
Finding Event-Specific Influencers in Dynamic Social

Networks

by

Christopher Brendan Schenk

B.S. Computer Science, University of Colorado, 2004

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Computer Science

2010

This thesis entitled:
Finding Event-Specific Influencers in Dynamic Social Networks

written by Christopher Brendan Schenk
has been approved for the Department of Computer Science

Douglas Sicker (chair)

Qin Lv

Aaron Clauset

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Schenk, Christopher Brendan (M.S., Computer Science)

Finding Event-Specific Influencers in Dynamic Social Networks

Thesis directed by Professor Douglas Sicker (chair)

Reputation models are widely in use today in commercial transaction (ebay), product review

(amazon, epinions), and news commentary websites (slashdot). The purpose of these reputation

models is to provide behavioral or informational data for future users to determine whether or

not he or she will trust the data. These models are dependent on explicit feedback mechanisms

where users rate product, other users, or information. However, for many popular social network

information sources on the web, no such explicit feedback systems exist where users rate information

in order for consumers of this information to be able to judge the trustworthiness of the data source

or the data itself.

Here I describe the layers of the problem of determining reputation among users or data during

events discussed on social networks, and evaluate data and network analysis methods from varying

disciplines that may implicitly infer user or data reputation based on metadata, user relationships

and user actions in social networks. I demonstrate that the HITS algorithm is not effective at

finding influential users, and propose a new algorithm and demonstrate its effectiveness for finding

influential users during an event.

Dedication

I want to dedicate this work to my parents who believe education is the foundation for success,

as I would not be here without their sacrifices for my brothers and sister and myself throughout

our lifetimes, putting us through good schools and teaching us to never give up and to try, and try

again.

v

Acknowledgements

There are many people who have contributed to my success in this process, and I don’t know

if I’d be able to remember every single one. First I want to thank my advisor Doug Sicker for giving

me unyielding support both psychologically and financially through this entire process, even when

I didn’t think I’d finish. I want to thank Aaron Clauset for giving me fantastic direction in the

work as well, along with great conversations and wonderful new opportunities for work. Christine

Lv is fabulous and kind, and has been a positive force through this process as well. I want to

thank Ken Anderson, Leysia Palen, Jim Martin, Martha Palmer, Ban Al-Ani, Gloria Mark and

all of their students Aaron Schram, Jo White, Kate Starbird, Sarah Vieweg, Sophia Liu, Casey

McTaggart, Mossaab Bagdouri, Aleksandra Sarcevic, and Will Corvey. Their presence during this

process has been invaluable for my own learning. I want to thank the rest of the faculty and staff

of the Computer Science department and for my opportunity to work there as I would not have

chosen to return to school otherwise. I want to thank my parents for their dedication to putting

us through good schools so my brothers and sisters would have the opportunity to be successful in

many different ways, and I also want to thank them for their love and moral support through this

entire process as well. I want to thank Cassie Houtz for her moral and emotional support as well

as some help in understanding some of the dense papers I had to read during the process. Your

presence was also invaluable.

Thank you all.

vi

Contents

Chapter

1 Introduction 1

2 Influencers, Reputation, Validation, and Security 4

2.1 Influencers . 4

2.2 Trust and Reputation . 7

2.2.1 Definitions . 8

2.2.2 Explicit Reputation Systems . 9

2.2.3 Implicit Rating Systems (Client) . 12

2.2.4 Implicit Rating Systems (Server) . 13

2.3 Validation . 14

2.4 Security . 15

2.5 Goals for Our Research . 16

3 Analysis Methods 17

3.1 Social Network Data . 18

3.1.1 Online “Social” Data . 18

3.1.2 Social Network Data Attributes . 19

3.2 Similarity Measures . 22

3.2.1 Jaccard Similarity . 22

3.2.2 Pearson’s Correlation Coefficient . 23

vii

3.2.3 Assortative Mixing . 23

3.2.4 Spearman’s Rank Correlation Coefficient . 23

3.2.5 Cosine Similarity . 24

3.2.6 Euclidean Distance . 25

3.2.7 Normalized Mutual Information . 25

3.2.8 Naive Bayes Classifier . 26

3.2.9 Applying Similarity Measures to Reputation 27

3.3 Term Frequency - Inverse Document Frequency . 30

3.3.1 Related Work . 30

3.3.2 Algorithm . 30

3.3.3 Complexity . 31

3.3.4 Applying TF-IDF to Reputation . 31

3.4 N -Gram Analysis . 31

3.4.1 Related Work . 32

3.4.2 Algorithm . 32

3.4.3 Complexity . 33

3.4.4 Applying N -gram Analysis to Reputation . 33

3.5 K -means Clustering . 33

3.5.1 Related Work . 34

3.5.2 Algorithm . 34

3.5.3 Complexity . 35

3.5.4 Applying K-means Clustering to Reputation 35

3.6 PageRank . 36

3.6.1 Related Work . 36

3.6.2 Algorithm (PageRank) . 37

3.6.3 Algorithm (TunkRank) . 38

3.6.4 Algorithm (TrustRank) . 38

viii

3.6.5 Applying PageRank and Related Algorithms to Reputation 39

3.7 Betweenness Centrality and Modularity . 41

3.7.1 Related Work . 41

3.7.2 Algorithm . 42

3.7.3 Complexity . 45

3.7.4 Applying Betweenness Centrality and Modularity to Reputation 45

3.8 Global Hierarchical Clustering . 45

3.8.1 Related Work . 46

3.8.2 Algorithm . 46

3.8.3 Complexity . 48

3.8.4 Applying Global Hierarchical Clustering to Reputation 48

3.9 Clique Percolation Method . 49

3.9.1 Related Work . 49

3.9.2 Algorithm . 49

3.9.3 Complexity . 52

3.9.4 Applying the Clique Percolation Method to Reputation 52

3.10 Nearest Neighbor Networks . 53

3.10.1 Related Work . 53

3.10.2 Algorithm . 53

3.10.3 Complexity . 54

3.10.4 Applying Nearest Neighbor Networks to Reputation 54

3.11 K -core Decomposition . 55

3.11.1 Related Work . 55

3.11.2 Algorithm . 56

3.11.3 Complexity . 56

3.11.4 Applying K-Core Decomposition to Reputation 58

3.12 Activity Network . 58

ix

3.12.1 Related Work . 58

3.12.2 Algorithm . 59

3.12.3 Complexity . 60

3.12.4 Applying Activity Networks to Reputation 60

3.13 Local Hierarchical Clustering . 61

3.13.1 Related Work . 61

3.13.2 Algorithm (Clauset) . 62

3.13.3 Complexity . 64

3.13.4 Applying Local Modularity to Reputation . 66

3.14 Hyperlink-Induced Topic Search (HITS) . 66

3.14.1 Related Work . 67

3.14.2 Algorithm . 67

3.14.3 Complexity . 68

3.14.4 Applying HITS to Reputation . 70

3.15 Summary . 71

3.15.1 Analysis Methods and Tools Not Described 71

4 Twitter Data 74

4.1 Twitter API and Data Formats . 74

4.2 Collection Limitations . 75

4.3 Twitter Data and Attributes . 77

4.4 Data Limitations . 78

4.5 Statistics for Labor Day 2010 Boulder Fires Data . 81

4.5.1 Qualitative Influencers . 82

4.5.2 Statistics of the First 24 Hours and First Week 83

4.5.3 Statistics of User “fishnette” . 99

x

5 Analysis of HITS Algorithm 109

5.1 Hub and Authority Rank Values . 109

5.2 Social Graph Data . 111

5.2.1 Global Friends/Followers Graph . 113

5.2.2 Keyword Friends/Followers Graph . 114

5.2.3 Mentions Activity Graph . 116

5.2.4 Addressed Messages Graph . 119

5.3 Analysis and Discussion . 119

6 Context-Specific Indegree Ranking 122

6.1 Ranking by Global Follower Counts . 122

6.2 Ranking by Active Users with Pre-existing Network 123

6.3 Ranking by Active Users with New Edges . 129

6.4 Analysis and Discussion . 129

7 Future Work and Conclusions 134

7.1 Future Work . 134

7.2 Conclusions . 137

Bibliography 139

xi

Tables

Table

3.1 Examples of online services . 19

3.2 Matrix of analysis methods and data attributes . 73

4.1 Table of Twitter profile values returned from the REST API for user “schenkmanus”.

Keys and values in bold are those used in data analysis for this research. Values of

“None” are equivalent to null or empty. 79

4.2 Table of attributes of the latest Tweet by user “schenkmanus” from the REST API.

Keys and values in bold are those used in data analysis for this research. Values of

“None” are equivalent to null or empty. 80

4.3 Table of friends and followers of user “schenkmanus” as they are returned from

Twitter via the REST API. This user is barely active in the network and as such,

these lists are very small. Typical users have more friends and followers on average

