Predicting Trust and Distrust in Social Networks

Thomas DuBois, Jennifer Golbeck, and Aravind Srinivasan
University of Maryland
College Park, MD 20742

Abstract—As user-generated content and interactions have distrusts Bob and Bob distrusts Chuck, Chuck may be closer
overtaken the web as the default mode of use, questions ofto Alice than Bob is, or he may be even further away. Thus,
whom and what to trust have become increasingly important. when we try to propagate distrust through a network, questio

Fortunately, online social networks and social media have made e . s .
it easy for users to indicate whom they trust and whom they do about transitivity and how to deal with conflicting inforriaat

not. However, this does not solve the problem since each userabound.
is only likely to know a tiny fraction of other users; we must While there has been some very nice work on distrust

have methods for inferring trust - and distrust - between users (e.g. [2]), there is a significant gap in the trust inference
who do not know one another. In this paper, we present a new iweratyre. Distrust information can be useful and plentifut
method for computing both trust and distrust (i.e., positive and . . .
negative trust). We do this by combining an inference algorithm ther_e are relatively few z_ilgor_|thms to compute It. For exeEmp
that relies on a probabilistic interpretation of trust based on €xplicit distrust can distinguish between two factions vdw
random graphs with a modified spring-embedding algorithm. not trust each other because of a lack of knowledge from those
Our algorithm correctly classifies hidden trust edges as positive that are antagonistic. It can also expose subtleties in st tru
or negative with high accuracy. These results are useful in a wide hatyork which are inexpressible with positive trust alone.
range of social web applications where trust is important to user Wi tribute to thi lqorithm f frectivel
behavior and satisfaction. e contribute to this area a new algorithm for effectively
predicting trust and distrust in web-based social netwds
|. INTRODUCTION combine a path-probability trust inference algorithm [3thw
There are two billion people connected to the internet [1 novel technique using spring-embedding to infer network
and user-generated content is created and consumed asimpitistance. We compute these two metrics for every pair of sode
sive rates. YouTube reports 24 hours of new video uploadeditothe network and train a classifier based upon the resulting
their site every minute, and 2 billion videos watched every.d two-dimensional data points. For each quantized conrigctiv
Facebook has over 600 million users who upload 2.5 billigprobability estimate we find an embedding distance which
photos per month, plus status updates, comments, videwsnimizes the larger of the misclassified positive edges and
questions, and discussion posts. Twitter has over 200omillithe misclassified negative edges.
users creating over 90 million new tweets a day. The numbersie evaluate the performance of our algorithm on three real-
continue for review sites, blogs and blog comments, moveorld datasets that include trust and distrust ratings fusers.
specialized social networks, and so on. All of these datasets have edges which are either positive or
With so much user interaction and content created, the quasgative (+1 or -1). Our algorithm can also be applied to
tion of whom and what to trust has become an increasinghgtworks with a scale of trust/distrust values, however we
important challenge on the web. A user is likely to encountepuld not find a large dataset with both trust and distrust
dozens if not hundreds of pieces of user-generated contariobrmation in a finer level of detail. With each network, we
each day, and some of it will need to be evaluated for trustwapply our algorithm to the edge sign prediction problem. In
thiness. Trust information can help a user make decisiams, shis problem, some number of edges are chosen uniformly
and filter information, receive recommendations, and dgvelat random and hidden. Then we train our classifier on the
a context within a community with respect to whom to trustemaining network, and use it to guess the signs of the hidden
and why. Fortunately, the rise of social networking on thé weedges.
has allowed people to indicate whom they trust and distrust,We find that when only a few edges are removed (which
creating links in the network (or edges in the graph to usgpproximates guessing the trust between two nodes who have
graph-theory terminology). We can algorithmically usetthanot rated each other) we consistently classify most of the
information to make suggestions to other users about whgmositive and most of the negative edges correctly (81% fer th
they in turn should trust. Wikipedia dataset up to 89% for Epinions). This is compagabl
In these contexts knowing whom to trust is importantp the best existing methods which use substantially differ
however knowing whom to distrust is equally, if not moretechniques [2], [4]. We go a step further than existing works
useful. Unfortunately distrust is much trickier to compiute by exploring the result of removing many edges at once. We
a satisfying way. While intuition and experimental evidencknd that the accuracy rates do not diminish significantlyilunt
indicates that trust is somewhat transitive (if Alice teuBlob at least half of the edges have been removed. This implies
and Bob trusts Chuck, there is a good chance that Alice wilbt only that our algorithm captures inherent propertieg, b
trust Chuck, too), distrust is certainly not transitive Allice also that there is a high level of redundancy in the networks.

