
Predicting Trust and Distrust in Social Networks
Thomas DuBois, Jennifer Golbeck, and Aravind Srinivasan

University of Maryland
College Park, MD 20742

Abstract—As user-generated content and interactions have
overtaken the web as the default mode of use, questions of
whom and what to trust have become increasingly important.
Fortunately, online social networks and social media have made
it easy for users to indicate whom they trust and whom they do
not. However, this does not solve the problem since each user
is only likely to know a tiny fraction of other users; we must
have methods for inferring trust - and distrust - between users
who do not know one another. In this paper, we present a new
method for computing both trust and distrust (i.e., positive and
negative trust). We do this by combining an inference algorithm
that relies on a probabilistic interpretation of trust based on
random graphs with a modified spring-embedding algorithm.
Our algorithm correctly classifies hidden trust edges as positive
or negative with high accuracy. These results are useful in a wide
range of social web applications where trust is important to user
behavior and satisfaction.

I. I NTRODUCTION

There are two billion people connected to the internet [1],
and user-generated content is created and consumed at impres-
sive rates. YouTube reports 24 hours of new video uploaded to
their site every minute, and 2 billion videos watched every day.
Facebook has over 600 million users who upload 2.5 billion
photos per month, plus status updates, comments, videos,
questions, and discussion posts. Twitter has over 200 million
users creating over 90 million new tweets a day. The numbers
continue for review sites, blogs and blog comments, more
specialized social networks, and so on.

With so much user interaction and content created, the ques-
tion of whom and what to trust has become an increasingly
important challenge on the web. A user is likely to encounter
dozens if not hundreds of pieces of user-generated content
each day, and some of it will need to be evaluated for trustwor-
thiness. Trust information can help a user make decisions, sort
and filter information, receive recommendations, and develop
a context within a community with respect to whom to trust
and why. Fortunately, the rise of social networking on the web
has allowed people to indicate whom they trust and distrust,
creating links in the network (or edges in the graph to use
graph-theory terminology). We can algorithmically use that
information to make suggestions to other users about whom
they in turn should trust.

In these contexts knowing whom to trust is important,
however knowing whom to distrust is equally, if not more,
useful. Unfortunately distrust is much trickier to computein
a satisfying way. While intuition and experimental evidence
indicates that trust is somewhat transitive (if Alice trusts Bob
and Bob trusts Chuck, there is a good chance that Alice will
trust Chuck, too), distrust is certainly not transitive. IfAlice

distrusts Bob and Bob distrusts Chuck, Chuck may be closer
to Alice than Bob is, or he may be even further away. Thus,
when we try to propagate distrust through a network, questions
about transitivity and how to deal with conflicting information
abound.

While there has been some very nice work on distrust
(e.g. [2]), there is a significant gap in the trust inference
literature. Distrust information can be useful and plentiful but
there are relatively few algorithms to compute it. For example,
explicit distrust can distinguish between two factions whodo
not trust each other because of a lack of knowledge from those
that are antagonistic. It can also expose subtleties in a trust
network which are inexpressible with positive trust alone.

We contribute to this area a new algorithm for effectively
predicting trust and distrust in web-based social networks. We
combine a path-probability trust inference algorithm [3] with
a novel technique using spring-embedding to infer network
distance. We compute these two metrics for every pair of nodes
in the network and train a classifier based upon the resulting
two-dimensional data points. For each quantized connectivity
probability estimate we find an embedding distance which
minimizes the larger of the misclassified positive edges and
the misclassified negative edges.

We evaluate the performance of our algorithm on three real-
world datasets that include trust and distrust ratings fromusers.
All of these datasets have edges which are either positive or
negative (+1 or -1). Our algorithm can also be applied to
networks with a scale of trust/distrust values, however we
could not find a large dataset with both trust and distrust
information in a finer level of detail. With each network, we
apply our algorithm to the edge sign prediction problem. In
this problem, some number of edges are chosen uniformly
at random and hidden. Then we train our classifier on the
remaining network, and use it to guess the signs of the hidden
edges.

We find that when only a few edges are removed (which
approximates guessing the trust between two nodes who have
not rated each other) we consistently classify most of the
positive and most of the negative edges correctly (81% for the
Wikipedia dataset up to 89% for Epinions). This is comparable
to the best existing methods which use substantially different
techniques [2], [4]. We go a step further than existing works
by exploring the result of removing many edges at once. We
find that the accuracy rates do not diminish significantly until
at least half of the edges have been removed. This implies
not only that our algorithm captures inherent properties, but
also that there is a high level of redundancy in the networks.