[57]. 80

4.4 A qualitative list of influencers during the Boulder fire of Labor Day 2010 as given

by fellow researcher Jo White. 83

4.5 A list of the top 25 users with the most tweet counts and associated post rate of each

user in tweets per hour in the 24-hour and one week data sets. Users highlighted in

bold are part of the qualitative set listed in table 4.4. 85

xii

4.6 A list of the top 25 hashtags in use by all users who mentioned at least one keyword

related to the Boulder fire. Note that many hashtags appear that are completely

unrelated to the event. The counts for the one week data have been normalized to

per-day averages in column 5 for comparison with the 24-hour window. 86

4.7 A list of the top 25 username mentions in the 24-hour and one week data sets of the

Boulder fire. Highlighted users in bold are part of the qualitatively influential set of

users. 88

4.8 A list of the top 25 counts of addressed messages originating from users speaking of

the Boulder fire within the first day and first week. The message sent to the target

user in this context does not imply the users were speaking of the fire directly. Users

highlighted in bold are part of the qualitative set. 89

4.9 A list of the top 25 re-tweeted users in the first day and first week of the Boulder

fire. The one week counts are normalized to per-day averages for comparison with

the 24-hour counts. Users highlighted in bold are part of the qualitative set. 90

4.10 A list of the top 25 re-tweeted users in the first day and first week of the Boulder

fire. The user in the source column is the originator of the tweet. Users highlighted

in bold are part of the qualitative set. 92

4.11 A list of the top 15 URLs appearing in the two data sets. Due to idiosyncrasies of

the Twitter API when requesting ATOM format, some URLs are truncated. 93

4.12 A list of the top 25 source applications used by the users in the Boulder fire network.

Tweet totals for both time windows are 12,147 and 2,314,700 for 24-hour and one

week, respectively. The distribution percentages are given. 94

4.13 A list of statistics of the social graph in one-day increments during the Boulder fire.

Active edges connect the users who are actively speaking about the fire in some way.

All edges and users are counts of all unique users encountered in the data sets. . . . 96

xiii

4.14 A list of the top 25 users ranked by their number of followers in the data sets collected

for September 7th, 2010 at 12:41pm. The first rankings are of global follower counts

and the second rankings are of counts only among the active users speaking about

the Boulder fire. Users highlighted in bold are in the qualitatively influential set. . . 100

4.15 A list of the top 15 hashtags in use by user “fishnette” before the Boulder fire, during

the first day of the fire, and during the first week of the fire. 104

4.16 A list of the top 25 usernames mentioned by user “fishnette” in the 24-hour and one

week time windows during the Boulder fire. Users highlighted in bold are part of

the qualitatively influential set of users. 105

4.17 A list of the top 15 users who have received addressed messages from user “fishnette”

and who have sent addressed messages to user “fishnette” in the 24-hour and one

week time periods. Users highlighted in bold are part of the qualitatively influential

set. 106

4.18 A list of the top 15 users who have been re-tweeted by “fishnette” and who have

re-tweeted “fishnette” in the 24-hour and one week time periods. Users highlighted

in bold are part of the qualitatively influential set. 107

4.19 A list of the top 10 source applications used by user “fishnette”, pre-fire, during the

first day, and during the first week of the Boulder fire. 108

5.1 Hub and Authority values corresponding to the graphs in figure 5.1(a). 111

5.2 Hub and Authority values corresponding to the graphs in figure 5.1(b). 113

5.3 Hub and Authority values corresponding to the graphs in figure 5.2. 114

xiv

5.4 Rankings of the top 25 users produced by the HITS algorithm on the social graph

collected after the first day of the fire on September 7th, 2010 at 12:40pm Mountain.

Column one includes all users, and columns two and three only include the top N

most frequently appearing users. The fourth column is a reproduction of all users

ranked by in-degree from table 4.14 as a baseline comparison. Users highlighted in

bold are part of the qualitatively influential set listed in table 4.4. 115

5.5 Rankings of the top 25 users produced by the HITS algorithm on the social graph

collected after the first day of the fire on September 7th, 2010 at 12:40pm Mountain.

The graph only includes those users and edges who used a specific keyword in the

Boulder fire. The second column is a reproduction of these users ranked by in-

degree from the right half of table 4.14. Users highlighted in bold are part of the

qualitatively influential set listed in table 4.4. Users with an asterisk are unique per

set. 117

5.6 Rankings of the top 25 users produced by the HITS algorithm on the mentions

activity graph during the first day of the Boulder fire from September 6th, 2010

at 10:00am Mountain to September 7th, 2010 at 10:00am Mountain. Columns one

and two include all username mentions even if those users were not speaking of the

Boulder fire and ranked by HITS and in-degree, respectively. Columns three and four

only include the users speaking of the boulder fire ranked by HITS and in-degree,

respectively. Users highlighted in bold are part of the qualitatively influential set

listed in table 4.4. 118

xv

5.7 Rankings of the top 25 users produced by the HITS algorithm on the addressed mes-

sages activity graph during the first day of the Boulder fire from September 6th,

2010 at 10:00am Mountain to September 7th, 2010 at 10:00am Mountain. Columns

one and two include all target users of addressed messages even if those users were

not speaking of the Boulder fire and ranked by HITS and in-degree, respectively.

Columns three and four only include the users speaking of the boulder fire ranked

by HITS and in-degree, respectively. Users highlighted in bold are part of the qual-

itatively influential set listed in table 4.4. 120

6.1 Rankings of the top 25 users speaking of the Boulder fire during September 7th, 2010

through September 11th, 2010 by the most followers gained globally within Twitter.

Users highlighted in bold are from the qualitatively important set listed in table 4.4. 125

6.2 Rankings of the top 25 users speaking of the Boulder fire during September 7th,

2010 through September 11th, 2010 by the most followers gained only among those

speaking of the Boulder fire. In this ranking, any pre-existing edges between active

users that existed before the start of the fire count as a gain in followers. Users

highlighted in bold are from the qualitatively important set listed in table 4.4. . . . 128

6.3 Rankings of the top 25 users speaking of the Boulder fire during September 7th,

2010 through September 11th, 2010 by the most followers gained only among those

speaking of the Boulder fire. In this ranking, only new edges created between active

users count as a gain in followers. Any pre-existing edges between users are ignored.

Users highlighted in bold are from the qualitatively influential set listed in table 4.4. 131

xvi

Figures

Figure

2.1 The four layers of the problem of determining a user’s reputation, including questions

for each layer. The layers are foundational and must be approached bottom-to-top. . 5

2.2 A taxonomy of trust models, Vu et al. [120] . 10

3.1 Visualization of the clique percolation method . 51

3.2 An illustration of the k-cores decomposition of a network [64]. Note that vertices

marked with # have the same degree k = 8 but are not in the same core. Further,

vertices marked with x have degree k > 1 but are still considered to be in core k = 1. 57

3.3 An illustration of the groupings of a network into the local community C, its boundary

B, and the edges which connect B to the unknown neighbors U [24]. 63

3.4 Local modularity R for three items in the Amazon recommender network, shown on

log-linear axes. For comparison, the time series for a random graph with the same

degree distribution is shown. The large open symbols indicate the locations of the

five strongest enclosing communities [24]. 65

4.1 An image of latitude/longitude points extracted from tweet post metadata from

posts by users speaking of the Boulder fire in the first 24 hours overlain on a map of

the United States. 96

xvii

4.2 An image of latitude/longitude points extracted from tweet post metadata from

posts by users speaking of the Boulder fire in the first 24 hours, with zoom over the

Denver, Colorado metropolitan area. 97

4.3 An image of latitude/longitude points extracted from tweet post metadata from

posts by users speaking of the Boulder fire in the first 24 hours, with zoom over the

Boulder, Longmont, and Broomfield cities in Colorado. 98

4.4 A graph of the posts created each month by user “fishnette” going back to the

most recent 3,200 tweets. A spike in posting activity can be seen in the month of

September, correlating with the start of the Boulder fire. 101

4.5 A graph of the posts created aggregated by hour of the day by user “fishnette” in the

Mountain time zone. The green line is the average and the red lines are ±1 standard

deviation. A lunch hour and sleep hours are visible. 102

5.1 Sample graphs to illustrate the relationships between hubs and authorities. Hubs

are colored in lavender and authorities are colored in cyan. 110

5.2 A fully inter-connected directed graph, also called a “clique”. 112

Chapter 1

Introduction

Early commercial uses of the internet revolved around online retail sales with sites like Ama-

zon1 and the popular auctioneering site EBay.2 The problem faced by early users of these sites

was a lack of information about goods sold on the retail sites (Is this book or audio CD any good?)

or behavioral history of users in auctions (Does this user pay and deliver quickly?). Explicit repu-

tation systems were developed by these sites and others with similar needs in order to rate users’

behavior and record transaction history.

On the internet today, nearly fifteen years after Amazon and EBay began their businesses,

there is no end to the amount of information one is able to encounter. Google’s page index count

reached one trillion pages in July of 2008 [46] and continues to grow, and with the abundance of

information online – whether that information is in news articles, blog posts, wikipedia entries,

forums, or random messages on social networking sites like Twitter or Facebook – the task of

sorting through that information to determine relevance or validity of claims requires significant

effort on the part of the consumer of that information. In addition to the numerous amateur and

professional news websites, many content management systems (CMS) such as Wordpress3 are

freely available to allow the average home internet user to create content to be posted publicly.

