Botnet with Browser Extensions

Lei Liu', Xinwen Zhang, and Songging Chén
I Dept. of Computer Science? Computer Security Division
George Mason University 2 Huawei Research Center
Fairfax, VA 22030 Santa Clara, CA 95050
{lliu3, sqchen@cs.gmu.edu xinwen.zhang@huawei.com

Abstract—Botnets are responsible for many large scale orga- such as a Web browser [5], and to use other protocols, such
nized Internet attacks today. Along with the fight between btnet a5 HTTP [6]. Random delay can be added to command
developer.s. and defendgrs, the battle flelq has significantivolved propagation among bots in order to avoid detection [7]. Sinc
from traditional centralized IRC to various new approaches -)
aiming to make bots and command and control channel more and the centralized control through a IRC server could be easily
more stealthy. In this work, through prototype implementations, detected and shut down, P2P based botnets have also been
we demonstrate that browser extensions are a very effective developed [8], [9], [10], [11], [12]. For example, Overbd®]
botnet vehicle with very large installation base and the cagbility has demonstrated that P2P bots can be built on Kademlia-
of accessing rich sensitive user data in the browser. The anmnatic based P2P networks.

update mechanism of browser extensions further offers a sadthy In this work. we show another form of bots and command
command and control channel between bots and a botmaster. !) .
Compared to many others, extension-based bots are more stdgy ~ and control channels: browser extensions and their automat
and harder to defeat since all mainstream browser architeaires update mechanisms implemented in mainstream browsers.
provide rich APIs for browser extensions to enrich users’ Although the concept of developing or hiding bot in a browser
browsing expgrience with insufficient consideration of mapious extension has been mentioned recently [13], [14], to out bes
extensions. Via both an IE add-on and a Chrome extension, we knowledge, we are the first to implement this botnet model
show that attacks like email spamming, DDoS, and password ! - o .
sniffing are trivially feasible. Our study shows that an effetive and demonstrate its feasibility under the latest mainstrea
scheme is imperatively demanded to mitigate such threats. browser extension architectures. Via implementation, lnes
that potentially a malware developer can lure a user to linsta
a malicious extension, which, under both Internet Explorer
(IE) and Chrome’s extension architectures, can easilyl stea
Botnets are one of the biggest threats to Internet securifyer sensitive online data such as username/password, and
today. They are responsible for a majority of large scakend out to external servers. Furthermore, the extension ca
organized Internet attacks, such as DDoS and spammiegsily file cross-site HTTP requests to send spam emails and
credit card number and password harvesting [1]. launch DDoS attacks. More critically, by leveraging theltsui
Typically, a botnet consists of three key elements: a botmas automatic update mechanism implemented in IE, Mozilla,
ter or botmasters, hundreds to thousands of bots (compedmiand Chrome, a bot in the form of a browser extension can
computers), and a command and control channel via whighsily obtain command and control messages from a botmaster
the botmaster controls the bots. Therefore, the battle derw without triggering any anti-virus software.
botnet operators and defenders focuses on these aspects:Several advances of browser development have motivated
botmaster tries its best to hide itself from being identifilsd and enabled this new form of botnet. First of all, web browser
using stealthy command and control channels, and a bot triggvadays have become a major vehicle for common people
to hide from being detected by host-side anti-malware systeto surf the Internet and consume web services, including e-
and obtain as many privileges as possible. commerce and online banking services. Therefore, plenty of
In early days, a botmaster often communicates with cosensitive information becomes the target for bots to harves
trolled bots through a centralized IRC server. This enables Second, there exist a large number of browser extensions
botmaster to hide its communication with bots in normal siserand plugins to enrich users’ browsing experience. For examp
legitimate traffic. Therefore, it is natural to monitor TCBrp they can help browsers process different types of media
6667 which is for IRC traffic [2] in order to detect commandontents, or automate user actions such as filling forms or
and control information. Other solutions include buildi®C remembering password. For this purpose, browsers provide
server scanners to detect potential botnets by identifgimy lots of APIs for extension developers to access the core
human behavior characteristics in traffic [3], [4]. browser resources and web pages, including DOM, cookies,
Driven by profit, botnet developers are constantly explprirbrowsing history, bookmark, toolbar, etc. This opens adarg
new mechanisms for command and control channels aatiack window for malicious extensions and plugins.
developing more stealthy bots that can easily infect lacgdes ~ Third, through our implementation, we find that although
hosts. For example, with the scrutiny of the IRC channelts banainstream browsers have some built-in security mechanism
have been found to bind to other commonly used applicatiorisy securing extensions, they are far from sufficient to cmfi