Not only can edge signs be predicted from the surrounding
network, but they can be predicted from a random edge-
induced subgraph of the surrounding network.

II. RELATED WORK

There are many trust inference algorithms that take advan-
tage of pair-wise trust values and the structure of a social
network. All of these algorithms rely upon some notion of the
transitivity of trust. In very small or dense networks most users
may be close to each other and it is easy to argue that they
should extend some trust to those their friends trust. However
to be useful in large, sparse networks this transitivity must hold
over paths longer than two or even three edges. TrustDavis [5]
captures this transitivity economically. One user’s direct trust
in another takes the form of an insurance contract - for some
fee c they will guarantee a trusted third party’s debt of up
to x. In this network the inferred trust between two parties
for a debtx is the lowest cost network-flow with capacity
x. Algorithms without this economic context must make the
assumption that trust is somewhat transitive even over long
distances. Finding the right balance where trust spreads far
enough to be applicable for most pairs of users but not so
far that it looses its effectiveness is part of these algortihms’
parameter tuning.

Such algorithms include Advogato [6], Appleseed [7],
Sunny [8], and Moletrust [9]. These algorithms use trust that
is assigned on a fixed scale (e.g. 1-10). Other algorithms
treat direct trust as a probability, including [3], [10]–[12]. The
difficulty of generating these probabilities, using influence as a
proxy for trust, was addressed in [13]. In our research, we work
with probabilities that are givena priori, but those derived
from other methods could also be used in our algorithms.

The results of trust inference have a wide range of applica-
tions. Recommender systems are a common one, where trust
values are used in place of traditional user similarity measures
to compute recommendations (e.g. [14]–[16]). Galland et al.
present a technique for using trust to estimate thetruth of
information that is presented [17], which in turn has appli-
cations for assessing information quality, particularly on the
Semantic Web. More specific applications of that idea include
using trust for semantic web service composition [18].

Often these recommendation algorithms require, as an in-
termediate step, finding clusters of people who are more
tightly connected to each other than to the remainder of the
population [19], [20]. Trust recommendations are just one
example application where clustering is useful; the art of
finding useful sets of clusters has been well studied on a wide
range of applications. Social tagging [21], web browsing on
topic clusters [22], search classification [23], and music genre
identification [24] are just a few examples that use clustering
to improve performance and usability.

In some cases there is some (unknown) “ground-truth”
clustering inherent in the data which we want to find, and
the algorithms attempt to find a clustering that is “close” to
the true one [25], [26]. Often, though, there is no reason to
believe that the data has inherently correct clusters, and the

goal becomes simply to produce a clustering which works
well in practice for a particular application.

When each data point to be clustered consists of a vector
of numerical values, one common technique is to choose a
distance function between the elements (Euclidean, L1-norm,
etc.) and look for clusters which minimize some optimization
function. Examples of these algorithms include k-means [27]
(which minimizes the mean squared-distance of elements from
their cluster centers), and k-centers [28] (which minimizes the
maximum distance from any point to the center of a cluster).
Typically approximation algorithms, which find solutions close
to optimal, are used because it is impractical to compute the
optimal clustering for these problems. For a more extensive
overview of various clustering algorithms, see [29].

Guha et al. [2] give one of the earliest studies that addresses
both trust and distrust propagation in an algorithmic way. They
treat trust propagation as a repeating sequence of matrix op-
erations combining aspects of direct propagation, co-citation,
and backwards propagation, and they consider both single-
step and every-step propagation of distrust. They run a large
number of trials with different sets of parameters to validate
their approach using the edge sign prediction problem on
the Epinions dataset. Their best results achieve 85% accuracy
taken over an equal number of positive and negative hidden
edges.

