
Botnet with Browser Extensions
Lei Liu1, Xinwen Zhang2, and Songqing Chen1

1 Dept. of Computer Science2 Computer Security Division
George Mason University 2 Huawei Research Center

Fairfax, VA 22030 Santa Clara, CA 95050
{lliu3, sqchen}@cs.gmu.edu xinwen.zhang@huawei.com

Abstract—Botnets are responsible for many large scale orga-
nized Internet attacks today. Along with the fight between botnet
developers and defenders, the battle field has significantlyevolved
from traditional centralized IRC to various new approaches,
aiming to make bots and command and control channel more and
more stealthy. In this work, through prototype implementations,
we demonstrate that browser extensions are a very effective
botnet vehicle with very large installation base and the capability
of accessing rich sensitive user data in the browser. The automatic
update mechanism of browser extensions further offers a stealthy
command and control channel between bots and a botmaster.
Compared to many others, extension-based bots are more stealthy
and harder to defeat since all mainstream browser architectures
provide rich APIs for browser extensions to enrich users’
browsing experience with insufficient consideration of malicious
extensions. Via both an IE add-on and a Chrome extension, we
show that attacks like email spamming, DDoS, and password
sniffing are trivially feasible. Our study shows that an effective
scheme is imperatively demanded to mitigate such threats.

I. I NTRODUCTION

Botnets are one of the biggest threats to Internet security
today. They are responsible for a majority of large scale
organized Internet attacks, such as DDoS and spamming,
credit card number and password harvesting [1].

Typically, a botnet consists of three key elements: a botmas-
ter or botmasters, hundreds to thousands of bots (compromised
computers), and a command and control channel via which
the botmaster controls the bots. Therefore, the battle between
botnet operators and defenders focuses on these aspects: a
botmaster tries its best to hide itself from being identifiedby
using stealthy command and control channels, and a bot tries
to hide from being detected by host-side anti-malware systems
and obtain as many privileges as possible.

In early days, a botmaster often communicates with con-
trolled bots through a centralized IRC server. This enablesa
botmaster to hide its communication with bots in normal users’
legitimate traffic. Therefore, it is natural to monitor TCP port
6667 which is for IRC traffic [2] in order to detect command
and control information. Other solutions include buildingIRC
server scanners to detect potential botnets by identifyingnon-
human behavior characteristics in traffic [3], [4].

Driven by profit, botnet developers are constantly exploring
new mechanisms for command and control channels and
developing more stealthy bots that can easily infect large scale
hosts. For example, with the scrutiny of the IRC channels, bots
have been found to bind to other commonly used applications,

such as a Web browser [5], and to use other protocols, such
as HTTP [6]. Random delay can be added to command
propagation among bots in order to avoid detection [7]. Since
the centralized control through a IRC server could be easily
detected and shut down, P2P based botnets have also been
developed [8], [9], [10], [11], [12]. For example, Overbot [12]
has demonstrated that P2P bots can be built on Kademlia-
based P2P networks.

In this work, we show another form of bots and command
and control channels: browser extensions and their automatic
update mechanisms implemented in mainstream browsers.
Although the concept of developing or hiding bot in a browser
extension has been mentioned recently [13], [14], to our best
knowledge, we are the first to implement this botnet model
and demonstrate its feasibility under the latest mainstream
browser extension architectures. Via implementation, we show
that potentially a malware developer can lure a user to install
a malicious extension, which, under both Internet Explorer
(IE) and Chrome’s extension architectures, can easily steal
user sensitive online data such as username/password, and
send out to external servers. Furthermore, the extension can
easily file cross-site HTTP requests to send spam emails and
launch DDoS attacks. More critically, by leveraging the built-
in automatic update mechanism implemented in IE, Mozilla,
and Chrome, a bot in the form of a browser extension can
easily obtain command and control messages from a botmaster
without triggering any anti-virus software.

Several advances of browser development have motivated
and enabled this new form of botnet. First of all, web browsers
nowadays have become a major vehicle for common people
to surf the Internet and consume web services, including e-
commerce and online banking services. Therefore, plenty of
sensitive information becomes the target for bots to harvest.

Second, there exist a large number of browser extensions
and plugins to enrich users’ browsing experience. For example,
they can help browsers process different types of media
contents, or automate user actions such as filling forms or
remembering password. For this purpose, browsers provide
lots of APIs for extension developers to access the core
browser resources and web pages, including DOM, cookies,
browsing history, bookmark, toolbar, etc. This opens a large
attack window for malicious extensions and plugins.