Not only can edge signs be predicted from the surroundiggal becomes simply to produce a clustering which works
network, but they can be predicted from a random edgeell in practice for a particular application.
induced subgraph of the surrounding network. When each data point to be clustered consists of a vector
of numerical values, one common technique is to choose a
distance function between the elements (Euclidean, Lianor
There are many trust inference algorithms that take advagte.) and look for clusters which minimize some optimizatio
tage of pair-wise trust values and the structure of a socfahction. Examples of these algorithms include k-mean§ [27
network. All of these algorithms rely upon some notion of th@vhich minimizes the mean squared-distance of elements fro
transitivity of trust. In very small or dense networks mosers their cluster centers), and k-centers [28] (which miniraitee
may be close to each other and it is easy to argue that thagximum distance from any point to the center of a cluster).
should extend some trust to those their friends trust. HewevTypically approximation algorithms, which find solutiorisse
to be useful in large, sparse networks this transitivity nma$d to optimal, are used because it is impractical to compute the
over paths longer than two or even three edges. TrustDalis ffptimal clustering for these problems. For a more extensive
captures this transitivity economically. One user’s diieast overview of various clustering algorithms, see [29].
in another takes the form of an insurance contract - for someGuha et al. [2] give one of the earliest studies that addsesse
fee ¢ they will guarantee a trusted third party’s debt of uoth trust and distrust propagation in an algorithmic wayeyr
to z. In this network the inferred trust between two partiegeat trust propagation as a repeating sequence of matrix op
for a debtz is the lowest cost network-flow with capacityerations combining aspects of direct propagation, cdigita
x. Algorithms without this economic context must make thand backwards propagation, and they consider both single-
assumption that trust is somewhat transitive even over losgep and every-step propagation of distrust. They run alarg
distances. Finding the right balance where trust spreads faumber of trials with different sets of parameters to vatda
enough to be applicable for most pairs of users but not #teir approach using the edge sign prediction problem on
far that it looses its effectiveness is part of these algots the Epinions dataset. Their best results achieve 85% amcura
parameter tuning. taken over an equal number of positive and negative hidden
Such algorithms include Advogato [6], Appleseed [7]edges.
Sunny [8], and Moletrust [9]. These algorithms use trust tha More recent work on edge sign prediction by Leskovec,
is assigned on a fixed scale (e.g. 1-10). Other algorithriittenlocher, and Kleinberg [4] is a direct predecessor of
treat direct trust as a probability, including [3], [10]2]1 The our work. They examine the same three networks as we do
difficulty of generating these probabilities, using infloeras a with a much more localized view. To predict the sign of an
proxy for trust, was addressed in [13]. In our research, wekwoedge they look at the positive and negative edge counts of its
with probabilities that are giver priori, but those derived endpoints, plus the number and type of triangles containing
from other methods could also be used in our algorithms. this edge. These local factors form a high dimensional space
The results of trust inference have a wide range of applican which they perform standard machine-learning techrisique
tions. Recommender systems are a common one, where ttosiietermine how to predict the sign of unknown edges. From
values are used in place of traditional user similarity mees a theoretical perspective they interpret their result®ugh
to compute recommendations (e.g. [14]-[16]). Galland et &eider's balance theory [30], which states that unbalanced
present a technique for using trust to estimate tituth of triads (those with an odd number of negative edges) are
information that is presented [17], which in turn has applunstable. Experimentally they show good edge prediction
cations for assessing information quality, particularlty the results for all three datasets (accuracy rates betweer0%9-9
Semantic Web. More specific applications of that idea ineludver all edges), with better results on edges with a higher
using trust for semantic web service composition [18]. embeddedness - those which are a part of a greater number of
Often these recommendation algorithms require, as an triangles.
termediate step, finding clusters of people who are more
tightly connected to each other than to the remainder of the IIl. DATASET DESCRIPTIONS
population [19], [20]. Trust recommendations are just one We used three major social network datasets to test our
example application where clustering is useful; the art efiethods. All are provided as part of the Stanford Large
finding useful sets of clusters has been well studied on a wiNetwork Dataset Collectidn The networks we use have both
range of applications. Social tagging [21], web browsing opositive (trust) and negative (distrust) edges. These sdge
topic clusters [22], search classification [23], and musinrg are unweighted, though our methods could easily support
identification [24] are just a few examples that use clusteri weighted trust and distrust.