I. INTRODUCTION

the behavior of malicious extensions. In particular, in IE, Il. SECURITY MODEL
browser extensions such as menu extensions, custom teplbartpere are many different ways to distribute browser

explorer bars, and Browser Helper Objects (BHOs) share gension-based bots. As aforementioned, a botmaster can
same process space of the browser and thus can perfeffjeiop popular extensions with normal functions that can b
any action on the available windows and modules. A BH@iscovered and downloaded by users. Although browser devel
even can modify the functionality of the browser by addingpment communities encourage users to download extensions
binary components. Therefore, it is very difficult to resttri from trusted sources, e.g., in Chrome and Firefox extension
the behavior of a malicious extension. i_n IE without rgsimigt galleries, it's usually very difficult to evaluate if an ertgon

the whole browser process's capability, e.g., running IE 8 penign [18], partially due to the large number of extensio
protected mode [15]. Chrome adopts a multi-process archigm third-party developers and the very dynamic behavior
tecture in which extensions run in separated processes frgiie programming languages used in extensions, typically
the main browser process. Chrome further defines i”diVidUﬁslvaScript and HTML. On the other hand, there is no effective
permissions that can be assigned to extensions, such asrthe Bechanism yet to prevent a user from installing extensions
missions to inject JavaScript into web pages, making cséies- qownloaded from other sources, e.g., embedded links from
access requests, accessing tab and window modules, cookiggm emails or phishing web pages. The recent Trojan posed
local storage, etc. However, the design of Chrome extensigg 5 fake Chrome extension suggests that such threats are not
security aims to prevent malicious web pages from levemgifictitious [19].

extensions to obtain these permissions, and the coargedra Alternatively, a bot extension does not need to have ma-
permission management cannot prevent malicious extensiqBious code and functions when it is firstly installed, e.g.
from accessing sensitive data in web pages and browggrescape from offline code analysis tools [18]. After the
modules and making cross-site HTTP requests. Jinstallation base reaches a certain level, the developéhneor

~ Last and most importantly, the extension update mechanigitension owner can leverage the stealthy update mechanism
implemented in mainstream browsers provides a very siealfy jnclude malicious code and data into the extension, hence
command and control channel for extension-based botnqg;mng it to a bot whenever needed.

Specifically, in Chrome and Mozilla, each browser extension Therefore, in this study, we do not make a specific assump-
includes anupdat e_url in its metadata, with which the jjon for distributing and installing bot extensions. Irete we
browser uses to check updates, e.g., each time when Hyg|yate how an extension can harvest sensitive informatio
browser starts [16], [17]. Therefore, a botmaster can ¥asy prowser environment, and obtain network access capabilit
propagate attack command and victim information to a larg§ |aunch botnet attacks. We further explore how a botmaster
number of bots without being detected by anti-virus sofewar|eyerages the automatic extension update mechanism for com
Such an approach could be used to distributed bot binafang and control channel. We implement bot extensions on
as well. In IE, a malicious add-on even can implement ifyth |E and Chrome, which represent two mainstream browser

own update mechanism and download arbitrary code aggthitectures with different extension security models.
data. Compared to other approaches, a malware developer

can simply develop popular extensions with bot functions 1. ATTACK CASES

hidden. In this case, all browsers with such extensionaliest In this section, we present the details of three attacks,
become bots, and a botmaster can communicate with th@gmely, emails spamming, DDoD, and password sniffing,
with ease. which are implemented through a Microsoft Internet Explore

With implemented malicious extensions on both IE angg) add-on and a Chrome extension.