Some studies into user generated content (UGC) reveal an immense amount of information

is both created and shared daily via different online services, including 65,000 new video uploads

1 http://www.amazon.com
2 http://www.ebay.com
3 http://www.wordpress.com

2

per day on the YouTube4 service [20], and over 11.1 million unique photos favorited over 34.7

million times on the Flickr5 photo sharing service [21]. Other work discusses people’s desire to

share personal information or opinions in blogs [83], in small microupdates in Twitter [57] [68], and

in wall posts on Facebook and other sites [79] [23].

One of the main issues with this abundance of information from both organizations and

individuals with varying credentials is that users of the internet are inundated with too much

information. Sorting through this large volume of information to verify or dispute user posts or

news articles becomes a very difficult task, especially considering the variability and often conflicting

nature of information online. Internet users will attempt to verify or dispute claims through their

own searches, through their own experience [59], or make a decision based solely on content [35].

Similar to the need for explicit rating systems described by online commerce, a need now exists to

determine the reputation for people and information online that are not explicitly rated.

I seek to answer the question, “are there tools available to determine influential users in social

networks in the context of a specific event?” This question is the first sub-problem of the larger

question, “are there tools available to infer reputation about users or content in social networks?”

In this research, I investigate different tools and analysis methods gathered from varying science

disciplines that may be employed to analyze social network content and relationships. Tools and

analysis methods broadly include statistics, probability, graph theory, natural language processing,

and others.

The outline of this research is as follows: In chapter 2 I outline the overall problem space

of inferring reputation, explore the definitions of trust and reputation, summarize prior work in

the area of reputation, and discuss goals for this research. In chapter 3 I review many statistical,

graph, social network and natural language processing analysis tools and methods and discuss their

potential applications for inferring reputation. In chapter 4 I describe the data I obtain from the

Twitter6 social network and limitations therein, as well as many statistics on the data returned.

4 http://www.youtube.com
5 http://www.flickr.com
6 http://twitter.com

3

Chapters 5 and 6 describe the implementation and analysis of the Hyperlink-Induced Topic Search

(HITS) algorithm and a new dynamic algorithm for determining influencers in the network during

an event, respectively. In chapter 7 I discuss conclusions and future work to be pursued.

Chapter 2

Influencers, Reputation, Validation, and Security

In this chapter I discuss the dependencies and layers of determining a user’s reputation in the

context of an event. Layers are not necessarily independent of each other; some methods employed

to solve a problem at one layer may also inform problems at another layer. We review research in

area of finding influencers in multiple social contexts and follow with a review of different definitions

of Trust and Reputation that will inform my research direction. We then discuss validation of a

user’s reputation as the third layer in answering the high-level research question described in the

introduction. Finally I discuss security implications of systems implemented to answer the research

questions.

Figure 2.1 shows the four layers of the problem with associated questions within each layer.

The layers are foundational, and must be approached from bottom-to-top, beginning with finding

influencers and moving on to determining reputation, validating that reputation, and dealing with

security implications of determining this information. These layers will now be described.

2.1 Influencers

Finding influencers in a network during an event is a first step in determining reputation.

Before we can look at reputation, We must first ask the question, “who is important in an online

social network during a specific event being discussed within that network?” Intuition leads us to

the fact that influential people are most likely the people who are interacting and communicating

in a network or social group and who are also being listened to by many others. Entire fields

5

Figure 2.1: The four layers of the problem of determining a user’s reputation, including questions
for each layer. The layers are foundational and must be approached bottom-to-top.

6

of study exist around dynamics of social groups and many have been studied in an attempt to

understand influencers. Some examples include adolescent smoking initiation by Arnett [3], moral

hypocrisy in power dynamics by Lammers et al. [70], centrality dynamics and delinquent influence

in game-theoretic networks by Ballester et al. [8] [9], interpersonal interactions in a research team

by Klemm et al. [66], interpersonal interactions in group discussion dynamics by Pan et al. [95],

and notably Wasserman and Faust [121] with various techniques. However, many of these studies

and techniques are centered around social dynamics governed by interaction in-person.

We want to understand how influencers emerge in online social networks where the social

dynamics are governed by the features of the particular online social network such as Facebook1 or

Twitter2 where the user interface has very specific behaviors that do not necessarily (and sometimes

intentionally) correspond to in-person interactions. Here I describe studies of online social networks

that attempt to look for influencers in these types of networks.

Ghosh and Lerman [41] analyze data collected from the Digg3 news network of 3553 news

stories in June 2009. They rank Digg users who posted a news story using many different ranking

measures to determine which ranking system best models the empirical data from the resulting top

Digg stories. The ranking models and algorithms user are closeness centrality, graph centrality,

betweenness centrality (discussed in section 3.7), PageRank/eigenvector centrality (discussed in

section 3.6), Hubbel’s model, in-degree centrality, α-centrality, normalized α-centrality, Katz score,

and SenderRank.

Gomez-Rodriguez et al. [44] analyze 170 million blog entries and news articles collected over

a 1-year period between September 1, 2008 through August 31, 2009. They attempt to infer the dif-

fusion network of how users are inter-connected by looking at how the information spreads through

the blogs and news websites during the year. They use natural language processing techniques and

use two network models (forest fire and kronecker) to determine the diffusion network.

Kitsak et al. [64] use k -shell decomposition (a variant of k -core decomposition described in

1 http://www.facebook.com
2 http://www.twitter.com
3 http://digg.com

7

section 3.11) to determine influential actors in a network and apply the algorithm to LiveJournal4

communities, email contacts, contact network of inpatients in Swedish hospitals, and movie actor

co-star networks. They compare their results to results obtained from running the Susceptible-

Infectious-Recovered (SIR) and Susceptible-Infectious-Susceptible (SIS) epidemiology models on

the same data looking for those who have the most influence on the overall network. This method

does not look at any dynamics of the network and how it might change.

Ormerod and Glass [91] attempt to predict what songs will gain the most popularity in a

toy online music sharing network created by Salganik et al. [103]. Since the sharing data contains

temporal information about when songs were downloaded, Ormerod and Glass are able to look at

the dynamics of the network to predict what songs will become popular.

Some of the above studies look at the dynamic nature of the networks, and some do not. For

my needs, I specifically need to look at dynamic methods or ways that the static methods may be

applied to dynamic data to yield interesting results for finding influencers in the network during a

specific event. New events have initial actors and new actors may be added as the event evolves,

so the analysis methods must adapt to the changes in the underlying network. A number of other

methods techniques that operate on the type of data that exists in online social networks will be

described further in chapter 3 along with analysis of what data these methods may yield.

2.2 Trust and Reputation

Once I am able to determine the “who” of who’s influential in during an event, I then ask

the question, “why is a user influential in the context of an event?” As I attempt to answer this

question, I begin to search for the source of a user’s reputation within this context which is the

second layer of the overall problem. Building a reputation is a dynamic process that occurs over

time, and techniques to determine a user’s reputation must also be adaptive and dynamic. Here

I will describe the work in the area of reputation systems, investigate definitions of Trust and

Reputation, and discuss what information is available for determining reputation in order to refine

4 http://www.livejournal.com

8

my research goals.

2.2.1 Definitions

Many attempts have been made by different researchers to define the very subjective notions

of Trust and Reputation. Vu et al. [120], Grabner-Kräuter et al. [47], and Jøsang et al. [59] each

survey different definitions of Trust and Reputation by people from varying disciplines including

Morton Deutsch (psychology), Niklas Luhmann (sociology), Diego Gambetta (sociology, economics)

and McKnight and Chervany (management, business) in order to make sense of the variable nature

of people’s perceptions of the concepts. Herzig et al. [50] offer a logic-based definition of Trust and

Reputation. We first look at reputation as it is defined for systems that have ratings that are made

explicitly, or actions that can be measured in discrete values to be considered as explicit ratings.

Vu et al. [120] provide a breakdown of trust types, values, properties and models. They

describe two trust types: trust in action, which is trust in the behavior of another agent, and trust

in recommendation, which incorporates the group aspect of social relationships. Trust values may

take on four different values: single, binary, multiple, or continuous. Single values are considered

complaints where a transaction goes badly and an agent sends a claim to the system but does

nothing upon a good transaction. Single value systems cannot differentiate between trusted and

unknown agents. Binary values do allow values for trust and non-trust and an agent can distin-

guish between unknown and trusted agents, but unknown agents are neither trusted or distrusted.

Multiple values allow an agent to specify varying levels of trust, such as “very untrustworthy”,

“somewhat untrustworthy”, “somewhat trustworthy”, and “very trustworthy”. Continuous values

are percentages of trust between 0 and 1.

Vu et al describe four properties of trust: autonomy, asymmetry, transitivity and compos-

ability. Autonomy as a property describes that trust depends on the perspective of the individual,

and two individuals may have very differing trust views on the same subject. Asymmetry is the

property where two individuals may not trust each other equally, depending on the context. In

some cases, trust may be only in a single direction. Transitivity is the property where trust is

9

conferred to an individual who is not directly trusted, but is trusted by an individual who is directly

trusted. Trust transitivity is not perfect, and decays very quickly upon only a few transitive hops.