Third, through our implementation, we find that although
mainstream browsers have some built-in security mechanisms
for securing extensions, they are far from sufficient to confine



the behavior of malicious extensions. In particular, in IE,
browser extensions such as menu extensions, custom toolbars,
explorer bars, and Browser Helper Objects (BHOs) share the
same process space of the browser and thus can perform
any action on the available windows and modules. A BHO
even can modify the functionality of the browser by adding
binary components. Therefore, it is very difficult to restrict
the behavior of a malicious extension in IE without restricting
the whole browser process’s capability, e.g., running IE in
protected mode [15]. Chrome adopts a multi-process archi-
tecture in which extensions run in separated processes from
the main browser process. Chrome further defines individual
permissions that can be assigned to extensions, such as the per-
missions to inject JavaScript into web pages, making cross-site
access requests, accessing tab and window modules, cookies,
local storage, etc. However, the design of Chrome extension
security aims to prevent malicious web pages from leveraging
extensions to obtain these permissions, and the coarse-grained
permission management cannot prevent malicious extensions
from accessing sensitive data in web pages and browser
modules and making cross-site HTTP requests.

Last and most importantly, the extension update mechanism
implemented in mainstream browsers provides a very stealthy
command and control channel for extension-based botnets.
Specifically, in Chrome and Mozilla, each browser extension
includes anupdate_url in its metadata, with which the
browser uses to check updates, e.g., each time when the
browser starts [16], [17]. Therefore, a botmaster can easily
propagate attack command and victim information to a large
number of bots without being detected by anti-virus software.
Such an approach could be used to distributed bot binary
as well. In IE, a malicious add-on even can implement its
own update mechanism and download arbitrary code and
data. Compared to other approaches, a malware developer
can simply develop popular extensions with bot functions
hidden. In this case, all browsers with such extensions installed
become bots, and a botmaster can communicate with them
with ease.

With implemented malicious extensions on both IE and
Chrome, we demonstrate three types of bot attacks, including
email spamming, DDoS, and password sniffing. For email
spamming, instead of sending spam emails in a burst fashion,
we implement silent and sporadic email spamming that are
harder to be detected. For DDoS, we launch DDoS attacks
in the IE add-on and the Chrome extension with the same
command file. For password sniffing, we demonstrate it is easy
to sniff login password in e-transactions with different banks.
Through these experiments, we show that such attacks could
be practicably mounted with trivial efforts. Our study shows
that we are in great need of some effective scheme to defeat
such threats.

The rest of the paper is organized as follows. We discuss
the security model for these attacks in section II. We present
email spamming, DDoS, and password sniffing attacks in
section III. We discuss research efforts to counter these attacks
in section IV and make concluding remarks in section V.

II. SECURITY MODEL

There are many different ways to distribute browser
extension-based bots. As aforementioned, a botmaster can
develop popular extensions with normal functions that can be
discovered and downloaded by users. Although browser devel-
opment communities encourage users to download extensions
from trusted sources, e.g., in Chrome and Firefox extension
galleries, it’s usually very difficult to evaluate if an extension
is benign [18], partially due to the large number of extensions
from third-party developers and the very dynamic behavior
of the programming languages used in extensions, typically
JavaScript and HTML. On the other hand, there is no effective
mechanism yet to prevent a user from installing extensions
downloaded from other sources, e.g., embedded links from
spam emails or phishing web pages. The recent Trojan posed
as a fake Chrome extension suggests that such threats are not
fictitious [19].

Alternatively, a bot extension does not need to have ma-
licious code and functions when it is firstly installed, e.g.,
to escape from offline code analysis tools [18]. After the
installation base reaches a certain level, the developer orthe
extension owner can leverage the stealthy update mechanism
to include malicious code and data into the extension, hence
tuning it to a bot whenever needed.

Therefore, in this study, we do not make a specific assump-
tion for distributing and installing bot extensions. Instead, we
evaluate how an extension can harvest sensitive information in
a browser environment, and obtain network access capability
to launch botnet attacks. We further explore how a botmaster
leverages the automatic extension update mechanism for com-
mand and control channel. We implement bot extensions on
both IE and Chrome, which represent two mainstream browser
architectures with different extension security models.

III. A TTACK CASES

In this section, we present the details of three attacks,
namely, emails spamming, DDoD, and password sniffing,
which are implemented through a Microsoft Internet Explorer
(IE) add-on and a Chrome extension.