to improve performance and usability. « Wikipedia moderator elections - Wikipedia, the popular
In some cases there is some (unknown) “ground-truth” gpline encyclopedia created by users, has a set of elected
clustering inherent in the data which we want to find, and oderators who monitor the site for quality and contro-

the algorithms attempt to find a clustering that is “close” to yersy and who help maintain it. These moderators receive
the true one [25], [26]. Often, though, there is no reason to

believe that the data has inherently correct clusters, had t http:/snap.stanford.edu/data/

II. RELATED WORK

extra administrative privileges, and thus must be trustedn differ in strengh, but they are all additive. When we
by the community. When a user requests admin accesgiorporate distrust, there can be paths which disagrea as i
a public discussion page is set up for users to discuSgure 1. We propose using a modified layout algorithm to
and vote on whether to admit the moderator. Positiiend a low-dimensional embedding of the graph which tries
and negative votes are counted as positive and negatigereconcile the conflicting information and transitivity.is
trust ratings. Note that in this network, if a user is nanspired by spring embedding graph layout algorithms [34].
ultimately voted in, they will not appear in the graphThis type of algorithm, which until nhow has not been used
Thus, positive trust ratings (or positive votes) will bdor trust inference, simulates the physics of springs in a 2D
more common in the graph. The data was pulled fromr higher dimensional space. Edges between nodes aredtreate
the discussion pages in January 2008 [4], [31]. It contaias springs that pull nodes together, but reasonable space is
just over 7,000 nodes and 100,000 edges. maintained between nodes by making them repel one another.
« Slashdot - This is a technology news site where usek®des are randomly laid out in an initial configuration, and
can rate each other as friend or foe. We treat those the system is simulated until a stable equilibrium is redche
positive and negative trust ratings. The dataset contaimssome short-circuit condition happens (maximum iteretjo
over 77,000 nodes and just under 900,000 edges. Udmnges per timestep below a threshold, etc).
used the version released in February 2009 [32]
« Epinions - This is product review site where users choose

B
whether to trust or not trust one another based on their 9/ \
/>. >.

9,

N

lected and released in 2003 [33]. / D

Because the most efficient versions of our algorithms use \>9\ /<-1
C

ratings and reviews of products. The network has over
75,000 nodes and 500,000 edges. The dataset was col-

undirected graphs, we must consider how to adapt them

for use on directed datasets. The Wikipedia election data is

topologically ordered by when the election takes place, so

the graph is anti-symmetric. Therefore we can simply treBig. 1. A strongly trusts B and C. B and C disagree strongly twetiver or

all edges as undirected without affecting the methodolog]f! ©© rust D- Itis not clear how much A should trust D.

The Slashdot and Epinions networks have a large fraction of

edges where each endpoint rates the other. For our first sePur first attempt to incorporate distrust involved resogvin

of experiments, those most similar to our predecessors, é@nflicting trust/distrust information through a nonlinexpti-

algorithms treat the network as an undirected multigraptis T mization. We would assume that all users’ trust estimates ar

means that if there are edges in both directions between tA@sy, and we want to find the true ones. In this model, pasitiv

nodes, it is possible that exactly one of them is hidden. is tHrust corresponds to edge probabilities, while negativsttr

case we still check our result against only the edge goinigen tcorresponds to upper bounds on path probabilities. We then

direction which was hidden. If there were a lot of disagrgeir@pply a cost function for each edge of the deviation between

pairs of edges, this approach would be at a dissadvantage. g “true” value and the “measured” value. We would then

the second set we make the graphs undirected by taking paifigd & globally minimal cost solution which does not have any

edges and averaging them into a single undirected edge. conflicting trust/distrust information and infer trust finoit.
Unfortunately this technique does not scale sufficientlyi,we