Composability is the property of trust that is necessary in order to combine multiple trust values

into a final conclusion. This property is not only limited to trust values stated by individuals, but

also includes attributes of the trustee. For example, if readers are asked to rate a news article on

how much they trust the article, extra information about the news agency (whether or not it is CNN

or Fox News) may affect the ratings. The extra attributes are composed into a final conclusion.

Two trust models described by Vu et al. include credential-based and reputation-based trust.

Credential-based trust relies on the authentication of an identity, which is used in many different

systems for user logins such as online banking and email accounts). Many enhancements to simple

username and password credentials have been proposed and studied, such as RSA keys, X.509

certificates, PGP keys, and others.

Reputation-based trust fills the gap where credentials are not enough to trust an individual

and past actions are considered as part of the process of verifying trust. Reputation has both

individual and social/group components. The individual component exists when an agent A only

has knowledge of its own transactions with agent B, and the social/group component exists when

agent A has knowledge of many if not all prior transactions of agent B. Figure 2.2 is a visualization

of the trust model taxonomy.

Vu et al. propose a definition of Trust based on the reputation-based trust model described

in the previous section: “Trust is the belief of an agent A about another agent B in the success

of a transaction as a function of agent B ’s reputation based on B ’s history (either individual or

social). If B ’s reputation is good, A trusts B. If B ’s reputation is bad, A should not trust B in the

transaction.”

2.2.2 Explicit Reputation Systems

Many systems currently exist to rate a user’s reputation in specific contexts. When I describe

explicit rating systems, I am speaking of systems that have well-defined trust attributes that can

10

Figure 2.2: A taxonomy of trust models, Vu et al. [120]

11

take on multiple values and be composed into a meaningful overall reputation score as described in

section 2.2.1. As mentioned in the introduction, online commerce demands demonstrated the need

for systems that track user behavior. That need has been studied numerous times, with solutions

proposed to meet the need (either well or poorly) by a number of different systems. Below is

a non-exhaustive list of reviews or proposals of varying types of explicit reputation computation

models:

• Jøsang et al. [59] review definitions of trust and reputation, computation models (central

or distributed systems using averages, bayesian, fuzzy calculations, etc), and commercial

implementations of reputation systems such as Amazon, Epinions, Slashdot, Google PageR-

ank and others,

• Vu et al. [120] also review definitions, types, properties and values of trust as well as

survey multiple central and distributed computational reputation systems such as Regret,

NodeRanking, P2PRep, and others,

• Abdul-Rahman and Hailes [1] propose a model with discrete categories of very trustwor-

thy, trustworthy, untrustworthy, and very untrustworthy, using lookup tables to update

reputation scores,

• Sabater and Sierra [102] propose a model to be used in transactions using fuzzy rules to

obtain reputation scores, but do not attempt to detect malicious users,

• Guo and Kraines [48] also propose a model with discrete categories (high, moderate, low,

unknown, dishonest), making probabilistic assumptions of how correctly users will recom-

mend each other based on their rating, and calculate a transitive trust value for users with

no prior history,

• Carbo et al. [17] and Sherchan et al. [107] propose methods based on fuzzy logic models

for reasoning about user feedback,

12

• Kuter and Golbeck [69] propose a model that performs a probabilistic logic sampling over

a Bayesian network to trust user recommendations only within high confidence intervals,

• Mislove et al. [80] propose a central token authentication system to combat spam from dif-

ferent sources (web, email, mislabeled content, and others) by leveraging trust relationships

and degree via social links,

• Kamvar et al. [61] propose a distributed model for managing reputation in peer-to-peer

networks, attempting to prevent malicious users from injecting false reputation values into

the network, and weighting long-lived users more strongly than newcomers, and

• Caverlee et al. [19] propose the SocialTrust framework which is an explicit feedback mech-

anism for communities within MySpace.

2.2.3 Implicit Rating Systems (Client)

The above explicit reputation systems do serve specific purposes, but in the context of many

online social networks or other information online, no means exist to explicitly rate people or

information using defined trust values that can be composed into a meaningful rating, so we must

look at implicit means of measuring and rating trust of people or information online.

Nichols [89] describes implicit data – data generated by users interacting with a system –

as usable for determining implicit ratings. He continues to state that implicit ratings overall have

less value than ratings generated from explicit systems (such as those mentioned in the previous

section), but that implicit ratings may be much more numerous. He describes many examples of

data that can be used for implicit ratings. Some of those examples are:

• Reference - User cites or refers to an item

• Saving - An item is favorited or saved for later use

• Examination - How long does a user look at an item

• Removal - What information is deleted or removed by a user

13

Research into implicit rating systems typically involves monitoring users at their source

clients. Examples of monitoring users includes White et al. [125] who create a web search applica-

tion (utilizing existing search engines at the time) to group search results based on user interaction

with the search over time. They closely monitor how users interact with each search result and

re-order pages and modify summary snippets accordingly. Two more examples of client-side user

monitoring include Claypool et al. [26] who modify a web browser to monitor exactly how a user

traverses web links from search results to determine relevance of pages based based on how far links

are followed and Joachims et al. [58] combine an eye-tracking device to monitor how far down a

user reads a document and an HTTP proxy to monitor the time between page requests in order to

determine utility of web content to the user.

2.2.4 Implicit Rating Systems (Server)

The problem with applying implicit monitoring systems to social networks such as the ones

described in the previous section is we rarely have access to client-side information about what

links the user follows or how long a user remains reading a piece of information. Web server logs

are also not accessible, and as anonymous researchers we only have access to the public Application

Programming Interfaces (APIs) that have varying restrictions. As an example, the Twitter service

does have a public API5 which allows us to see only the final results of explicit actions taken by

users, such as posting a message or creating a social link with other users. This significant limitation

requires us to find tools or analysis methods that rely on observable user activity in social networks

to potentially infer reputation on a user or information generated by that user.

We describe varying methods in chapter 3 that may be employed to determine implicit ratings

of a user that may lead to eventual calculation of a reputation score. In chapter 4 I describe the

data available as well as limitations accessing that data from the Twitter social network used in

this research.

5 http://dev.twitter.com

14

2.3 Validation

The third layer of the overall research problem of determining reputation of a user includes

validation of claims made by users about information or other users in the network. While this

is an important piece of the larger problem and arguably the most desirable for which to find a

solution, this thesis does not focus on this part of the overall research question. We will briefly

discuss the area of validation here.

The process of validating content is a very difficult one and typically left to humans for

processing of information. Data must be cross-correlated between sources to verify identities,

content, intent, and many other attributes. Humphreys et al. [53] perform a qualitative analysis of

how often users in the social network are releasing private information in their general tweet streams

and find that 12.1% of tweets have a location and 22.7% have proper names included in the text.

Further, Mendoza et al. [78] also qualitatively analyze tweets for intent and self-correction during

the Chile earthquakes in 2010. Additional qualitative studies of the network include Starbird et

al. [109] who analyze use of the Twitter service during the Red River floods in North Dakota and

Canada during the 2009 season and Palen et al. [92] who analyze use of the Facebook6 service

during the Virginia Tech shootings of 2007. While the information gained in each of these studies

is important, it is also very difficult for a computer to determine on its own.

In light of the need for human intervention or review, some larger organizations have been

created to facilitate human review of data of varying kinds. The concept is termed “crowdsourcing”

where a crowd of people is employed, usually as a call for volunteers, to analyze data. Examples

of systems that exist for crowdsourcing include Amazon’s Mechanical Turk7 and the disaster

visualization and coding system of Ushahidi.8 Mechanical Turk may be utilized to enabled

semantic coding of general data for its relevance and correctness for varying applications. Ushahidi

is more specialized for disaster events of varying kinds.

6 http://www.facebook.com
7 http://www.mturk.com
8 http://www.ushahidi.com

15

For the purposes of validating the reasons discovered for why influencers are influential, I

foresee the need to have humans perform the validation of those reasons, or to dynamically inform

algorithms or processes created to find those influencers or reasons. And while computing systems

may be implemented to assist in narrowing the scope of the information reviewed by humans, but

the need will always exist to have people reviewing data. The groups of people may simply be

public health and safety officials or those similar to Ushahidi or Mechanical Turk.

2.4 Security

The final layer of the overall research problem lies in reporting of any of the data gained

from analysis from the previous three layers: finding influencers, understanding why those users

are influential, and validating those reasons. The question of security arises when reporting any of

that information publicly. Any information about users during a disaster event must be properly

scrubbed of information that may identify actors involved in the disaster that may introduce risk

of harm, whether that harm is physical, emotional, financial or otherwise. The problem enters the

area of anonymizing data with means that guarantee a reduction or elimination of those risks.