A. IE Add-on and Chrome Extension

IE is the most popular browser. An IE add-on runs in the
same process space and has the same privileges as the IE
browser. As a result, it can access resources like all other native
applications without any restriction. More specifically, an IE
BHO has the privilege to 1) access Internet, 2) access disks,
3) access browser resources such as cookies and bookmarks,
and 4) access web page objects such as all DOM elements.
IE add-ons can also implement their own update mechanisms
in an ad-hoc manner as they can access local filesystems and
network resources freely.

To demonstrate the attack via IE add-ons, we have im-
plemented a BHO namedHDV for IE8 on Windows 7 with
a hardcoded update URL. This BHO is claimed to help
process video files and it periodically checks an update server
via the URL. It downloads the update files whenever they



are available. The hidden bot thus can receive commands
distributed by the botmaster with the update server we have
set.

Chrome is relatively new. It uses a multi-process archi-
tecture, where a single browser kernel process runs in the
privileged mode to access platform and system resources, on
behalf of multiple renderer processes. A renderer process runs
in a sandboxed environment so it cannot directly access system
resources such as the filesystem and the network. It can only
send such requests to the browser kernel process.

A Chrome extension usually includes an extension core and
one or more content scripts. A content script is written in
JavaScript that can be injected into a web page when the
page is loaded. It then runs in the renderer process space to
access the DOM tree. The extension core includes one or more
background web pages written in HTML and JavaScript, and
runs in a separate renderer process. A content script has the
least privileges so it cannot access any object out of its renderer
process space and has to communicate with the extension core
via Chrome’s inter-process communication (IPC). While the
extension core contains the bulk of the extension privileges,
it runs in a sandboxed environment. Therefore, it cannot
access resources of the host platform and the network directly,
and can only communicate with external web resources via
XMLHttpRequest. Although binary code can be included
in a Chrome extension, it can be run in a sandboxed plugin
process; therefore we focus on JavaScript and HTML based
extensions only in our study.

Different from IE, Chrome defines a set of of permissions
for extensions, such as the permission to inject JavaScriptinto
web pages, make cross-site access requests, and access tab and
window modules, cookies, local storage. The desired permis-
sions of an extension are specified in amanifest.json
file by its developer, and prompted to the user when it is
installed. The design of Chrome extension architecture is based
on the assumption that extensions are benign-but-buggy; that
is, the goal of the security architecture is to protect extensions
from being exploited by malicious web pages and control the
potential damage done to the browser kernel process if an
extension is exploited.

For Chrome, we again develop an extension, which is
claimed for video processing but includes bot functions. Next
we demonstrate that even with very normal permission spec-
ifications, a malicious Chrome extension can conduct typical
botnet attacks.

B. Email Spamming

Today botnets are notoriously responsible for most of spam
emails on the Internet [1]. A spammer controls or rents a
botnet and sends spamming commands to bots. After receiving
spamming commands, bots send spam emails to victims. To
defeat various malware detection mechanisms, a bot, instead of
keeping sending spam emails at a high rate, can be instructed
to send spam emails only sporadically, which makes detection
more difficult. Our implementation below works in such a way.

First, we present our implementation with an Microsoft
Internet Explorer (IE) add-on. Because an IE add-on has full
privileges to access the DOM elements of a web page, we
leverage this feature for spamming attacks. When a user is
accessing a web email system, the user often composes email
content in an edit area and sends out when editing is done.
In this case, the email content is saved in the DOM element.
Thus, for spamming attacks, right before the email is actually
sent out,HDV can modify the DOM element by injecting some
spam content to the email content. When the victim opens the
tampered email, she will read the embedded spam content. In
this implementation, we experiment with the popular iPlanet
email system [20].

Fig. 1. IE BHO for Email Spam: Step 1 – Prepare the spam content

Figure 1 shows the update file we prepare for the update
for HDV. To inject the spam content, the BHO only needs to
tamper with the DOM element that stores the email content
at a proper time. In our implementation, the email content is
saved in aTextArea element with nametext. Thus, the
attack steps are as follows.

• First, the BHO retrieves the update file and reads spam
content and a specific web email URL.

• Second, the BHO waits for the given URL to be accessed
and listens to various browser events to monitor user
behaviors.

• Third, when the user sends out the email, which is usually
triggered by a click event, the BHO accesses the DOM
element with nametext and appends the spam content
at the end of email.