More recent work on edge sign prediction by Leskovec,
Huttenlocher, and Kleinberg [4] is a direct predecessor of
our work. They examine the same three networks as we do
with a much more localized view. To predict the sign of an
edge they look at the positive and negative edge counts of its
endpoints, plus the number and type of triangles containing
this edge. These local factors form a high dimensional space
on which they perform standard machine-learning techniques
to determine how to predict the sign of unknown edges. From
a theoretical perspective they interpret their results through
Heider’s balance theory [30], which states that unbalanced
triads (those with an odd number of negative edges) are
unstable. Experimentally they show good edge prediction
results for all three datasets (accuracy rates between 80-90%
over all edges), with better results on edges with a higher
embeddedness - those which are a part of a greater number of
triangles.

III. D ATASET DESCRIPTIONS

We used three major social network datasets to test our
methods. All are provided as part of the Stanford Large
Network Dataset Collection1. The networks we use have both
positive (trust) and negative (distrust) edges. These edges
are unweighted, though our methods could easily support
weighted trust and distrust.

• Wikipedia moderator elections - Wikipedia, the popular
online encyclopedia created by users, has a set of elected
moderators who monitor the site for quality and contro-
versy and who help maintain it. These moderators receive

1http://snap.stanford.edu/data/



extra administrative privileges, and thus must be trusted
by the community. When a user requests admin access,
a public discussion page is set up for users to discuss
and vote on whether to admit the moderator. Positive
and negative votes are counted as positive and negative
trust ratings. Note that in this network, if a user is not
ultimately voted in, they will not appear in the graph.
Thus, positive trust ratings (or positive votes) will be
more common in the graph. The data was pulled from
the discussion pages in January 2008 [4], [31]. It contains
just over 7,000 nodes and 100,000 edges.

• Slashdot - This is a technology news site where users
can rate each other as friend or foe. We treat those as
positive and negative trust ratings. The dataset contains
over 77,000 nodes and just under 900,000 edges. Use
used the version released in February 2009 [32]

• Epinions - This is product review site where users choose
whether to trust or not trust one another based on their
ratings and reviews of products. The network has over
75,000 nodes and 500,000 edges. The dataset was col-
lected and released in 2003 [33].

Because the most efficient versions of our algorithms use
undirected graphs, we must consider how to adapt them
for use on directed datasets. The Wikipedia election data is
topologically ordered by when the election takes place, so
the graph is anti-symmetric. Therefore we can simply treat
all edges as undirected without affecting the methodology.
The Slashdot and Epinions networks have a large fraction of
edges where each endpoint rates the other. For our first set
of experiments, those most similar to our predecessors, our
algorithms treat the network as an undirected multigraph. This
means that if there are edges in both directions between two
nodes, it is possible that exactly one of them is hidden. In this
case we still check our result against only the edge going in the
direction which was hidden. If there were a lot of disagreeing
pairs of edges, this approach would be at a dissadvantage. For
the second set we make the graphs undirected by taking paired
edges and averaging them into a single undirected edge.

IV. A LGORITHM AND METHODOLOGY

In prior work, we develop a method for computing trust
based on path probability in random graphs [3]. For every
pair of users(u, v), we place an edge between them with
some probability that depends on the direct trust value between
them, denoted bytu,v. We then infer trust between two people
from the probability that they are connected in the resulting
graphs. Formally we choose a reversible mappingf from trust
value to probabilities, and then construct a random graphG in
which each edge(u, v) exists independently with probability
f(tu,v). This graph gives inferred trust values,Tu,v, such that
f(Tu,v) equals the probability that there is a path fromu to v
in the random graph. In addition to having an intuitive appeal,
we find this approach to work well in practice.

Distrust, however, is more complex. While trust can be
considered transitive, distrust is not. Additionally withonly
positive trust, there are no inconsistencies in the data – paths

can differ in strengh, but they are all additive. When we
incorporate distrust, there can be paths which disagree as in
Figure 1. We propose using a modified layout algorithm to
find a low-dimensional embedding of the graph which tries
to reconcile the conflicting information and transitivity.It is
inspired by spring embedding graph layout algorithms [34].
This type of algorithm, which until now has not been used
for trust inference, simulates the physics of springs in a 2D
or higher dimensional space. Edges between nodes are treated
as springs that pull nodes together, but reasonable space is
maintained between nodes by making them repel one another.
Nodes are randomly laid out in an initial configuration, and
the system is simulated until a stable equilibrium is reached
or some short-circuit condition happens (maximum iterations,
changes per timestep below a threshold, etc).

>.9

>.9

>.9

<.1

A

B

C

D

Fig. 1. A strongly trusts B and C. B and C disagree strongly on whether or
not to trust D. It is not clear how much A should trust D.