Chrome, we demonstrate three types of bot attacks, inaudin)

email spamming, DDoS, and password sniffing. For emd} |E Add-on and Chrome Extension

spamming, instead of sending spam emails in a burst fashionlE is the most popular browser. An IE add-on runs in the
we implement silent and sporadic email spamming that asame process space and has the same privileges as the IE
harder to be detected. For DDoS, we launch DDoS attadiowser. As a result, it can access resources like all otitéren

in the IE add-on and the Chrome extension with the samagplications without any restriction. More specifically, B
command file. For password sniffing, we demonstrate it is eaBHO has the privilege to 1) access Internet, 2) access disks,
to sniff login password in e-transactions with differennks. 3) access browser resources such as cookies and bookmarks,
Through these experiments, we show that such attacks coafdl 4) access web page objects such as all DOM elements.
be practicably mounted with trivial efforts. Our study slowlE add-ons can also implement their own update mechanisms
that we are in great need of some effective scheme to defemtin ad-hoc manner as they can access local filesystems and
such threats. network resources freely.

The rest of the paper is organized as follows. We discussTo demonstrate the attack via IE add-ons, we have im-
the security model for these attacks in section Il. We presgriemented a BHO nameHDV for IE8 on Windows 7 with
email spamming, DDoS, and password sniffing attacks & hardcoded update URL. This BHO is claimed to help
section Ill. We discuss research efforts to counter theseks process video files and it periodically checks an updateeserv
in section IV and make concluding remarks in section V. via the URL. It downloads the update files whenever they

are available. The hidden bot thus can receive commandg$-irst, we present our implementation with an Microsoft
distributed by the botmaster with the update server we halrdgernet Explorer (IE) add-on. Because an IE add-on has full
set. privileges to access the DOM elements of a web page, we
Chrome is relatively new. It uses a multi-process archieverage this feature for spamming attacks. When a user is
tecture, where a single browser kernel process runs in thaecessing a web email system, the user often composes email
privileged mode to access platform and system resources,comtent in an edit area and sends out when editing is done.
behalf of multiple renderer processes. A renderer proaess rIn this case, the email content is saved in the DOM element.
in a sandboxed environment so it cannot directly accessmystThus, for spamming attacks, right before the email is attual
resources such as the filesystem and the network. It can osént outHDV can modify the DOM element by injecting some
send such requests to the browser kernel process. spam content to the email content. When the victim opens the
A Chrome extension usually includes an extension core at@mpered email, she will read the embedded spam content. In
one or more content scripts. A content script is written ifis implementation, we experiment with the popular iPtane
JavaScript that can be injected into a web page when t@@ail system [20].
page is loaded. It then runs in the renderer process space to
access the DOM tree. The extension core includes one or MOr{ | sam - otepad
background web pages written in HTML and JavaScript, and| ——
runs in a separate renderer process. A content script has thf|=¢ H¢ fem fer Bep :
least privileges so it cannot access any object out of itdawrsr l'ﬂ'ﬂ‘:wr‘”:m:;; comp_fs. htwl7rtFpossiblestrueslangen
process space and has to communicate with the extension col |naze = text
via Chrome’s inter-process communication (IPC). While the ||t = #lease visit this exciting site ww. e, con.
extension core contains the bulk of the extension prividege
it runs in a sandboxed environment. Therefore, it cannot
access resources of the host platform and the network lyirect
and can only communicate with external web resources viaFig. 1. 1E BHO for Email Spam: Step 1 — Prepare the spam content
XMLHt t pRequest . Although binary code can be included
in a Chrome extension, it can be run in a sandboxed pluginFigure 1 shows the update file we prepare for the update
process; therefore we focus on JavaScript and HTML bas&d HDV. To inject the spam content, the BHO only needs to
extensions only in our study. tamper with the DOM element that stores the email content
Different from IE, Chrome defines a set of of permission@t & proper time. In our implementation, the email content is
for extensions, such as the permission to inject JavaSotipt Saved in aText Area element with name ext . Thus, the
web pages, make cross-site access requests, and access taBtick steps are as follows.
window modules, cookies, local storage. The desired permis e+ First, the BHO retrieves the update file and reads spam

sions of an extension are specified inmani f est . j son content and a specific web email URL.
file by its developer, and prompted to the user when it is+ Second, the BHO waits for the given URL to be accessed
installed. The design of Chrome extension architecturased and listens to various browser events to monitor user

on the assumption that extensions are benign-but-buggy; th behaviors.
is, the goal of the security architecture is to protect esitams « Third, when the user sends out the email, which is usually
from being exploited by malicious web pages and control the triggered by a click event, the BHO accesses the DOM
potential damage done to the browser kernel process if an element with name ext and appends the spam content
extension is exploited. at the end of email.