IV. ALGORITHM AND METHODOLOGY and is therefore not suitable on large datasets.

In prior work, we develop a method for computing trust This led us to develop a spring-embedding algorithm which
based on path probability in random graphs [3]. For everye use in conjunction with our path probability technique
pair of users(u,v), we place an edge between them witho infer trust. First we compute path probabilities usindyon
some probability that depends on the direct trust value &etw positive edges. Independently, we use an iterative spiing e
them, denoted by, ,,. We then infer trust between two peoplébedding algorithm - where positive edges attract and negmti
from the probability that they are connected in the resgltimrepel - to resolve competing trust/distrust informatiorot&
graphs. Formally we choose a reversible mapgfirfigom trust that in the face of positive trust only, this results in all
value to probabilities, and then construct a random gi@ph nodes very close to each other. A spring-embedding algorith
which each edgéu,v) exists independently with probability implicitly has the transitivity and conflict resolution grerties
f(tu,»). This graph gives inferred trust valués, ,, such that we desire as well as the scalability necessary to handle very
f(Tu.) equals the probability that there is a path franto v large datasets.
in the random graph. In addition to having an intuitive appea We modify the spring-emgedding layout algorithm to adapt
we find this approach to work well in practice. it to our trust context. Instead of having all nodes repel, we

Distrust, however, is more complex. While trust can badd a repelling force only between nodes connected with a
considered transitive, distrust is not. Additionally witimly negative edge. Transitivity applies because two nodes avith
positive trust, there are no inconsistencies in the datathspashared friend are both pulled toward that friend. If theyreha

Count

two friends who are co-located, they are pulled with twice
as much force. If they have a shared enemy, they are both
pushed away (which may or may not move them in the same
direction). If one is friends with an enemy of the other, the 80
forces will push them in different locations. This modified
spring-embedding algorithm also deals well with confligtin
information. If Node A has two friends who disagree about ,q
Node B, the friends will be pushed apart, and Node A will be
partially pulled toward and partially pushed away from Node 20
B.

100

60

. . : : Dist
One potential drawback is that two nodes may be placed 02 04 06 08 10 12 Istance

close together by chance though they have little trust batwe . ion Correc
them. This is why spring embedding alone is not enough -
we need to consider path probabilities as well. We can in-
dependently compute path probabilities and spring emingddi 0.8}
distances for our entire graph. For each edge or potentigd,ed
we record the path probability between its endpoints as well
as their embedded distance. Thus each edge corresponds to a g 4}
two dimensional vector whose position indicates the amount
of trust between its endpoints.

To assess our algorithm’s quality, we use it to solve the ‘ ‘ ‘
edge sign prediction problem. For each of our three datasets 02 04 06 08
we remove a substantial number of edges (500 in Wikipedia
and Slashdot, 1000 in Epinions) chosen uniformly at randoifig. 2. The upper figure shows a histogram of the distancealiféept edges

: ith.estimated path probabilities @f.55 (other path probabilities behave
The removed edges make up the testing set and the kept e(ﬁ'ﬁﬁarly). The lower figure plots the fraction of positivecanegative edges

make up the training set. classified correctly as a function of the cutoff. In both plgpositive edges
Using the training set with the test edges removed, veee blue and negative ones are purple. We choose the pointe wie two
perform parameter tuning and compute path probabiles aff== 0% e over fure e pot e e iemmite o
spring embedding distances. For the path probability alggobability.
rithm, this tuning consists of choosing a probabiljiythat
corresponds to a positive edge. In all three datasets wedett
on p = 0.05, which gives path probabilities for the edge'dNote that all of these networks are biased with many more
endpoints spread nearly evenly across the rdfgg. For the positive than negative edges. Therefore our goal is notlgimp
spring embedding algorithm, tuning means selecting theeforto have the highest ratio of correctly classified edges, but
functions for both positive and negative edges and choosirgher to correctly classify both positive and negative esdg
the dimensions of the embedding space. We found throudh tseamultaneously. On such a biased dataset an algorithm which
and error that edges of distandehaving an attractive force classifies edges randomly could perform quite well ovetafl (
proportional tad? and repelling force proportional tg/d? lead simply always choosing the dominant category), however the
to good distributions of points. We also choose the embeddibetter it did on the positive edges, the worse it would do on
space to be the 4-dimensional unit cube, which helps redube negatives. An algorithm which classifies edges as pesiti
the instance of nodes being “stuck” at local minima comparéadependently at random with probabilitywould be correct
to a lower-dimensional space. For every edge in the trainiog an expecteg@ fraction of positive edges and— p fraction
and test sets we then record its sign as well as its endpadfitnegative edges. Using the metric of the minimum of the
path probability and embedded distance. two ratios, such an algorithm could not do better than by
We bucket the list of training edges into intervals basethoosingy = 0.5, so 50% correct is a minimum baseline score.
upon their path probability, and for each interval we find th&€his methodology eliminates the need to randomly sample the
embedded distance which minimizes the maximum of the rapositive edges in order to “balance” the two cases — the mean
of mislabeled positive edges and the ratio of mislabelednedyehavior of a balanced set would produce the same minimum
tive edges. We show this process for a single path probgabiliatio for positive and negative edges.
interval in Figure 2. We also explore how the accuracy of our predictions
We then use these values to classify edges in the testoitanges as more and more of the network is hidden. Hiding
set. For any edge in the testing set, we find the interval thatly a small fraction of the edges closely approximatesngjvi
corresponds to the connectivity probability of its endpsitf our algorithm the maximum information available and repre-
they are embedded closer than that interval’'s cutoff, wesguesents the best that our algorithm can do. High predictioasrat
that they are positively connected. And if they are embeddeulicate a significant amount of redundancy in the network —
further than the cutoff, we guess that their edge is negatithe predicted edges add relatively little information thsts