Our first attempt to incorporate distrust involved resolving
conflicting trust/distrust information through a nonlinear opti-
mization. We would assume that all users’ trust estimates are
noisy, and we want to find the true ones. In this model, positive
trust corresponds to edge probabilities, while negative trust
corresponds to upper bounds on path probabilities. We then
apply a cost function for each edge of the deviation between
the “true” value and the “measured” value. We would then
find a globally minimal cost solution which does not have any
conflicting trust/distrust information and infer trust from it.
Unfortunately this technique does not scale sufficiently well,
and is therefore not suitable on large datasets.

This led us to develop a spring-embedding algorithm which
we use in conjunction with our path probability technique
to infer trust. First we compute path probabilities using only
positive edges. Independently, we use an iterative spring em-
bedding algorithm - where positive edges attract and negatives
repel - to resolve competing trust/distrust information. Note
that in the face of positive trust only, this results in all
nodes very close to each other. A spring-embedding algorithm
implicitly has the transitivity and conflict resolution properties
we desire as well as the scalability necessary to handle very
large datasets.

We modify the spring-emgedding layout algorithm to adapt
it to our trust context. Instead of having all nodes repel, we
add a repelling force only between nodes connected with a
negative edge. Transitivity applies because two nodes witha
shared friend are both pulled toward that friend. If they share



two friends who are co-located, they are pulled with twice
as much force. If they have a shared enemy, they are both
pushed away (which may or may not move them in the same
direction). If one is friends with an enemy of the other, the
forces will push them in different locations. This modified
spring-embedding algorithm also deals well with conflicting
information. If Node A has two friends who disagree about
Node B, the friends will be pushed apart, and Node A will be
partially pulled toward and partially pushed away from Node
B.

One potential drawback is that two nodes may be placed
close together by chance though they have little trust between
them. This is why spring embedding alone is not enough -
we need to consider path probabilities as well. We can in-
dependently compute path probabilities and spring embedding
distances for our entire graph. For each edge or potential edge,
we record the path probability between its endpoints as well
as their embedded distance. Thus each edge corresponds to a
two dimensional vector whose position indicates the amount
of trust between its endpoints.

To assess our algorithm’s quality, we use it to solve the
edge sign prediction problem. For each of our three datasets,
we remove a substantial number of edges (500 in Wikipedia
and Slashdot, 1000 in Epinions) chosen uniformly at random.
The removed edges make up the testing set and the kept edges
make up the training set.

Using the training set with the test edges removed, we
perform parameter tuning and compute path probabilities and
spring embedding distances. For the path probability algo-
rithm, this tuning consists of choosing a probabilityp that
corresponds to a positive edge. In all three datasets we settled
on p = 0.05, which gives path probabilities for the edge’s
endpoints spread nearly evenly across the range[0, 1]. For the
spring embedding algorithm, tuning means selecting the force
functions for both positive and negative edges and choosing
the dimensions of the embedding space. We found through trial
and error that edges of distanced having an attractive force
proportional tod2 and repelling force proportional to1/d2 lead
to good distributions of points. We also choose the embedding
space to be the 4-dimensional unit cube, which helps reduce
the instance of nodes being “stuck” at local minima compared
to a lower-dimensional space. For every edge in the training
and test sets we then record its sign as well as its endpoint
path probability and embedded distance.

We bucket the list of training edges into intervals based
upon their path probability, and for each interval we find the
embedded distance which minimizes the maximum of the ratio
of mislabeled positive edges and the ratio of mislabeled nega-
tive edges. We show this process for a single path probability
interval in Figure 2.

We then use these values to classify edges in the testing
set. For any edge in the testing set, we find the interval that
corresponds to the connectivity probability of its endpoints. If
they are embedded closer than that interval’s cutoff, we guess
that they are positively connected. And if they are embedded
further than the cutoff, we guess that their edge is negative.

0.2 0.4 0.6 0.8 1.0 1.2
Distance

20

40

60

80

100

Count

0.2 0.4 0.6 0.8 1.0
Distance

0.2

0.4

0.6

0.8

1.0

Fraction Correct

Fig. 2. The upper figure shows a histogram of the distances forall kept edges
with estimated path probabilities of0.55 (other path probabilities behave
similarly). The lower figure plots the fraction of positive and negative edges
classified correctly as a function of the cutoff. In both plots, positive edges
are blue and negative ones are purple. We choose the point where the two
lines cross in the lower figure – the point where equal ratios of positive and
negative edges are classified correctly – to be the cutoff distance for this path
probability.