For Chrome, we again develop an extension, which is
claimed for video processing but includes bot functionsxtNe
we demonstrate that even with very normal permission spec

8 Compose Message : Messenger Express - Windows Internet Explorer

s hitps

e . P . . L&J 7= I-I/t
ifications, a malicious Chrome extension can conduct typica L;f% s nfd, mﬁ;@mﬁ T e
botnet attacks. | — .
Redpients Separate multiple recipients using a comma.
rs| To: @yahoo.com
B. Email Spamming B3 ec
Li_j B
Today botnets are notoriously responsible for most of spam Subject Old friend
emails on the Internet [1]. A spammer controls or rents a||zesr sxiend,
botnet and sends spamming commands to bots. After receiving| vons sim= no see, how is everyshing?

spamming commands, bots send spam emails to victims. Tc|' Johz|

defeat various malware detection mechanisms, a bot, ohstea

keeping sending spam emails at a high rate, can be instructedfig. 2. |E BHO for Email Spam: Step 2 — User sends out the email

to send spam emails only sporadically, which makes detectio

more difficult. Our implementation below works in such a way. Figure 2 shows the snapshot when the user finishes editing

and is ready to send out the email. When a user clicks a buttorTo send out spam emails, the extension has the following
to send out an email, in IE, there is a click event with a buttqrermission specification:
as the source and sometimes it can further lead to a formyer ni ssions”: |
submission event. For the spamming purpddBY needs to "tabs", "http://=/+", "https://«/="
capture these events in order to tamper with spam content. To
capture the email sending actiodDV does the following in Theht t p://+/* andhttps://*/+* permissions are very
our implementation. common in popular extensions. These permissions enable the
« It keeps listening toDl SPI D_DOCUMENTCOVPLETE extension to send HTTP requests to all destinations.
event; when the document loading is complete, it walks With such permissions, we store the spam information in
through all DOM elements recursively and registers form file calledspam t xt under the extension directory on our
events. update server. Every time when the extension is activated, i
« When it captures a form eventwill check this file and then obtain spam information inclugli
DI SPI D_HTMLFORMELEMENTEVENTS2_ONSUBM T victims’ email addresses and spam content. This approath ca
or a button evenDl SPI D_ HTMLELEMENTEVENTS2_ evade detection more effectively, because spam emails are
ONCLI CK, it searches for th@ext Ar ea element with sent out when the user logins into her web email system.
namet ext and appends the spam information to th@s the extension is granted the privilege bf abs", it
email content. listens to the update notification of the tabs with the method
In our implementation, in order to precisely capture emadif chr one. t abs. onUpdat ed. addLi st ener (). When
sending moment, we have instructddV to listen to both click the user logins into a web email system, the credential is
and submission events and carefully analyze the eventsourepresented by the session id (sid) and rewritten to the URL
Different web email systems may have different implementaf the subsequent HTTP requests. As the bot extension has
tion because they could use different components for egitithe tab permission, it can listen to the tab update noticeh Wi
and different approaches to send email. Thus other events ritlis credential information, an HTTP request to the iPlanet

need to be monitored in other systems. email server is authorized to take any action on behalf of the
user, instead of sending the user name and password in each
transaction.

Old friend
. C. Password Sniffing
Nowadays, many Internet surfers use web browsers to
do online shopping and access online bank accounts and
Dear friend, financial services. Sensitive information such as bankwatico
and password in these transactions is often saved by the

T r 4 i o] . .
Long Siax 10 i, RO B ey ihing? web browser, temporarily or permanently, which makes web

JTohn browsers a major target of spyware. Recent research hasishow
- that many spyware are in the form of malicious browser
please visit this exciting sife wiwwiw.xox.com. plugins [21]. In our experiment, the example attack is agfain

chaseonl i ne. chase. com
Fig. 3. IE BHO for Email Spam: Step 3 — The actual received bmai AN |E add-on runs in the same memory space as the
browser, and it can directly read all web page DOM elements.
Figure 3 shows the actual email received. In this attackherefore, one can leverage this for password sniffingatifivi
the spam content is appended to a legitimate email, and thus
it is difficult to filter such an email even the embedded link passeord i Natepad i
is known to be malicious. On the other hand, it is not easy to| Ffi= Edit Fommat Wiew Heip
automatically split the email content into two parts and oeen it AR dg Ed e
the spam part eventually. Once this approach is widely taken
we believe that existing email spam filtering systems need
enhancements to prevent it.