1.0t

0.6

Distance

not already present. For each network we remove a numbembfthe three networks we choose several edge removal ratios
edges ranging from very few to almost all of them in order tand perform ten iterations for each. For each iteration wile hi
take this idea further. If we can remove a substantial foacti edges uniformly at random, run the training algorithm, and
of edges without degrading our predictions, then there isracord the minimum of the two correctness ratios. Figure 5
much larger amount of redundancy present in the network.shows both the mean ratios and also their standard deviation

V. RESULTS Edge Preciction Rates and Standard Deviation

For each run, we compute a separator to classify positiv ool T Wikibedia election) |
and negative trust relationships. The details for one titama
are shown in Figure 3, with the separator shown as a red lin
Positive edges are correctly classified when they are belo
the line and negative edges are correct when they are abo
the line. Note that the noisy nature of the datasets means th
we are not able to correctly classify all the edges even in ou
training sets. The first two columns of Figure 3 show thate¢her
are a number of points that appear on the wrong side of th
line.

The third and fourth columns of Figure 3 show the data
points for the test set. The results for when we treat the ‘ ‘ ‘ ‘ ‘ ‘
directed networks as undirected multi-graphs are detaiied T 0.2 0.4 0.6 0.8 1
Table I. We are able to correctly classify between roughly edges removed
86-94% of both positive and negative edges in the trainin .)

. 5. Accuracy rates for the three networks as a functiotheffraction
set. This gives us a baseline against which we can comp dges removed. For each fraction of edges removed we pedoteme
our results from the test set. This test is the most similar k@lependent trials and plot the average and standard ieviat
the approaches of Guha et al. [2] and Leskovec et al [4],
so we compare them directed to these prior results. On theéFrom this result, our main observation is that accuracysrate
Epinions dataset we achieve 89% accuracy on positive aghecrease quite slowly until over 50% of the edges are hidden.
negative hidden edges simultaneously which compares wellfthis implies that these networks have a large amount of
their results of 85.3% and 86% respectively for balancet tegdundant information. Not only are edges highly predietab
sets. For Slashdot, we match the 81% accuracy of Leskovad they are predictable even without the information from
et al., and for Wikipedia we achieve 81% to their 82%. a large fraction of the edges. Once over 50% of the edges

We also consider results on sets containing only highre hidden, performance degrades quickly. Eventually the
embedded edges — those skts C E of all edges which are endpoints of most hidden positive edges have no positive pat
a part of at least undirected triangles. Using the selg, pulling them together while most kept positive edges have
and E»5 we perform slighly better than Leskovec et al. on théew or no negative paths pushing them appart. This leads to
Epinions and Slashdor datasets, while they maintain théir very poor results because our training algorithm “learmsit t
advantage on Wikipedia. Figure 4 shows the performance dsitive edges have endpoints that are very close, but hidde
our algorithm when restricted to highly embedded edges . positive edges having random endpoint distances. We do not

view this result as a drawback of our algorithm, but rathés it

1.0p Slashdo Epinions a consequence of the degenerate graphs produced when most
’] — edges are hidden.