An example of the risk of publicly reporting data is demonstrated by the de-anonymization

research performed by Narayanan and Shmatikov [82] on the Netflix challenge dataset where a

significant percentage of the population (in some cases more than 80%) can be uniquely identified

in a supposedly “anonymized” dataset. Another example of potentially sensitive information that

may appear in the data could be information about the deaths of individuals such as those involved

in the Virginia Tech shootings of 2007. A study performed by Palen et al. [92] show that many

groups of people had names of the deceased and were posting that information publicly before

public health and safety officials had made any official announcement on the incident.

Another problem that arises when reporting any of the information gained in the data analysis

is gaming of the system. This is the problem of dealing with delinquent actors in a network who

are actively trying to subvert or break the system by injecting false or misleading information.

These actors could simply be curious individuals who would attempt to inflate the influencer score

16

of themselves or another user, or as a worst-case scenario, multiple actors would be involved an

organized group of individuals performing a Sybil attack in order to misdirect the public or officials

from a terrorist attack by giving misleading information about a possible attack in a different

location than the one planned.

Research in the area of manipulation of networks and ranking systems includes Cheng and

Friedman [22] who study how the PageRank algorithm may be manipulated with Sybil attacks, Yu

et al. [128] who propose a technique for detecting nodes that are participating in a Sybil attack

to infiltrate the trust network of users in a social network, Puttaswamy et al. [98] who propose a

technique to protect user data in a network using k -anonymity, and Gayo-Avello [40] who analyze

how different ranking methods (PageRank, HITS, NodeRanking, TunkRank, TwitterRank) may

be manipulated by attackers.

While I do not go in depth in this area in the research in this thesis, these issues must be

very carefully considered when building systems and algorithms operating on public data that may

be public as they must be robust from attack.

2.5 Goals for Our Research

In this research I seek to answer the question described in section 2.1, “who is important in

an online social network during a specific event being discussed within that network?” In chapter

3 I will investigate numerous methods and tools that may assist in answering this question. The

subsequent layers of the problem as described in this chapter will be left for future work.

Chapter 3

Analysis Methods

In this chapter I broadly survey analysis methods and tools from many different science

disciplines such as biology, linguistics, computer science, physics, economics, and others. We begin

in section 3.1 by describing the different types of data I encounter in social networks and define

attributes I will investigate. Sections 3.2 through 3.5 describe a number of different statistics,

probability, and natural language processing methods used in social network data analysis. Sections

3.6 through 3.14 cover a number of graph-theoretic methods for determining community and user

influence based on the social graph. We conclude the chapter with a summary of the methods and

briefly mention other work not covered in the chapter. For most of the methods, I will provide the

following:

• A high-level description of what the method does,

• Prior work related to the method being described,

• A description of the algorithm,

• An analysis of the complexity and running time of the algorithm, and

• An analysis of how this method may be applied to inferring reputation of users or infor-

mation in social networks.

18

3.1 Social Network Data

Before I am able to investigate the data online produced by people, I must first discuss the

motivations for choosing to investigate the analysis methods and tools described in this chapter.

General data analysis includes a vast set of tools, methods and algorithms, so I need to understand

the form and context of the data to be analyzed. In this section I discuss what data is available to

us from different online sources that may be used to infer reputation.

3.1.1 Online “Social” Data

Many services exist for the publication of information online by the average home internet

user. Aside from the long ago popular Bulletin Board Systems (BBS), one of the first methods for

publication was simple website hosting by providers in the mid-to-late 1990s such as the GeoCities1

service. Over the last eleven years, a number of new services have appeared and old services have

matured with larger feature sets. These services include rating sites (sites that allow people to

give feedback on products or people), forums (the evolution of bulletin board systems where people

are able to create discussions around a topic), news and blogs2 (places were news or opinions are

posted and people may leave comments), and wikis.3

As capabilities evolved, another feature began emerging in these services to allow users to

declare connections, or relationships, to one another. The common term social network is typically

reserved for online services that include this relationship feature in addition to the ability share

personal information, photos, videos or opinions about themselves or their experiences. Examples

of popular services that fall into the social network category include Facebook, Twitter, MySpace,4

and many others. Table 3.1 lists some examples of online services that fall into these different

categories. These divisions are not strict; some services such as Ning include many features that

span multiple categories. The category explored in this research is the social networks category

1 GeoCities was acquired by Yahoo in 1999 [27] but no longer exists as an available hosting service [111].
2 News and blog websites have a very similar feature set and therefore I group them together here.
3 Wikis are usually site-specific and are not open to public modification with only few major exceptions such as

http://wikipedia.org and http://wikibooks.org.
4 http://www.myspace.com

19

(colored grey in the table) that includes the network graph connectivity information in addition to

other content shared among users in messages, photos, videos, and other media.

Table 3.1: Examples of online services

Ratings Forums/News/Blogs Social Networks

amazon.com slashdot.org twitter.com
epinions.com cnn.com facebook.com
netflixx.com wordpress.org myspace.com
bizrate.com blogspot.com linkedin.com
reviews.cnet.com thedailywtf.com flickr.com
hotornot.com ning.com ning.com
angieslist.com livejournal.com orkut.com

3.1.2 Social Network Data Attributes

In order to determine what available analysis methods and tools would be most applicable

for analyzing social network service data, I must understand the form of that data. The data for

social networks falls into three general categories:

(1) content - The content of the messages, profiles, pictures, videos, or any other type of

media shared between users,

(2) metadata - Extra data included with that content, and

(3) social graph connectivity - The declared relationship links between users.

Obviously the first two categories are common to all types of online services, but social

networks differ from most forums, blogs and rating websites by the existence of the declared social

graph. The content category is divided into four main types: text, pictures, audio, and video. The

metadata associated with each type varies wildly depending on the social network, but nevertheless

metadata exists. The social graph connectivity of the popular social network services is typically

binary, meaning a link exists or does not exist. Rarely are social graph links given weights to

represent different kinds of relationships (friend, acquaintance, business partner, etc). The social

20

graph is also typically very visible by default for all to see. For the purposes of this research, I am

only interested in the text and metadata of messages and profiles as well as the social graph.

3.1.2.1 Message and Profile Text

Analyzing message and profile text falls under the domain of Natural Language Processing

(NLP), specifically in the area of Information Retrieval (IR). When this analysis is performed in

the context of reputation, I am interested in methods and tools that assist us in understanding the

following:

• Keyword/topic detection - Understanding what words co-occur among many users to

help determine both topic groups and other words to monitor.

• Phrase detection - Determining what phrases are being used among a group of users

• URLs - Knowing what websites are referenced among a group of users.

• Duplicates detection - For both detection of spam or bots as well as detection of when

information is forwarded between different users that is deemed interesting.

• User mentions - When users are mentioned by others in text, either in response to or

forwarding of existing information.

3.1.2.2 Message and Profile Metadata

Analyzing metadata becomes largely a problem of statistics and probability in terms of

counting, grouping, and predicting the likelihood of users having certain attributes or metadata

values. The metadata that is most important to us is the following:

• Timestamps - We want to know when messages were sent, profiles were created or modi-

fied, or relationships in the social graph were created.

21

• Data source - In a number of social networks, the source interface (such as the website

or phone application) is available. This information reveals user behavior as he or she

interacts with the social network.

• Location - One of the most sought-after pieces of information is the physical location of a

user in a social network as they are interacting with the site, or revealing where they may

have been at the time posted photos or videos that were created.

• Language - Language settings may assist in determining other attributes of users in a

social network, and occasionally this information is available.

3.1.2.3 Social Graph

The availability of the social graph representing declared relationships allows us to apply

graph-theoretic methods and algorithms to determine a number of different attributes. Some of

those attributes I may wish to know are as follows:

• Community - Users automatically form or seek out online communities, but I want to be

able to detect the boundaries of those communities.

• Similarity - Combining similarity measures and the social graph may yield additional

information about users based on their association with people in the social graph and

what common interests or activities they may share.

• Influence/Rank - We want to understand who is the most influential in a network of

people during a specific event, and the social graph may be able to inform us of which users

have the farthest-reaching influence when sending messages.

• Connectivity - Other relationship patterns in the social graph may yield extra informa-

tion about the interaction between users, for example in the friend-of-a-friend motif5 in a

network.

5 One available tool for motif detection is FANMOD [124].

22

3.1.2.4 Investigating Analysis Methods and Tools

Now that I have an understanding of the data attributes I want to discover or further un-

derstand within social networks, I am now able to investigate different analysis methods and tools

that may assist in determining the above information. If I am able to gain this information, I may

then begin analysis to determine whether or not the information may confer reputation on users or

information within social networks.

3.2 Similarity Measures

In this section I describe a number of different metrics used to determine similarity between

different sets of data. The methods described here are not exhaustive but are merely some of the

common methods used in different data analysis. We follow-up the descriptions of the methods

with a summary of how each may be applied in inferring reputation.

3.2.1 Jaccard Similarity

The Jaccard Similarity Coefficient (also known as the Jaccard Index) was developed by French

botany professor Paul Jaccard in 1901 [56]. The coefficient measures the similarity (or distance)

between two sets of data. The calculation is defined as the size of the intersection of the sets divided

by the size of the union of the sets as follows:

J(A,B) =
|A ∩B|
|A ∪B|

(3.1)

3.2.1.1 Complexity

Given pre-created sets A and B of size m and n respectively, the time complexity of the

algorithm is O(m+ n) when using efficient data structures.