—————— Fig. 4. 1E BHO for Password Sniffing: Stepl — the command
Having presented the implementation on the IE add-on, now

we discuss how this is implemented in Chrome focusing on theFigure 4 shows the update file we prepare iV on the
implementation difference between IE and Chrome. A Chronugdate server, which specifies information about when tal ste
browser checks the update information of an extension fraime password: upon the access of a particular URL.
embeddedupdat e_ur| every a few hours. If an update When the BHO detects that the web browser is accessing
is available, the browser downloads the update and updattes URL htt ps://chaseonl i ne. chase. con!

the extension. Similar to IE, we utilize this mechanism tshown in Figure 5, it will read the password DOM
distribute bot commands. element from the web page in the method of

% Chase Online - Logon - Windaws

R G - omchesconine chasn.com the above specification, when the user browses the target web
s — page, the content script is injected into the target web pau
= : the JavaScript has full privileges to access all DOM element
CHASE G including the form with user name and password. It reads
Chase Online ™= these values when the user inputs her password and send to
the designated email address. Note the content script san al
Secure Log On & send sensitive information to the extension core, whichuin t
S e) sends the data to the outside network.
S s D. DDosS Attack
[Log on] With HDV for IE, we can also launch DDoS attacks. The

DDoS attack is implemented in a similar approach as before.
Fig. 5. IE BHO for Password Sniffing: Step2 — Password snifimgrogress ~ We use the update file as shown in Figure 6(a). In this

example, the DDoS information includes the victim's URL

(wwv. googl e. com), attack start time 12: 35), request

OnDocunent Conpl et e(| Di spat ch *pDi sp, interval 1 second), and attack duratiorl000 seconds).
VARI ANT *pvar URL) as follows: After obtaining the victim's URL, the extension can send
CComt) Pt r <I WebBr owser 2> spTenpWebBr owser = pDi sp; HTTP requests to the victim as instructed by the DDoS

command. Upon receiving the update fidbV will parse the

command. When the specified attack time comes, it will start

to send DDoS traffic. Figure 6(b) shows the captured traffic

CConPt r <I HTMLEI enent Col | ecti on> spAl | ; information of this BHO once the attack starts.

hr = pDocunent - >get _al | (&spAll);

hr = spAll->item(svarltem ndex, § =
svar Empty, &spdispAll); — - :

CConf Pt r <l HTMLEl enent > spEl enent = spdi spAl | ; Exfecwe Bttt we Fommnt S i ewnim Hclp

i f (hl’ == S K && pW‘d ——n Password") URL = http:/ vanw. google. com

bbantr<l Di spat ch> spDi spDoc;
hr = m spWebBrowser - >get _Docunent (&spDi spDoc) ;

| DDeS.oxt - Motepad

DATE — Apr 01, 2011l
TIME = 12:35
. INTERWAL — 1
BSTR i nner Text ; DURATION = 1000

spEl ement - >get _i nner Text (& nner Text) ;

(a) Step 1: receiving DDoS command via BHO update

After reading the passwor#{DV can save it to local disk or [/ meu ST [
send it out with any networking protocol. Usually the passivo B G e Help