Because all three networks have many more positive edges
than negative, next we describe the effects of this asynymetr

0.8f . - . 2
Because the algorithm optimizes the ratio of positive and
0.71 negative edges guessed correctly, the results are the same
E, O regardless of the ratio of positive to negative edges. Hewev
0.6¢ Eip O any algorithm’s performance appears skewed when viewed in
1l l I

E.c O the context of confidence in its predictions. When our classifi
25
predicts a positive edge, we are quite certain (over 90%@ sur
Fig. 4. This plot shows the overall accuracy rates for the sétall edges of the results. However our confidence in a negative premicti
(Eo) and edges which are a part of at least H)«) and at least 25E»5) €S between 50—60%.(see Table 1). Th!s bias comes from_t.he
triangles. fact that the dataset is unbalanced, with many more positive
edges than negative, and may be inherent in the problem. This
For Figure 5, we merge edges going in the opposite directifwllows from the fact that guessing 20% of the positive edges
into a single undirected edge and show how our algorithmiiscorrectly produces roughly as many false negatives ag the
prediction ratio changes as more edges are hidden. For eaohcorrect negative edges, while guessing 20% of the negati

epinions

0.8

0.7r

0.6

0.5

0.4r

0.3r

0.2r

0.1r

minimum of positive and negative edges correct

0.9f S
Wikipedia

Positive Training Negative Training Positive Testing Nidga Testing

Wikipedia

Slashdot

Ep|n|0ns K 02 04 06 08 1C 02 04 06 08 1C 02 04 06 08 1C 02 04 06 08 1C

Fig. 3. This figure shows the positive and negative edges thighclassification line for all three datasets. Each pointhenfigures corresponds to an edge
in the graph. The horizontal axis is the path probabilitygéa values mean endpoints that are closer) and the vertitalshows the embedded distance
(smaller values mean endpoints that are closer). Points ltblwlassification line are positive (or classified as sudid)those above are negative. For clarity
in viewing the larger datasets not every point is displayather we display a random subset of several thousand ofdimsp

Wikipedia | Slashdot| Epinions
Positive edges 0.78 0.77 0.85
Negative edges 0.22 0.23 0.15
Training edges correctly classified 0.86 0.92 0.94
Positive test edges correctly classified 0.81 0.81 0.89
Negative test edges correctly classified 0.78 0.84 0.89
Correct positive classifications 0.93 0.94 0.98
Correct negative classifications 0.51 0.60 0.61
Overall edges correctly classified 0.81 0.82 0.89
FEho edges correctly classified 0.81 0.96 0.94
FE>5 edges correctly classified 0.81 0.96 0.95
TABLE |

THE FRACTION OF CORRECT CLASSIFICATIONS FOR VARIOUS CRITERI

edges incorrectly produces far fewer false positives thae t by reducing all interdependent paths between verticesdega
positives. less of length into two related trust values. Furthermodg, [
notes poorer results with edges that contribute to few or no

V1. CONCLUSIONS : . o . :
.] _triads. While this is expected in general (nodes with less
In this paper, we presented a new algorithm for computingrect information about their relationship should be feard

trust and distrust in social networks. We use a probatulist, classify), our approach does a better job of using the

treatment of trust combined with a modified spring-embeddégk,rmation that is available in these cases - those trubtspa
layout algorithm to classify an edge. Using three differenj; length greater than two.

real world datasets, we showed that our method achieves
very high accuracy, in the 80-90% range (from Table 1), At a higher level, the fact that we are able to achieve
when classifying relationships as positive (trust) or niega these good results speaks to the suitability of trust imfese
(distrust). The results of these algorithms will be useful ialgorithms in general. Trust is a complex social relatigmsh
many applications, including information sorting (like ails and we are using realistic datasets with trust values aidate
or product reviews so the most trusted can be shown firsal users. It is not unreasonable to question whether or not
filtering (like comments in online discussions where thodeust can be accurately computed at all, since it is so funzly a
from people who are distrusted should not be shown), apérsonal, or to question whether our probabilistic treatnie
aggregation (as in social recommender systems, which haveroper one. Furthermore, distrust is a difficult addition t
been shown to benefit from access to trust information). the range of trust values; how to properly treat it is an open
Our results exhibit good self-consistency by performinguestion within the trust community, and one might expeat th
well with respect to our classifier. Overall, the results amdistrust would have a negative impact on our results. The fac
generally quite good, and compare well with [4] which usethat we were able to classify trust as positive or negativté wi
more, but entirely local (path lengths of at most two) pieakes such a high rate of success means not only that our algorithms
information. Our approach achieves a similar level of aacyr work well, but that the underlying data is compatible withr ou