Note that all of these networks are biased with many more
positive than negative edges. Therefore our goal is not simply
to have the highest ratio of correctly classified edges, but
rather to correctly classify both positive and negative edges
simultaneously. On such a biased dataset an algorithm which
classifies edges randomly could perform quite well overall (by
simply always choosing the dominant category), however the
better it did on the positive edges, the worse it would do on
the negatives. An algorithm which classifies edges as positive
independently at random with probabilityp would be correct
on an expectedp fraction of positive edges and1− p fraction
of negative edges. Using the metric of the minimum of the
two ratios, such an algorithm could not do better than by
choosingp = 0.5, so 50% correct is a minimum baseline score.
This methodology eliminates the need to randomly sample the
positive edges in order to “balance” the two cases – the mean
behavior of a balanced set would produce the same minimum
ratio for positive and negative edges.

We also explore how the accuracy of our predictions
changes as more and more of the network is hidden. Hiding
only a small fraction of the edges closely approximates giving
our algorithm the maximum information available and repre-
sents the best that our algorithm can do. High prediction rates
indicate a significant amount of redundancy in the network –
the predicted edges add relatively little information thatwas



not already present. For each network we remove a number of
edges ranging from very few to almost all of them in order to
take this idea further. If we can remove a substantial fraction
of edges without degrading our predictions, then there is a
much larger amount of redundancy present in the network.

V. RESULTS

For each run, we compute a separator to classify positive
and negative trust relationships. The details for one iteration
are shown in Figure 3, with the separator shown as a red line.
Positive edges are correctly classified when they are below
the line and negative edges are correct when they are above
the line. Note that the noisy nature of the datasets means that
we are not able to correctly classify all the edges even in our
training sets. The first two columns of Figure 3 show that there
are a number of points that appear on the wrong side of the
line.

The third and fourth columns of Figure 3 show the data
points for the test set. The results for when we treat the
directed networks as undirected multi-graphs are detailedin
Table I. We are able to correctly classify between roughly
86-94% of both positive and negative edges in the training
set. This gives us a baseline against which we can compare
our results from the test set. This test is the most similar to
the approaches of Guha et al. [2] and Leskovec et al [4],
so we compare them directed to these prior results. On the
Epinions dataset we achieve 89% accuracy on positive and
negative hidden edges simultaneously which compares well to
their results of 85.3% and 86% respectively for balanced test
sets. For Slashdot, we match the 81% accuracy of Leskovec
et al., and for Wikipedia we achieve 81% to their 82%.

We also consider results on sets containing only highly
embedded edges – those setsEn ⊆ E of all edges which are
a part of at leastn undirected triangles. Using the setsE10

andE25 we perform slighly better than Leskovec et al. on the
Epinions and Slashdor datasets, while they maintain their 1%
advantage on Wikipedia. Figure 4 shows the performance of
our algorithm when restricted to highly embedded edges .

Wikipedia

Slashdot Epinions

0.6

0.7

0.8

0.9

1.0

E0

E10

E25

Fig. 4. This plot shows the overall accuracy rates for the sets of all edges
(E0) and edges which are a part of at least 10 (E10) and at least 25(E25)
triangles.

For Figure 5, we merge edges going in the opposite direction
into a single undirected edge and show how our algorithm’s
prediction ratio changes as more edges are hidden. For each

of the three networks we choose several edge removal ratios
and perform ten iterations for each. For each iteration we hide
edges uniformly at random, run the training algorithm, and
record the minimum of the two correctness ratios. Figure 5
shows both the mean ratios and also their standard deviation.

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

edges removed

m
in

im
um

 o
f p

os
iti

ve
 a

nd
 n

eg
at

iv
e 

ed
ge

s 
co

rr
ec

t

Edge Preciction Rates and Standard Deviation

 

 
wikipedia election
slashdot zoo
epinions

Fig. 5. Accuracy rates for the three networks as a function ofthe fraction
of edges removed. For each fraction of edges removed we performed ten
independent trials and plot the average and standard deviation.