sniffing attack only starts when the user finishes all input it : G el i
and submits data to a server. In most cases a form is used e gt T 533 L mup k] sequsriankass adkessrasnons
to input and submit the account information. Thus the BHO || %1580 e s 16 e - o (o seccarismsss ackossraonme
H H H H . " z 5 Te. hi = k= [
can use a similar mechanism as that in the spamming attack]| & @i v sescon 15 6058 & bres Lo cearizrisie adosarisria
. . . . 29 1.257766 2 www.google. com TCP 62458 > http [ACK] Seq=875274258 Ack=387603466!
to monitor form submission events. When the form data is | 30 1.259492 2 www. google. com TCP 62458 > http [ACK] 5eq=875274258 Ack=387603752'
. 31 1,264934 Z www.google. com TCR 62458 » http [ACK] 5Seq=875274258 Ack=387604038
f|na_||y Submm:ed, the account and password information is || 32 .2ro7a7 z ww.google. con TP 62458 > http [ACK] Seq-875274258 Ack=387604324"
. 33 1.271472 2 www.google. com TCP 62458 » http [AcCK] 5eq=875274258 Ack=387604610'
2 Z www. google. com > fr 8= k= !
read stealthily. ’ L mmmrm B TR e
36 1.288138 2 www.google. com TCP 62458 » http [AcK] Seq=875274258 Ack=387605468
! 37 1.289688 z www. googTe. com TCP 62458 » http [ACK] Seg=875274258 Ack=387605404.
In the Chrome extension implementation, in Order t0 ACCESS|| &2 : 5w : wrpoticim 1 s - mep (o] scpeseoteosser acked sincst
sensitive information in the Chrome browser, our extension || &z e swaegean e et g oy o
needs to access the DOM tree of a web page. Therefore ifi———————] =
. EFrame 22 (84 on wire, 84 captured)
needs the cross-site permission to insert the contenttscrip methernet 11 i I
Internet Protoco
when a web page is rendered. The fo||owing manifest Shows || ransrission control protacal, src Port: 62458 (62458), bst Port: hrtp (80), Seq: 875274:

= =1

the permission specification. 00T 00 &6 77 B 40 o0 20 bt o6 o7 <o u8 01 08 42 79
0020 e0 50 f3 fa 00 50 34 2b 9f f4 &7 15 08 a3 50 18
"content_scripts": [e I Ao I mes
{ (b) Step 2: sending DDoS packets
"matches": ["https://online.citibank.conm "],
"js": ["jquery.js", "nyscript.js"] Fig. 6. IE BHO for DDoS: Attack in progress
}
1,
"perm ssions": [
“tabs", "https://online.citibank.con *" In the Chrome implementation, we use the same update
1, file as shown in Figure 6(a). With the same command, our

extension can command its bots to launch DDoS attacks
In the command file, we can instruct the extension to seagainst the same victim server. We omit the snapshot for
the sniffed information to the designated email addressh Wibrevity.

IV. DISCUSSION automatic browser extension update mechanisms for command

In practice, a botnet may consist of different types of botdnd control channel has not been practically investigated.
some bots could be IE add-ons and some bots could be Chrdhig study, we show that it is not difficult to construct stegl
extensions. The botmaster is capable of using the autom&R{net via browser extensions. Given the large user base of
update mechanism to prepare and distribute various comm&F@Wser extensions, it is imperative to devise an effective
and control information and deliver to all bots. For exampl@revention scheme to mitigate such risks.
even the same update fi!e could be used for both the IE add-on ACKNOWLEDGEMENT
and the Chrome extension as we have demonstrated. . .

IE and Chrome use a single-process architecture and é/\/e appreciate gonstrgctlve comments from anonymous ref-
multi-process architecture, respectively. While eachhaim €'€€S: The work is partially supported by NSF under grants

P pet ey NS-0746649 and CNS-1117300 and AFOSR under grant

has its unique advantages considering many design fact‘g
such as performance and parallelization, we believe that @
multi-process architecture such as Chrome has more advan-
tages on security and reliability. However, the currentdding (1]
extension security model assumes all extensions are benign
and only target at preventing malicious web pages. This gl
insufficient to defend extension-based botnets, espgaidth 3
coarse-grained permission management. On protection si&e
efforts are demanded in the following aspects. [4]
First of all, while the permission specification for an ex-
tension is good to confine the behavior of the extension,
we believe more fine-grained permission management and
enforcement in browsers should be mandatory. For exammple, EB]
Chrome, the permission of injecting content scripts intdwe
pages should be separated from that of cross-site acceiss. Th
can make the password sniffing attack more difficult as at leak]
two different permissions are needed. 18]
The default extension update mechanism should be im-
proved to make it more user-aware. However, research efforlrg]
are needed to make the trade-off between users’ interfesenc
and friendly usage. Alternatively, taint analysis or coeeifi-
cation tools can be used to study every update file download&y
from the network. The downside, however, is the significanit)

A9550-09-1-0071.

REFERENCES

“Most spam comes from just six botnets, http://en.wédfa.org/wiki/
Usage share of_weh browsers.”