treatment of inferred trust. [13]
Our work invites a number of natural extensions. We focus
on trust inference in an undirected sense, which is limited
in that there is no way to represent a relationship betwepq]
two parties with different opinions of each other. There is
no simple modification to spring-embedding which can puﬂs]
one user towards a trusted second user in a way that is not

symmetric. How to best apply these ideas in a directed gralrg]
is an open problem. We could also explore the relationship

between network change over time and our metrics of pgth)
probability and spring-embedding distance. For exampile, a
pairs with like paths and small distances more likely to form
(or strengthen) positive connections over time than thagle wiis)
unlikely paths or far distances.

ACKNOWLEDGMENT [19]

This work was supported by NSF Award CNS 1010789,
NSF Award CNS-0626636, and U.S. Army Research Office
grant W911NF1010350. We thank the reviewers for their helg

; - ; ; [20]
shaping the final version of this paper.

REFERENCES

[21]
[1] “Internet usage statistics - the internet big picturepidl internet
users and population stats,” http://www.internetwoddiscom/stats.htm,
2010.
R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagatib
trust and distrust,” irProceedings of the 13th international conference
on World Wide Web. ACM, 2004, pp. 403-412.
T. DuBois, J. Golbeck, and A. Srinivasan, “Rigorous pablistic trust-
inference with applications to clustering,” iroceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and
Intelligent Agent Technology-Volume 01. IEEE Computer Society, 2009,
pp. 655-658.
J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Prédig positive and
negative links in online social networks,” iRroceedings of the 19th
international conference on World wide web. ACM, 2010, pp. 641—
650.
D. do B. DeFigueiredo and E. T. Barr, “Trustdavis: A noxpbitable
online reputation system,” inProceedings of the Seventh IEEE
International Conference on E-Commerce Technology. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 274-283. [Online][26]
Available: http://portal.acm.org/citation.cfm?id=109811097189
R. Levien and A. Aiken, “Attack-resistant trust metriasr fpublic key
certification,” in 7th USENIX Security Symposium, 1998, pp. 229-242.
[Online]. Available: citeseer.ist.psu.edu/levien98ekresistant.html
C.-N. Ziegler and G. Lausen, “Spreading activation medfr trust
propagation,” inProceedings of the IEEE International Conference
on eTechnology, e-Commerce, and e-Service. Taipei, Taiwan:
IEEE Computer Society Press, March 2004. [Online]. Avadabl [28]
citeseer.ist.psu.edu/zieglerO4spreading.html
U. Kuter and J. Golbeck, “Using probabilistic confidenamdels for
trust inference in web-based social network8CM Trans. Internet
Technal., vol. 10, no. 2, pp. 1-23, 2010.
P. Avesani, P. Massa, and R. Tiella, “Moleskiing.it: augt-aware
recommender system for ski mountaineeririgtéernational Journal for
Infonomics, 2005.
C. Hang, Y. Wang, and M. Singh, “An adaptive probabidistrust
model and its evaluation,” irProceedings of the 7th international
joint conference on Autonomous agents and multiagent systems-\Volume
3. International Foundation for Autonomous Agents and Mgkiat
Systems, 2008, pp. 1485-1488.
J. Patel, W. Teacy, N. Jennings, and M. Luck, “A probabi trust
model for handling inaccurate reputation sourcdsyist Management,
pp. 193-209, 2005.
A. Jgsang, S. Marsh, and S. Pope, “Exploring differgmies of trust
propagation,Trust Management, pp. 179-192, 2006.

(2] (22]

(3]
(23]

(4] (24]

(5] (25]

(6]

(7]
(27]

(8]

(29]
(9]
(30]

[20]
(31]

(32]
[11]

[12] [33]

A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning imefhce
probabilities in social networks,” idVSDM ’ 10: Proceedings of the third
ACM international conference on Web search and data mining. New
York, NY, USA: ACM, 2010, pp. 241-250.

J. O’'Donovan and B. Smyth, “Trust in recommender systems,” i
Proceedings of the 10th international conference on Intelligent user
interfaces. ACM, 2005, pp. 167-174.