From this result, our main observation is that accuracy rates
decrease quite slowly until over 50% of the edges are hidden.
This implies that these networks have a large amount of
redundant information. Not only are edges highly predictable,
but they are predictable even without the information from
a large fraction of the edges. Once over 50% of the edges
are hidden, performance degrades quickly. Eventually the
endpoints of most hidden positive edges have no positive path
pulling them together while most kept positive edges have
few or no negative paths pushing them appart. This leads to
very poor results because our training algorithm “learns” that
positive edges have endpoints that are very close, but hidden
positive edges having random endpoint distances. We do not
view this result as a drawback of our algorithm, but rather itis
a consequence of the degenerate graphs produced when most
edges are hidden.

Because all three networks have many more positive edges
than negative, next we describe the effects of this asymmetry.
Because the algorithm optimizes the ratio of positive and
negative edges guessed correctly, the results are the same
regardless of the ratio of positive to negative edges. However
any algorithm’s performance appears skewed when viewed in
the context of confidence in its predictions. When our classifier
predicts a positive edge, we are quite certain (over 90%) sure
of the results. However our confidence in a negative prediction
lies between 50-60% (see Table I). This bias comes from the
fact that the dataset is unbalanced, with many more positive
edges than negative, and may be inherent in the problem. This
follows from the fact that guessing 20% of the positive edges
incorrectly produces roughly as many false negatives as there
are correct negative edges, while guessing 20% of the negative



Positive Training Negative Training Positive Testing Negative Testing

Wikipedia 0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

Slashdot 0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

Epinions 0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

0.2 0.4 0.6 0.8 1.0

0.4

0.8

1.2

Fig. 3. This figure shows the positive and negative edges withthe classification line for all three datasets. Each point inthe figures corresponds to an edge
in the graph. The horizontal axis is the path probability (larger values mean endpoints that are closer) and the vertical axis shows the embedded distance
(smaller values mean endpoints that are closer). Points belowthe classification line are positive (or classified as such) and those above are negative. For clarity
in viewing the larger datasets not every point is displayed,rather we display a random subset of several thousand of the points.

Wikipedia Slashdot Epinions
Positive edges 0.78 0.77 0.85
Negative edges 0.22 0.23 0.15
Training edges correctly classified 0.86 0.92 0.94
Positive test edges correctly classified 0.81 0.81 0.89
Negative test edges correctly classified 0.78 0.84 0.89
Correct positive classifications 0.93 0.94 0.98
Correct negative classifications 0.51 0.60 0.61
Overall edges correctly classified 0.81 0.82 0.89
E10 edges correctly classified 0.81 0.96 0.94
E25 edges correctly classified 0.81 0.96 0.95

TABLE I
THE FRACTION OF CORRECT CLASSIFICATIONS FOR VARIOUS CRITERIA .

edges incorrectly produces far fewer false positives than true
positives.

VI. CONCLUSIONS

In this paper, we presented a new algorithm for computing
trust and distrust in social networks. We use a probabilistic
treatment of trust combined with a modified spring-embedded
layout algorithm to classify an edge. Using three different
real world datasets, we showed that our method achieves
very high accuracy, in the 80-90% range (from Table I),
when classifying relationships as positive (trust) or negative
(distrust). The results of these algorithms will be useful in
many applications, including information sorting (like emails
or product reviews so the most trusted can be shown first),
filtering (like comments in online discussions where those
from people who are distrusted should not be shown), and
aggregation (as in social recommender systems, which have
been shown to benefit from access to trust information).

Our results exhibit good self-consistency by performing
well with respect to our classifier. Overall, the results are
generally quite good, and compare well with [4] which uses
more, but entirely local (path lengths of at most two) piecesof
information. Our approach achieves a similar level of accuracy

by reducing all interdependent paths between vertices regard-
less of length into two related trust values. Furthermore, [4]
notes poorer results with edges that contribute to few or no
triads. While this is expected in general (nodes with less
direct information about their relationship should be harder
to classify), our approach does a better job of using the
information that is available in these cases - those trust paths
of length greater than two.