23

3.2.2 Pearson’s Correlation Coefficient

Pearson’s Correlation Coefficient measures the linearity between two variables. Values range

from -1 (perfect negative relationship) and +1 (perfect positive relationship), where 0 is no corre-

lation at all. N is size of the sample set of both variables.

r =

∑
XY −

∑
X
∑

Y

N√
(
∑
X2 − (

∑
X2)

N)(
∑
Y 2 − (

∑
Y)2

N

(3.2)

3.2.2.1 Complexity

The calculation occurs in O(n) time. All sums and squares can be calculated in one pass

followed with a calculation in constant time.

3.2.3 Assortative Mixing

Assortative mixing, proposed by Newman [85], is a property of networks where vertices in a

graph are connected to other vertices with the same or similar attributes of each other. To calculate

the assortative mixing value r, I define M as the number of edges, N is the number of vertices, and

j and k are the vertices at either end of an ith edge. The following calculation results in a value

ranging from −1 (perfectly disassortative) to +1 (perfectly assortative):

r =
M−1

∑
i jiki − [M−1

∑
i
1
2(ji + ki)]

2

M−1
∑
i
1
2(j2i + k2i)− [M−1

∑
i
1
2(ji + ki)]2

(3.3)

3.2.3.1 Complexity

This calculation is run over all M edges in the network, and so runs in O(M) time.

3.2.4 Spearman’s Rank Correlation Coefficient

Spearman’s Rank Correlation Coefficient, also known as Spearman’s Rho, is also a measure

of linearity but after the variables are converted to rankings (starting at 1 for the smallest value

24

of each variable and increasing from there). The measure essentially determines whether or not

the two variables have a monotonically increasing or decreasing relationship as the value of the

independent variable increases. N is the number of data points and xi, yi are the ranking values

for each variable.

ρ = 1− 6
∑
i (xi − yi)2

N3 −N
(3.4)

3.2.4.1 Complexity

If one has values of variables that require conversion to ranking scores, a sorting method must

be used on both variables in order to set the appropriate ranking scores. A fast sorting routine such

as quicksort will on average require O(n log n) time which must be run twice. Once the ranking

scores are calculated, the correlation score requires O(n) time to sum the difference in ranking

scores.

3.2.5 Cosine Similarity

Cosine similarity is a measure of similarity between two vectors of size N by finding the cosine

angle between the vectors by calculating the dot product of the two vectors. Since the measure

computes the value for any pair of vectors of equal length, many different types of data can be

converted into vector form to be compared using this method. Given two vectors A and B of size

N :

cos(θ) =
A ·B
‖A‖‖B‖

(3.5)

3.2.5.1 Complexity

The time to compute a dot product is simply O(n) which makes this a very useful and

common similarity measure for large or multiple dataset comparisons.

25

3.2.6 Euclidean Distance

Euclidean distance is commonly used to measure similarity among data points, but does

not necessarily have to represent real distance measures. The Pythagorean Theorem is used to

determine the distance between two points in n-dimensional space. Given two points p and q in

space with n dimensions, p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn). We then calculate the length

of the line segment pq as follows:

d(p,q) =

√∑
i=1

(pi − qi)2 (3.6)

3.2.6.1 Complexity

The calculation of euclidean distance takes time O(n) where n is the dimension of the space

of the points. Typically n = 2 or n = 3 in most real-world applications, so this calculation can

be considered constant time. If S is the set of all points in a sample space, the time to calculate

distance between all points is O(‖S‖ log ‖S‖).

3.2.7 Normalized Mutual Information

The Normalized Mutual Information metric was first proposed by Fred and Jain [38] as a

means of comparing different clusterings of data with ground truth information to measure the

consistency between different data clusterings. Mislove et al. [81] apply the metric to a global

hierarchical clustering method (described in section 3.8) using profile data collected from Facebook.

Then the metric is calculated between the two clusterings to determine how well the cluster-

ings match. The value ranges from 0 to 1, where 0 is no correlation between clusterings, and 1 is

an exact match between clusterings.

• x - A square matrix whose rows (typically) correspond to the ground truth data clustering,

and whose columns correspond to data clusterings from a second clustering method

• xij - The number of nodes in ground truth cluster i that appear in the detected cluster j

26

• x.i - The sum over column i

• xi. - The sum over row i

• N - The number of vertices in the graph

−2
∑
i

∑
j xijlog(

xijN
xi.x.j

)∑
i xi.log(xi.N) +

∑
j x.jlog(

x.j
N)

(3.7)

3.2.7.1 Complexity

Since the double summation exists in the top of the fraction, the worst-case running time

of the algorithm is O(mn) where m and n are the number of attribute-based and algorithm-based

clusterings, respectively.

3.2.8 Naive Bayes Classifier

The Naive Bayes Classifier method is based on Bayes’ theorem named after Thomas Bayes,

an English mathematician in the 18th century who derived a special case of the theorem and was

published posthumously. The method works to describe posterior probabilities of events occurring,

given an existing set of evidence. Essentially, the method works to classify data into categories

based on the similarity different samples of data compared to a known set. Blei et al. [14] and

Ramage et al. use use Bayes Theorem in the Latent Dirichlet Allocation method to classify words

in documents to different topics. Sankaranarayanan et al. [104] use a naive Bayes classifier to

determine whether or not different Tweets in the Twitter service are considered “news” or “junk”.

To calculate a Bayesian probability, we have the following definitions:

• P (H) - The probability that our hypothesis H may occur.

• P (∼ H) - The value 1− P (H).

• P (E|H) - The conditional probability that the evidence will occur given the hypothesis has

occurred.

27

• P (E| ∼ H) - The value 1− P (E|H).

The basic calculation for a Bayesian probability is as follows:

P (H|E) =
P (E|H)× P (H)

P (E|H)× P (H) + P (E| ∼ H)× P (∼ H)
(3.8)

The Naive Bayes Classifier then divides data as either matching or not matching based on

a specific probabilistic threshold. The threshold value must be tuned for each application and is

usually found empirically from tests.

3.2.8.1 Complexity

The complexity of the probability calculation is simply O(n) to obtain the necessary values

of P (H) and P (E|H), followed by a constant calculation.

3.2.9 Applying Similarity Measures to Reputation

Similarity measures are very flexible in how they may be applied to analyzing data. In the

context of social networks, similarity measures are mainly used to determine how well-clustered

users are in different ways. Some examples of the different ways these measures may be used are

determining the similarity between the sets of words used in messages in a group of users, the

similarity of attributes between users in a group, the frequency of postings, or the time of day of

postings. There are many arrangements of the data to be compared withs similarity measures in

this fashion.

Jaccard Similarity is useful for comparing sets of data without any need for ordering and

results in a value between 0 and 1 where 0 is no similarity between sets at all, and 1 is fully identical.

As an example, this method has been used by O’Connor et al. [90] for determining whether or not

a Tweet is actually a re-tweet of a prior Tweet using this simple “bag of words” approach where

spam is likewise grouped due to similarity.

Cosine Similarity is widely used in data analysis as a similarity measure due to its simplicity

28

and fast calculation. It can be used to compare words in documents and normalize the comparison

between documents of different word counts as well as compare vectors of profile attributes. Some

examples include Narayanan and Shmatikov [82] who use cosine similarity in their popular analysis

of user profiles in the Netflixx dataset, Sankaranarayanan et al. [104] who determine topic clustering

of Tweets with cosine similarity, and Sayyadi et al. [105] use cosine similarity to cluster documents

around topics.

Euclidean Distance is commonly used as the similarity metric for data values that have

measurable delta values between each other. Obviously this metric is used when dealing with real-

world distance values, but other measurements that can be plotted in a coordinate plane may use

euclidean distance to determine similarity as well.

Pearson’s Correlation Coefficient is a very common method for quickly determining

relationships between different variables in a data set. It has been used by Cha et al. [21] and

Tiovonen et al. [112] to measure in-degree and out-degree correlation of friends links in social

networks, by Ziegler and Lausen [129] to measure the similarity between recommendations of users

rating books on Amazon,6 and by Newman [85] who uses Pearson’s Correlation as the basis for the

measure of assortativity in social networks which is described in section 3.2.3.

Assortative Mixing is known as “homophily” or “positive preferential attachment”. New-

man states, “Patterns of friendship between individuals for example are strongly affected by the

language, race, and age of the individuals in question, among other things. If the people prefer

to associate with others who are like them, we say that the network shows assortative mixing or

assortative matching” [86]. Assortative mixing is based on Pearson’s Correlation Coefficient [85]

which is described above in section 3.2.2. Newman [86] studies assortative mixing in the context

of ages of marriage partners, racial mixing in heterosexual relationships, websites on the internet,

co-authorship networks, address books, software dependencies, and multiple biological networks

such as protein interactions, neural networks, food webs, and more. Chun et al. [23] study assorta-

tive mixing by vertex degree in the Cyworld social network in South Korea and Bagler and Sinha

6 http://www.amazon.com

29

[5] apply assortative mixing to protein contact networks. Assortative mixing is also the basis of

the Girvan-Newman modularity measurement [42] for community detection which is described in

section 3.7.2.3.