Fig. 2. IE BHO for Email Spam: Step 2 – User sends out the email

Figure 2 shows the snapshot when the user finishes editing



and is ready to send out the email. When a user clicks a button
to send out an email, in IE, there is a click event with a button
as the source and sometimes it can further lead to a form
submission event. For the spamming purpose,HDV needs to
capture these events in order to tamper with spam content. To
capture the email sending action,HDV does the following in
our implementation.

• It keeps listening toDISPID_DOCUMENTCOMPLETE
event; when the document loading is complete, it walks
through all DOM elements recursively and registers form
events.

• When it captures a form event
DISPID_HTMLFORMELEMENTEVENTS2_ONSUBMIT
or a button eventDISPID_HTMLELEMENTEVENTS2_
ONCLICK, it searches for theTextArea element with
nametext and appends the spam information to the
email content.

In our implementation, in order to precisely capture email
sending moment, we have instructedHDV to listen to both click
and submission events and carefully analyze the event source.
Different web email systems may have different implementa-
tion because they could use different components for editing
and different approaches to send email. Thus other events may
need to be monitored in other systems.

Fig. 3. IE BHO for Email Spam: Step 3 – The actual received email

Figure 3 shows the actual email received. In this attack,
the spam content is appended to a legitimate email, and thus
it is difficult to filter such an email even the embedded link
is known to be malicious. On the other hand, it is not easy to
automatically split the email content into two parts and remove
the spam part eventually. Once this approach is widely taken,
we believe that existing email spam filtering systems need
enhancements to prevent it.

======
Having presented the implementation on the IE add-on, now

we discuss how this is implemented in Chrome focusing on the
implementation difference between IE and Chrome. A Chrome
browser checks the update information of an extension from
embeddedupdate_url every a few hours. If an update
is available, the browser downloads the update and updates
the extension. Similar to IE, we utilize this mechanism to
distribute bot commands.

To send out spam emails, the extension has the following
permission specification:

"permissions": [
"tabs", "http://*/*", "https://*/*"

]

Thehttp://*/* andhttps://*/* permissions are very
common in popular extensions. These permissions enable the
extension to send HTTP requests to all destinations.

With such permissions, we store the spam information in
a file calledspam.txt under the extension directory on our
update server. Every time when the extension is activated, it
will check this file and then obtain spam information including
victims’ email addresses and spam content. This approach can
evade detection more effectively, because spam emails are
sent out when the user logins into her web email system.
As the extension is granted the privilege of"tabs", it
listens to the update notification of the tabs with the method
of chrome.tabs.onUpdated.addListener(). When
the user logins into a web email system, the credential is
represented by the session id (sid) and rewritten to the URL
of the subsequent HTTP requests. As the bot extension has
the tab permission, it can listen to the tab update notice. With
this credential information, an HTTP request to the iPlanet
email server is authorized to take any action on behalf of the
user, instead of sending the user name and password in each
transaction.

C. Password Sniffing

Nowadays, many Internet surfers use web browsers to
do online shopping and access online bank accounts and
financial services. Sensitive information such as bank account
and password in these transactions is often saved by the
web browser, temporarily or permanently, which makes web
browsers a major target of spyware. Recent research has shown
that many spyware are in the form of malicious browser
plugins [21]. In our experiment, the example attack is against
chaseonline.chase.com.

An IE add-on runs in the same memory space as the
browser, and it can directly read all web page DOM elements.
Therefore, one can leverage this for password sniffing trivially.

Fig. 4. IE BHO for Password Sniffing: Step1 – the command

Figure 4 shows the update file we prepare forHDV on the
update server, which specifies information about when to steal
the password: upon the access of a particular URL.

When the BHO detects that the web browser is accessing
the URL https://chaseonline.chase.com/
shown in Figure 5, it will read the password DOM
element from the web page in the method of



Fig. 5. IE BHO for Password Sniffing: Step2 – Password sniffingin progress

OnDocumentComplete(IDispatch *pDisp,
VARIANT *pvarURL) as follows:

CComQIPtr<IWebBrowser2> spTempWebBrowser = pDisp;
...
CComPtr<IDispatch> spDispDoc;
hr = m_spWebBrowser->get_Document(&spDispDoc);
...
CComPtr<IHTMLElementCollection> spAll;
hr = pDocument->get_all(&spAll);
hr = spAll->item(svarItemIndex,

svarEmpty, &spdispAll);
CComQIPtr<IHTMLElement> spElement = spdispAll;
if (hr == S_OK && pwId == "Password")
{

BSTR innerText;
spElement->get_innerText(&innerText);

}

After reading the password,HDV can save it to local disk or
send it out with any networking protocol. Usually the password
sniffing attack only starts when the user finishes all input
and submits data to a server. In most cases a form is used
to input and submit the account information. Thus the BHO
can use a similar mechanism as that in the spamming attack
to monitor form submission events. When the form data is
finally submitted, the account and password information is
read stealthily.