At a higher level, the fact that we are able to achieve
these good results speaks to the suitability of trust inference
algorithms in general. Trust is a complex social relationship,
and we are using realistic datasets with trust values created by
real users. It is not unreasonable to question whether or not
trust can be accurately computed at all, since it is so fuzzy and
personal, or to question whether our probabilistic treatment is
a proper one. Furthermore, distrust is a difficult addition to
the range of trust values; how to properly treat it is an open
question within the trust community, and one might expect that
distrust would have a negative impact on our results. The fact
that we were able to classify trust as positive or negative with
such a high rate of success means not only that our algorithms
work well, but that the underlying data is compatible with our



treatment of inferred trust.
Our work invites a number of natural extensions. We focus

on trust inference in an undirected sense, which is limited
in that there is no way to represent a relationship between
two parties with different opinions of each other. There is
no simple modification to spring-embedding which can pull
one user towards a trusted second user in a way that is not
symmetric. How to best apply these ideas in a directed graph
is an open problem. We could also explore the relationship
between network change over time and our metrics of path
probability and spring-embedding distance. For example, are
pairs with like paths and small distances more likely to form
(or strengthen) positive connections over time than those with
unlikely paths or far distances.

ACKNOWLEDGMENT

This work was supported by NSF Award CNS 1010789,
NSF Award CNS-0626636, and U.S. Army Research Office
grant W911NF1010350. We thank the reviewers for their help
shaping the final version of this paper.

REFERENCES

[1] “Internet usage statistics - the internet big picture: World internet
users and population stats,” http://www.internetworldstats.com/stats.htm,
2010.

[2] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation of
trust and distrust,” inProceedings of the 13th international conference
on World Wide Web. ACM, 2004, pp. 403–412.

[3] T. DuBois, J. Golbeck, and A. Srinivasan, “Rigorous probabilistic trust-
inference with applications to clustering,” inProceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and
Intelligent Agent Technology-Volume 01. IEEE Computer Society, 2009,
pp. 655–658.

[4] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and
negative links in online social networks,” inProceedings of the 19th
international conference on World wide web. ACM, 2010, pp. 641–
650.

[5] D. do B. DeFigueiredo and E. T. Barr, “Trustdavis: A non-exploitable
online reputation system,” inProceedings of the Seventh IEEE
International Conference on E-Commerce Technology. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 274–283. [Online].
Available: http://portal.acm.org/citation.cfm?id=1097108.1097189

[6] R. Levien and A. Aiken, “Attack-resistant trust metrics for public key
certification,” in 7th USENIX Security Symposium, 1998, pp. 229–242.
[Online]. Available: citeseer.ist.psu.edu/levien98attackresistant.html

[7] C.-N. Ziegler and G. Lausen, “Spreading activation models for trust
propagation,” in Proceedings of the IEEE International Conference
on e-Technology, e-Commerce, and e-Service. Taipei, Taiwan:
IEEE Computer Society Press, March 2004. [Online]. Available:
citeseer.ist.psu.edu/ziegler04spreading.html

[8] U. Kuter and J. Golbeck, “Using probabilistic confidencemodels for
trust inference in web-based social networks,”ACM Trans. Internet
Technol., vol. 10, no. 2, pp. 1–23, 2010.

[9] P. Avesani, P. Massa, and R. Tiella, “Moleskiing.it: a trust-aware
recommender system for ski mountaineering,”International Journal for
Infonomics, 2005.

[10] C. Hang, Y. Wang, and M. Singh, “An adaptive probabilistic trust
model and its evaluation,” inProceedings of the 7th international
joint conference on Autonomous agents and multiagent systems-Volume
3. International Foundation for Autonomous Agents and Multiagent
Systems, 2008, pp. 1485–1488.

[11] J. Patel, W. Teacy, N. Jennings, and M. Luck, “A probabilistic trust
model for handling inaccurate reputation sources,”Trust Management,
pp. 193–209, 2005.

[12] A. Jøsang, S. Marsh, and S. Pope, “Exploring different types of trust
propagation,”Trust Management, pp. 179–192, 2006.

[13] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence
probabilities in social networks,” inWSDM ’10: Proceedings of the third
ACM international conference on Web search and data mining. New
York, NY, USA: ACM, 2010, pp. 241–250.

[14] J. O’Donovan and B. Smyth, “Trust in recommender systems,” in
Proceedings of the 10th international conference on Intelligent user
interfaces. ACM, 2005, pp. 167–174.