P. Avesani, P. Massa, and R. Tiella, “A trust-enhancecommender
system application: Moleskiing,” irProceedings of the 2005 ACM
symposium on Applied computing. ACM, 2005, p. 1593.

J. Golbeck, “Generating predictive movie recommendatitrom trust
in social networks, Trust Management, pp. 93-104, 2006.

A. Galland, S. Abiteboul, A. Marian, and P. Senellar€orroborating
information from disagreeing views,” WSDM ' 10: Proceedings of the
third ACM international conference on Web search and data mining.
New York, NY, USA: ACM, 2010, pp. 131-140.

U. Kuter and J. Golbeck, “Semantic web service compasitio
in social environments,” in 8th International Semantic Web
Conference (ISVMC2009), October 2009. [Online]. Available:
http://data.semanticweb.org/conference/iswc/200¥/gegsearch/137

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Reconuleen
systems for large-scale e-commerce: Scalable neighborhaootation
using clustering,” inProceedings of the Fifth International Conference
on Computer and Information Technology, 2002. [Online]. Available:
citeseer.ist.psu.edu/sarwar02recommender.html

T. DuBois, J. Golbeck, J. Kleint, and A. Srinivasan, “lraping rec-
ommendation accuracy by clustering social neworks with trust
Proceedings of the ACM RecSys 2009 Workshop on Recommender
Systems and the Social Web, October 2009.

D. Ramage, P. Heymann, C. D. Manning, and H. Garcia-Mplina
“Clustering the tagged web,” iV/SDM ’09: Proceedings of the Second
ACM International Conference on Web Search and Data Mining. New
York, NY, USA: ACM, 2009, pp. 54-63.

S. Xu, T. Jin, and F. C. M. Lau, “A new visual search int&é for web
browsing,” inWSDM ' 09: Proceedings of the Second ACM International
Conference on Web Search and Data Mining. New York, NY, USA:
ACM, 2009, pp. 152-161.

D. Xing, G.-R. Xue, Q. Yang, and Y. Yu, “Deep classifieatamatically
categorizing search results into large-scale hierar¢hi@SNVSDM ' 08:
Proceedings of the international conference on Web search and web
data mining. New York, NY, USA: ACM, 2008, pp. 139-148.

L. Chen, P. Wright, and W. Nejdl, “Improving music genresddication
using collaborative tagging data,” WSDM '09: Proceedings of the
Second ACM International Conference on WWeb Search and Data Mining.
New York, NY, USA: ACM, 2009, pp. 84-93.

S. Dasgupta, “Learning mixtures of gaussians,”HOCS '99: Pro-
ceedings of the 40th Annual Symposium on Foundations of Computer
Science. Washington, DC, USA: IEEE Computer Society, 1999, p. 634.
M. F. Balcan, A. Blum, and A. Gupta, “Approximate clustegi
without the approximation,” irSODA '09: Proceedings of the twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 20@p.
1068-1077. [Online]. Available: http://portal.acm.oiiggtion.cfm?id=
1496886

J. A. Hartigan and M. A. Wong, “A K-means clustering algiom,”
Applied Satistics, vol. 28, pp. 100-108, 1979.

D. S. Hochbaum and D. B. Shmoys, “A best possible heauristi
for the k-center problem,”"Mathematics of Operations Research,
vol. 10, no. 2, pp. 180-184, May 1985. [Online]. Available:
http://dx.doi.org/10.1287/moor.10.2.180

R. Xu and D. Wunsch, “Survey of clustering algorithmdEEE
Transactions on Neural Networks, vol. 16, no. 3, pp. 645-678, May
2005. [Online]. Available: http://dx.doi.org/10.110%MN.2005.845141
F. Heider, “Attitudes and cognitive organizatiodgurnal of Psychology,
vol. 21, no. 2, pp. 107-112, 1946.

J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Sidjmeetworks in
social media,” inProceedings of the 28th international conference on
Human factors in computing systems. ACM, 2010, pp. 1361-1370.
J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Comityun
structure in large networks: Natural cluster sizes and theeace of
large well-defined clusterslhternet Mathematics, vol. 6, no. 1, pp. 29—
123, 2009.

M. Richardson, R. Agrawal, and P. Domingos, “Trust mamaget for
the semantic web,The Semantic\Web-1SWC 2003, pp. 351-368, 2003.

[34] P. Eades, “A heuristic for graph drawingCongressus Numerantium,
vol. 42, pp. 149-160, 1984.