J. Kristoff, “Botnets,” in The 32nd Meeting of the North American
Network Operators GrouypOctober 2004.

T. H. Project, “Know your enemy: Tracking botnets,” httpww.
honeynet.org/papers/bots, March 2005.

S. Racine, “Analysis of internet relay chat usage by ddombies,”
Swiss Federal Institute of Technology Zurich, April 2004.

“One of the most prolific pieces of windows mal-
ware has expired,” http://news.softpedia.com/news/
One-of-the-Most-Prolific- Piece-of-Windows-Malware-d4&xpired-51466.
shtml.

N. Daswani, M. Stoppelman, the Google Click Quality, gadTeams,
“The anatomy of clickbot.a,” irProceedings of the First Workshop on
Hot Topics in Understanding Botnet€ambridge, MA, April 2007.

Z. Chen, C. Chen, and Q. Wang, “Delay-tolerant botneits,Proceed-
ings of IEEE SecureCPN2009.

J. Grizzard, V. Sharma, C. Nunnery, B. Kang, and D. Dag@®er-to-
peer botnets: Overview and case study,Piroc. of the First Workshop
on Hot Topics in Understanding Botne®007.

A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-scatgriet detection
and characterization,” ifProc. of the First Workshop on Hot Topics in
Understanding Botnet2007.

R. Schoof and R. Koning, “Detecting peer-to-peer btstfiehttp://staff.
science.uva.nl/ delaat/sne-2006-2007/p17/report.pdf, Feburary 2007.
P. Wang, S. Sparks, and C. Zou, “An advanced hybrid pe@eer

cost, as the entire update package needs to be tracked andbotnet,” in Proceedings of the First Workshop on Hot Topics in Un-

software updates may be very frequent. Thus, more reseall'lczl]1
is required in this aspect.

Offloading expensive taint analysis and software verifizati [13]
operations to cloud can be another option for a regular use.
With the cloud computing facilities, a user may submit thgs
downloaded software to some software verification service
on a cloud to validate its functions through static and/dt°)
dynamic analysis, and uses it only after it has been thorgughg
analyzed. On the other hand, a software credit system could
be established to let users score the security perspedtive[9]
software. The popular online social networks can also heﬂp
in this regard. However, this approach may take a while {t8]
be effective as it purely relies on common user’s efforts for
validation. In addition, such a system could also be attdckgg)
by malware developers.

V. CONCLUSION [20]

Botnet developers are constantly improving their develop)
ment in order to produce more and more stealthy malware
for all kinds of attacks to make profit. While various ap-

proaches have been studied or used for botnet attacks, the

risk of exploiting widely used browser extensions and their

derstanding BotnefsCambridge, MA, April 2007.

G. Starnberger, C. Kruegel, and E. Kirda, “Overbot: dnkb protocol
based on kademlia,” ifProceedings of SecureCom2008.

K. Krips, “The security analysis of browser extensigns
http://comserv.cs.ut.ee/forms/ateport/downloader.php?file=
43f05ala6fa7981ca3422bc3d73b66b8711bc006.

E. Stinson and J. C. Mitchell, “Characterizing the réenaontrol
behavior of bots,” inProceedings of DIMVA2007.

“Internet explorer protected mode,” http://msdn.ro&oft.com/en-us/
library/bb250462(v=vs.85).aspx.

“Mozilla extension versioning, update and compaitiplil
https://developer.mozilla.org/en/ExtensiMersioning, Update and_
Compatibility.

“Chrome extension autoupdating,”
extensions/autoupdate.html.

S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winsl&ex:
Vetting browser extensions for security vulnerabilitie®y Proc. of
USENIX Security2010.

“Trojan poses as fake google chrome extension,”
http://www.bitdefender.com/NW1487-en—Trojan-Poseg-ake-Google-
Chrome-Extension.html.

“Sun software product
sun-products-map-075562.html.”
Y. Wang, R. Rousseyv, C. Verbowski, A. Johnson, M. Wu, ¥aHg, and
S. Kuo, “Gatekeeper: Monitoring auto-start extensibiligints (aseps)
for spyware management,” iAroc. of LISA 2004.

http://code.geogpm/chrome/

map,http://www.oracle.congus/

