp. 929–934.

[28] M. M. Masud, J. Gao, L. Khan, J. Han, and B. M. Thurais-
ingham, “Classification and novel class detection in concept-
drifting data streams under time constraints,” IEEE Trans.
Knowl. Data Eng. (TKDE), vol. 23, no. 6, pp. 859–874, 2011.

[29] M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraising-
ham, “A practical approach to classify evolving data streams:
Training with limited amount of labeled data,” in Proc. IEEE
International Conference on Data Mining (ICDM), 2008, pp.
929–934.

[30] M. B. Salem, S. Herkshkop, and S. J. Stolfo, “A survey of
insider attack detection research,” Insider Attack and Cyber
Security, vol. 39, pp. 69–90, 2008.

[31] L. Chen, S. Zhang, and L. Tu, “An algorithm for mining fre-
quent items on data stream using fading factor,” in Proc. IEEE
International Computer Software and Applications Conference
(COMPSAC), 2009, pp. 172–177.

[32] N. S. Ketkar, L. B. Holder, and D. J. Cook, “Subdue:
Compression-based frequent pattern discovery in graph data,”
in Proc. ACM KDD Workshop on Open-Source Data Mining,
2005.

[33] W. Eberle, J. Graves, and L. Holder, “Insider threat detection
using a graph-based approach,” Journal of Applied Security
Research, vol. 6, no. 1, pp. 32–81, 2011.

[34] K. Kendall, “A database of computer attacks for the evaluation
of intrusion detection systems,” Master’s thesis, Massachusetts
Institute of Technology, 1998.