[15] P. Avesani, P. Massa, and R. Tiella, “A trust-enhanced recommender
system application: Moleskiing,” inProceedings of the 2005 ACM
symposium on Applied computing. ACM, 2005, p. 1593.

[16] J. Golbeck, “Generating predictive movie recommendations from trust
in social networks,”Trust Management, pp. 93–104, 2006.

[17] A. Galland, S. Abiteboul, A. Marian, and P. Senellart, “Corroborating
information from disagreeing views,” inWSDM ’10: Proceedings of the
third ACM international conference on Web search and data mining.
New York, NY, USA: ACM, 2010, pp. 131–140.

[18] U. Kuter and J. Golbeck, “Semantic web service composition
in social environments,” in 8th International Semantic Web
Conference (ISWC2009), October 2009. [Online]. Available:
http://data.semanticweb.org/conference/iswc/2009/paper/research/137

[19] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Recommender
systems for large-scale e-commerce: Scalable neighborhood formation
using clustering,” inProceedings of the Fifth International Conference
on Computer and Information Technology, 2002. [Online]. Available:
citeseer.ist.psu.edu/sarwar02recommender.html

[20] T. DuBois, J. Golbeck, J. Kleint, and A. Srinivasan, “Improving rec-
ommendation accuracy by clustering social neworks with trust,” in
Proceedings of the ACM RecSys 2009 Workshop on Recommender
Systems and the Social Web, October 2009.

[21] D. Ramage, P. Heymann, C. D. Manning, and H. Garcia-Molina,
“Clustering the tagged web,” inWSDM ’09: Proceedings of the Second
ACM International Conference on Web Search and Data Mining. New
York, NY, USA: ACM, 2009, pp. 54–63.

[22] S. Xu, T. Jin, and F. C. M. Lau, “A new visual search interface for web
browsing,” inWSDM ’09: Proceedings of the Second ACM International
Conference on Web Search and Data Mining. New York, NY, USA:
ACM, 2009, pp. 152–161.

[23] D. Xing, G.-R. Xue, Q. Yang, and Y. Yu, “Deep classifier: automatically
categorizing search results into large-scale hierarchies,” in WSDM ’08:
Proceedings of the international conference on Web search and web
data mining. New York, NY, USA: ACM, 2008, pp. 139–148.

[24] L. Chen, P. Wright, and W. Nejdl, “Improving music genre classification
using collaborative tagging data,” inWSDM ’09: Proceedings of the
Second ACM International Conference on Web Search and Data Mining.
New York, NY, USA: ACM, 2009, pp. 84–93.

[25] S. Dasgupta, “Learning mixtures of gaussians,” inFOCS ’99: Pro-
ceedings of the 40th Annual Symposium on Foundations of Computer
Science. Washington, DC, USA: IEEE Computer Society, 1999, p. 634.

[26] M. F. Balcan, A. Blum, and A. Gupta, “Approximate clustering
without the approximation,” inSODA ’09: Proceedings of the twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2009, pp.
1068–1077. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1496886

[27] J. A. Hartigan and M. A. Wong, “A K-means clustering algorithm,”
Applied Statistics, vol. 28, pp. 100–108, 1979.

[28] D. S. Hochbaum and D. B. Shmoys, “A best possible heuristic
for the k-center problem,”Mathematics of Operations Research,
vol. 10, no. 2, pp. 180–184, May 1985. [Online]. Available:
http://dx.doi.org/10.1287/moor.10.2.180

[29] R. Xu and D. Wunsch, “Survey of clustering algorithms,”IEEE
Transactions on Neural Networks, vol. 16, no. 3, pp. 645–678, May
2005. [Online]. Available: http://dx.doi.org/10.1109/TNN.2005.845141

[30] F. Heider, “Attitudes and cognitive organization,”Journal of Psychology,
vol. 21, no. 2, pp. 107–112, 1946.

[31] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in
social media,” inProceedings of the 28th international conference on
Human factors in computing systems. ACM, 2010, pp. 1361–1370.

[32] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters,”Internet Mathematics, vol. 6, no. 1, pp. 29–
123, 2009.

[33] M. Richardson, R. Agrawal, and P. Domingos, “Trust management for
the semantic web,”The SemanticWeb-ISWC 2003, pp. 351–368, 2003.



[34] P. Eades, “A heuristic for graph drawing,”Congressus Numerantium,
vol. 42, pp. 149–160, 1984.