================
In the Chrome extension implementation, in order to access

sensitive information in the Chrome browser, our extension
needs to access the DOM tree of a web page. Therefore it
needs the cross-site permission to insert the content script
when a web page is rendered. The following manifest shows
the permission specification.

"content_scripts": [
{

"matches": ["https://online.citibank.com/*"],
"js": ["jquery.js", "myscript.js"]

}
],

"permissions": [
"tabs", "https://online.citibank.com/*"

],
...

In the command file, we can instruct the extension to send
the sniffed information to the designated email address. With

the above specification, when the user browses the target web
page, the content script is injected into the target web page, and
the JavaScript has full privileges to access all DOM elements
including the form with user name and password. It reads
these values when the user inputs her password and send to
the designated email address. Note the content script can also
send sensitive information to the extension core, which in turn
sends the data to the outside network.

D. DDoS Attack

With HDV for IE, we can also launch DDoS attacks. The
DDoS attack is implemented in a similar approach as before.

We use the update file as shown in Figure 6(a). In this
example, the DDoS information includes the victim’s URL
(www.google.com), attack start time (12:35), request
interval (1 second), and attack duration (1000 seconds).
After obtaining the victim’s URL, the extension can send
HTTP requests to the victim as instructed by the DDoS
command. Upon receiving the update file,HDV will parse the
command. When the specified attack time comes, it will start
to send DDoS traffic. Figure 6(b) shows the captured traffic
information of this BHO once the attack starts.

(a) Step 1: receiving DDoS command via BHO update

(b) Step 2: sending DDoS packets

Fig. 6. IE BHO for DDoS: Attack in progress

=============
In the Chrome implementation, we use the same update

file as shown in Figure 6(a). With the same command, our
extension can command its bots to launch DDoS attacks
against the same victim server. We omit the snapshot for
brevity.



IV. D ISCUSSION

In practice, a botnet may consist of different types of bots,
some bots could be IE add-ons and some bots could be Chrome
extensions. The botmaster is capable of using the automatic
update mechanism to prepare and distribute various command
and control information and deliver to all bots. For example,
even the same update file could be used for both the IE add-on
and the Chrome extension as we have demonstrated.

IE and Chrome use a single-process architecture and a
multi-process architecture, respectively. While each of them
has its unique advantages considering many design factors
such as performance and parallelization, we believe that a
multi-process architecture such as Chrome has more advan-
tages on security and reliability. However, the current Chrome
extension security model assumes all extensions are benign
and only target at preventing malicious web pages. This is
insufficient to defend extension-based botnets, especially with
coarse-grained permission management. On protection side,
efforts are demanded in the following aspects.

First of all, while the permission specification for an ex-
tension is good to confine the behavior of the extension,
we believe more fine-grained permission management and
enforcement in browsers should be mandatory. For example, in
Chrome, the permission of injecting content scripts into web
pages should be separated from that of cross-site access. This
can make the password sniffing attack more difficult as at least
two different permissions are needed.

The default extension update mechanism should be im-
proved to make it more user-aware. However, research efforts
are needed to make the trade-off between users’ interferences
and friendly usage. Alternatively, taint analysis or code verifi-
cation tools can be used to study every update file downloaded
from the network. The downside, however, is the significant
cost, as the entire update package needs to be tracked and
software updates may be very frequent. Thus, more research
is required in this aspect.

Offloading expensive taint analysis and software verification
operations to cloud can be another option for a regular use.
With the cloud computing facilities, a user may submit the
downloaded software to some software verification service
on a cloud to validate its functions through static and/or
dynamic analysis, and uses it only after it has been thoroughly
analyzed. On the other hand, a software credit system could
be established to let users score the security perspective of
software. The popular online social networks can also help
in this regard. However, this approach may take a while to
be effective as it purely relies on common user’s efforts for
validation. In addition, such a system could also be attacked
by malware developers.