Using assortative mixing we may find interesting patterns in the data of users for differ-

ent events. We may attempt to cluster users around different attributes or keywords and this

method could be used to determine whether or not a specific attribute clustering lends to positive

preferential attachment during that event.

Spearman’s Rank Correlation Coefficient can be used to compare different reputation

metrics to determine the efficacy of a new approach to determining reputation. If I find that an

analysis method is particularly good at determining location, I could use Spearman’s correlation

to see how well a second location method performs when compared to the first method. One issue

that Spearman’s ranking has is when the independent variable xi has two or more tied rankings,

the calculation is no longer valid. Two data points that have exactly the same values do not have

any linear correlation, so Pearson’s correlation coefficient described in section 3.2.2 must be used

and the tied rankings end up sharing an averaged ranking score.

Normalized Mutual Information is simply another way in which to compare clusterings

of data, and in this case will be very useful for comparing the many different graph clusterings that

are reviewed in this chapter. For example, we may use this measure to compare ground-truth data

of human-analyzed datasets to k -shell decomposition which is a variation of k -core decomposition

as described in section 3.11. This measure has been used in this way by Mislove et al. [81]

when comparing ground-truth clusterings of users in Facebook to the global hierarchical clustering

method as described in section 3.8.

A Naive Bayes Classifier may be applied to many different aspects of social networking

data. We may have a set of users who share an attribute, and may determine the probability of

whether or not a new user shares that attribute based on other data from user profiles. We may

also apply the Latent Dirichlet Allocation methods to determine groupings of users based on the

topics and keywords they share. These are only two examples of a great variety of applications for

30

this specific measure.

3.3 Term Frequency - Inverse Document Frequency

Term Frequency - Inverse Document Frequency (TF-IDF) is a very common method in infor-

mation retrieval systems for determining the importance of a word in a group of documents. The

Inverse Document Frequency (IDF) portion of the method was proposed by Spärck Jones [108] as

a means to find words that are good discriminators between different documents. Intuitively, a

word that occurs in many documents should be given a lower weight than one which occurs in few

documents. When combined with Term Frequency (TF) which in the simplest manner is simply

the count of the words in a document, Robertson [100] describes TF-IDF as a measure which is

“proved extraordinarily robust and difficult to beat” for determining the importance of a word

among documents.

3.3.1 Related Work

Bilenko and White [13] use a variant of TF-IDF to determine relevant web pages based on

user search and browsing history based on query terms and how many times those query terms

appear in documents that users have visited. Costache et al. [29] use global TF-IDF scores to

personalize PageRank scorings for websites. Sankaranarayanan et al. [104] use TF-IDF scores

combined with Cosine similarity to determine whether or not to add a Tweet post to a clustering

of other news-related Tweets.

3.3.2 Algorithm

Robertson [100] presents equations and derivations of the measure. The probability of a term

ti occurring in a document d is given as the following where ni is the number of documents in which

ti occurs and N is the count of all documents:

P (ti occurs in d) =
ni
N

(3.9)

31

Now the IDF is given as the following:

idf(ti) = − logP (ti) (3.10)

3.3.3 Complexity

The TF-IDF calculation requires a count of words and phrases in all documents considered,

which takes O(n) time where n is simply the total number of words in all documents. Any additional

documents can be added to the total without the need to recalculate the values from the beginning.

3.3.4 Applying TF-IDF to Reputation

The TF-IDF method works well with a large collection of documents that have a reasonable

length. One issue that arises with TF-IDF in the context of microblogged messages is that the

messages are very small (the average Tweet is 11 words long) and words very rarely repeat so the

term frequency is also essentially a count of the documents in which it occurs [90]. Further, new

words or misspellings can lead to a large TF-IDF score when they may not actually be important

[104].

However, this technique can still prove to be useful as one of the important issues in dealing

with social networking information is to determine when new events are occurring or what new

keywords are starting to be used. One could envision a new keyword initially having a large TF-IDF

score and over time this value drops as more people adopt the keyword or a larger phrase (n-gram)

and then the derivative of the TF-IDF score over time may become an important indicator of

adoption of a keyword or phrase.

3.4 N -Gram Analysis

The n-gram analysis method is a word counting technique in the natural language processing

field that computes the probability of a series of words occurring in a specific order. For example, I

would use n-gram analysis if I want to compute the probability of the word “nine” occurring after

32

the series of words, “I went to bed at”. The size of the grouping of words is the value of the n

in n-gram, and 2 -grams are called bigrams and 3 -grams are called trigrams. The method offers

insight into a set of documents as to the common set of phrases that appear in the corpus.

3.4.1 Related Work

N -gram analysis is a very common Natural Language Processing method and is taught in

courses on the subject and appears in textbooks [60]. The usefulness of n-grams is demonstrated by

Google’s release of their 5 -gram (and fewer) corpus of phrases that appear at least 40 times among

all websites they crawl for the purposes of facilitating public research [45]. O’Connor et al. [90]

use unigram, bigram, and trigram analysis to determine common phrases in tweets in the Twitter

service. N -grams are also not limited to processing text, but has been applied to computing the

distance between protein sequences [55].

3.4.2 Algorithm

Here I will describe the process for computing unsmoothed n-grams for a corpus of text.

The process for computing the probability of a sequence of words of size n involves computing

the conditional probabilities of the preceding n− 1 number of words in the sequence. For bigrams

this means I only compute the probability of a word wn occurring based only the previous word

wn−1. Using the example in the introduction to this section, instead of computing the following

probability (which is read, “What is the probability of the word nine occurring given I went to bed

at?”):

P (nine|I went to bed at) (3.11)

We instead approximate the bigram using maximum likelihood estimation of bigrams from

a specific corpus of data normalized to their relative frequencies in the corpus, and then multiply

the relative frequencies together:

33

P (nine|I went to bed at) = P (went|I)× P (to|went)× P (bed|to)×

P (at|bed)× P (nine|at) (3.12)

3.4.3 Complexity

The complexity of computing the phrase probabilities using n-grams is contained in counting

the n-grams in the corpus and simultaneously computing the relative frequencies of those n-grams.

The process of computing n-grams requires a single pass of O(w − n + 1) where w is the count

of all words in the corpus. Different n-gram sizes must be computed separately. The process of

computing the actual probability of a word given a phrase using bigrams is a constant calculation

with simple lookups to the computed relative frequencies.

3.4.4 Applying N -gram Analysis to Reputation

The majority of the data available in social networks is contained in text if I ignore the

other media types of pictures, audio and video. N -gram analysis offers the potential for culling out

useless information from bots or spammers, or from messages that are unrelated to the event being

considered at that moment for determining reputation. This analysis will lend insight into the

phrases that are popular among users during an event, and if combined with effective visualization

tools, will offer researchers a means of quickly detecting phrases that are becoming important over

the course of the event.

3.5 K -means Clustering

The k -means clustering method, formally introduced computationally by Lloyd [73], is a

method for automatically partitioning data into k different sets. The value of k is either pre-

determined or iteratively increased to determine clustering. The method is unsupervised and works

to cluster data around k points (called centroids).

34

3.5.1 Related Work

The original idea was initially explored by MacQueen [75] in 1967 before Lloyd [73] offered a

euclidean-space based computation. The method is very commonly used in data mining techniques

with widely varying applications. The following are a small sample of applying k -means to infor-

mation available online: Huttenhower et al. compare their Nearest Neighbor Networks clustering

method (described in section 3.10) to k -means. Fred and Jain [38] combine k -means clustering

with normalized mutual information (described in section 3.2.7) yield more robust data clustering

across various data sets. Strehl et al. [110] evaluate k -means clustering among other methods in

the context of web page clustering.

3.5.2 Algorithm

In order for data to be clustered using the k -means algorithm, the data must first be converted

to comparable values (if it is not already in that form). For example, if one wants to look at

attributes of fruit, such as weight and type, one first has to convert the type (apples, oranges,

bananas, etc.) to numerical values. What values are used are not important, as long as the values

are uniquely represented in a set. Once the data is in a comparable form, the k -means method

operates in five major steps:

(1) Choose a value of k for the number of clusters to be discovered.

(2) Choose starting position of each of the k centroids. Note that the centroids may be chosen

specifically or randomly and that the starting positions may affect the final clusterings.

(3) Calculate the distances for each data point in the sample space to each centroid. This

calculation is done using the Pythagorean Theorem described in section 3.2.6.

(4) Group each data point according to its closest centroid. If the groupings have not changed

from the previous iteration, then stop.

35

(5) With the current groupings of points to their nearest centroids, calculate the new values

of the k centroids based on the membership. This is done by calculating the average

coordinate among all data points in each group.

(6) Repeat from step 3 until finished.

3.5.3 Complexity

Step 3 requires O(kn) time to calculate the distance from k centroids to n points in space.