V. CONCLUSION

Botnet developers are constantly improving their develop-
ment in order to produce more and more stealthy malware
for all kinds of attacks to make profit. While various ap-
proaches have been studied or used for botnet attacks, the
risk of exploiting widely used browser extensions and their

automatic browser extension update mechanisms for command
and control channel has not been practically investigated.In
this study, we show that it is not difficult to construct stealthy
botnet via browser extensions. Given the large user base of
browser extensions, it is imperative to devise an effective
prevention scheme to mitigate such risks.

ACKNOWLEDGEMENT

We appreciate constructive comments from anonymous ref-
erees. The work is partially supported by NSF under grants
CNS-0746649 and CNS-1117300 and AFOSR under grant
FA9550-09-1-0071.

REFERENCES

[1] “Most spam comes from just six botnets, http://en.wikipedia.org/wiki/
Usageshareof web browsers.”

[2] J. Kristoff, “Botnets,” in The 32nd Meeting of the North American
Network Operators Group, October 2004.

[3] T. H. Project, “Know your enemy: Tracking botnets,” http://www.
honeynet.org/papers/bots, March 2005.

[4] S. Racine, “Analysis of internet relay chat usage by ddoszombies,”
Swiss Federal Institute of Technology Zurich, April 2004.

[5] “One of the most prolific pieces of windows mal-
ware has expired,” http://news.softpedia.com/news/
One-of-the-Most-Prolific-Piece-of-Windows-Malware-Has-Expired-51466.
shtml.

[6] N. Daswani, M. Stoppelman, the Google Click Quality, andS. Teams,
“The anatomy of clickbot.a,” inProceedings of the First Workshop on
Hot Topics in Understanding Botnets, Cambridge, MA, April 2007.

[7] Z. Chen, C. Chen, and Q. Wang, “Delay-tolerant botnets,”in Proceed-
ings of IEEE SecureCPN, 2009.

[8] J. Grizzard, V. Sharma, C. Nunnery, B. Kang, and D. Dagon,“Peer-to-
peer botnets: Overview and case study,” inProc. of the First Workshop
on Hot Topics in Understanding Botnets, 2007.

[9] A. Karasaridis, B. Rexroad, and D. Hoeflin, “Wide-scale botnet detection
and characterization,” inProc. of the First Workshop on Hot Topics in
Understanding Botnets, 2007.

[10] R. Schoof and R. Koning, “Detecting peer-to-peer botnets,” http://staff.
science.uva.nl/∼delaat/sne-2006-2007/p17/report.pdf, Feburary 2007.

[11] P. Wang, S. Sparks, and C. Zou, “An advanced hybrid peer-to-peer
botnet,” in Proceedings of the First Workshop on Hot Topics in Un-
derstanding Botnets, Cambridge, MA, April 2007.

[12] G. Starnberger, C. Kruegel, and E. Kirda, “Overbot: a botnet protocol
based on kademlia,” inProceedings of SecureComm, 2008.

[13] K. Krips, “The security analysis of browser extensions,”
http://comserv.cs.ut.ee/forms/atireport/downloader.php?file=
43f05a1a6fa7981ca3422bc3d73b66b8711bc006.

[14] E. Stinson and J. C. Mitchell, “Characterizing the remote control
behavior of bots,” inProceedings of DIMVA, 2007.

[15] “Internet explorer protected mode,” http://msdn.microsoft.com/en-us/
library/bb250462(v=vs.85).aspx.

[16] “Mozilla extension versioning, update and compatibility,”
https://developer.mozilla.org/en/ExtensionVersioning, Update and
Compatibility.

[17] “Chrome extension autoupdating,” http://code.google.com/chrome/
extensions/autoupdate.html.

[18] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett, “Vex:
Vetting browser extensions for security vulnerabilities,” in Proc. of
USENIX Security, 2010.

[19] “Trojan poses as fake google chrome extension,”
http://www.bitdefender.com/NW1487-en–Trojan-Poses-as-Fake-Google-
Chrome-Extension.html.

[20] “Sun software product map,http://www.oracle.com/us/sun/
sun-products-map-075562.html.”

[21] Y. Wang, R. Roussev, C. Verbowski, A. Johnson, M. Wu, Y. Huang, and
S. Kuo, “Gatekeeper: Monitoring auto-start extensibilitypoints (aseps)
for spyware management,” inProc. of LISA, 2004.