Each distance calculation requires constant time which is of order of the dimension of the sample

space. Depending on how the distances are sorted and stored, adding a data point to a grouping is

dependent on the data structure. If a max-heap is used for each data point for its distance values

to each centroid, grouping time is O(log k) for step 4. Step 5 requires O(n) time for computing new

centroids for all groups. Then I must iterate until centroids no longer change their values, which

may take I times. This leaves us with a worst-case running time of O(In2 log k). Many times the

convergence occurs much more quickly than worst-case.

3.5.4 Applying K-means Clustering to Reputation

The k -means algorithm is applicable in attempting to infer reputation, especially in the early

stages of data analysis. The method assists with understanding the basic patterns in the data which

I am able to apply to word and n-grams, profile or message metadata, and any available location

data. One of the problems with keyword search on social networks is that results may contain more

than one search term. One of the ways I would be able to use k-means clustering would be to group

users to keywords in search results in order to determine to which keyword users are closest, or

said differently, which keyword users are using the most in their messages. For other general data

analysis, I can compute clusterings of users based on varying profile attributes or friends.

36

3.6 PageRank

The PageRank method, proposed by Larry Page and Sergey Brin [16], is one which calculates

the eigenvector centrality of pages which is the probability that a random surfer will follow a link

to a specific web page on the internet based on the number of links to that page, as well as the

number of links to parent pages as well. A page with very low in-degree may be linked from a

very highly ranked page, and therefore confers a high pagerank onto the low in-degree page. They

also account for the fact that a surfer may also randomly choose to go to a separate website and

not follow the links on the current page (known as the damping factor). The algorithm works

iteratively and converges relatively quickly to useful values.

3.6.1 Related Work

The PageRank algorithm is essentially a very large Markov chain as described by Ding et

al. [31] since a user following links on a page is independent of the previous page that user

visited. TunkRank, proposed by Tunkelang [113], is an implementation of PageRank on Twitter

relationships.7 The TwitterRank method developed by Weng et al. [123] uses a modified PageRank

in addition to topic modeling to find influential users on Twitter. Costache et al. [29] use a variant

of PageRank to personalize results based on individual and peer history. Gyöngyi et al. [49] propose

the TrustRank algorithm which combines human-rated pages (spam or not spam) with PageRank

and transitive trust values to compute “good” and “bad” pages. Other investigations into the

efficacy and manipulability of PageRank include Bar-Yossef and Mashiach [10] who investigate

local approximations of PageRank, Cheng and Friedman [22] who look at how PageRank may

be manipulated using Sybil attacks, and Forsati and Meybodi [37] use learning automata with

PageRank to recommend pages to users based on their current browsing patterns. PageRank has

been extended in many other ways including dealing with different weights for outgoing page links

and working on undirected graphs. Ding et al. [31] and Hopcroft and Sheldon [51] also offer reviews

7 A web-based implementation of TunkRank is available at http://tunkrank.com

37

of other extensions to the original PageRank algorithm.

3.6.2 Algorithm (PageRank)

Here I will describe the original algorithm from Brin and Page [16]. Given the structure of the

internet, I am able to represent the structure as a graph G = (V,E) where pages are considered the

vertices V and links to other pages are considered the edges E. We have the following definitions

for the algorithm:

• PR(p) - The rank value of page p ∈ V

• N - The number of total pages

• d - The damping factor

• IA - The set of pages that link to page A

• |Op| - The count of the set of all outgoing links of page p

The algorithm begins in an initial state where all pages have an initial probability of 1/N

and the damping factor is set to .85. We then are able to calculate the rank of a page A as follows:

PR(A) =
1− d
N

+ d
∑
p∈IA

PR(p)

|Op|
(3.13)

The rank calculation occurs for each page in the graph, and is run iteratively until the values

converge. The higher the damping factor, the longer the values take to converge as the calculation

relies more on the link structure of the web instead of the random behavior of surfers [31].

The running time of the original algorithm is O(nD), where n is the number of pages being

considered and D is the average in-degree of all pages. The more common power method runs

in O(n) time and only requires 50-100 iterations [71]. The space requirements of the PageRank

algorithm requires the sparse adjacency matrix A which is implemented as an adjacency list, a

vector to store dangling leaf pages that to not have links to other pages, and a vector of size n

containing multiplication values for each iteration.

38

3.6.3 Algorithm (TunkRank)

TunkRank, proposed by Tunkelang [113], is a computation analogous to PageRank to deter-

mine the influence of users in Twitter based on how those users are connected in the social graph

and how often users “re-tweet” messages. The intuition of this algorithm is that users who follow

few users are able to give more attention to the messages of the users that they follow, and therefore

confer a large ranking on those they follow.

The initial state of the influence rank of all users is 1/N where N is the number of users in

the network. The damping factor d from PageRank has been replaced by the “Re-Tweet” factor p.

To determine the influence of a user X, the following equation is evaluated:

Influence(X) =
∑

Y ∈Followers(X)

1 + p ∗ Influence(Y)

|Following(Y)|
(3.14)

The calculation is done for all users and is performed a number of times until the values

begin to converge. The algorithm can be implemented with the same power method as described

in section 3.6.4 offering the same quick convergence.

3.6.4 Algorithm (TrustRank)

The TrustRank method proposed by Gyöngyi et al. [49] is a supervised transitive trust model

combined with PageRank to do determine whether or not a web page is considered to be spam. The

algorithm is based on the assumption that “good” pages rarely link to “bad” pages and therefore

good pages transfer high trust values to downstream pages. A set of pages that are evaluated by

humans to be good or bad are stored in the oracle L. The algorithm occurs in five major steps:

(1) Calculate seed value s for each page in an initial set of pages using an inverse PageRank

score

(2) Order seed pages by their values from high to low

39

(3) Invoke the oracle L on a limited set of high-value seed pages to generate a score distribution

vector d of all pages where good seed pages are set to 1 and all other pages are set to 0.

(4) Normalize the distribution vector d

(5) Iteratively calculate TrustRank scores from 1 to iteration limit M using a modified PageR-

ank computation

Since this algorithm uses the PageRank algorithm, the running time is similar although

slightly worse as the two versions of PageRank are run during the algorithm (one at step 1 and

another at step 5). Time is also required by humans to rate a set of pages as spam or good that are

then contained in the Oracle for lookups. The iteration limit M is simply the amount as described

previously in section which will typically be 50-100.

3.6.5 Applying PageRank and Related Algorithms to Reputation

PageRank works to impart a reputation-based ranking on a page which essentially is how

important the world believes a page to be by ’voting’ using links to the page. This same method

may be applied to social networks, but it has the major limitation of requiring “global knowledge”

of the network in order to confer appropriate ranking values. In the cases of social networks, only

the network provider (Twitter, Facebook, etc) has access to the entire network. Although public

access may be available to some of this information via Application Programming Interfaces (APIs),

a lot of time is required to collect the network data due to rate and authentication limits and not

all the data may be available. Locally approximating PageRank has been studied [10] but is NP-

hard which makes the measure infeasible for large graphs. Still, attempting to locally approximate

by potentially collecting enough of the graph around a set of users is worthwhile to investigate.

PageRank-related algorithms are popular versus other ranking methods due to the good speed and

storage efficiency of the algorithm [71], and if I am able to obtain the social network graph data,

these related algorithms plus potential variations on them may be useful.

40

TunkRank would be the algorithm of choice for a PageRank variant if the entire social graph

is available. The intent of TunkRank is to find users who are ”influencers”, but influence is merely

a way of describing reputation. But again, this is a global method therefore inferring a global

reputation which isn’t a useful metric. With reputation being context-dependent, I would need a

way to deal with pruning out users that are not important to the context being considered. One

possible way to prune unimportant users may be to determine the activity network as described in

section 3.12.

TrustRank has an aspect of explicit trust systems as it relies on human rating feedback in

order to perform its calculation. However, the requirement of an oracle for only a limited set of

web pages makes the algorithm feasible for use in a larger system that is supervised by humans.

The process does require many interconnected pages in order to assign reasonable trust values to

individual pages, which could be a potential limitation due to access limitations of social graphs.

When applied to social networks, this method could be used to determine “good” or “bad” users who

are rated by the oracle based on the messages that they send to others around them. The algorithm

would then assign transitive trust values to users who are linked to by the seed set. Although

this situation may prove more difficult for humans as a user in a social network may have many

messages that need to be read and considered in the oracle scoring. However, human supervision

could potentially be augmented or replaced by smart natural language processing algorithms that

are able to determine a “good” user based on the automatically analyzed messages from a user.

3.6.5.1 Security Implications for Reputation

Caverlee et al. [19] investigate the effect of distributed collusion by multiple malicious users in

a social network that is ranked using both PageRank and TrustRank compared with their proposed

SocialTrust framework. SocialTrust is an explicit rating system that incorporates user feedback to

give weights to the relationship links in the social graph. They illustrate the significant issue of

ranking systems that contain multiple malicious users going undetected without the incorpora-

tion of user feedback into the scoring. They specifically compare SocialTrust with PageRank and

41

TrustRank and demonstration that malicious users are able to establish themselves in trusting re-

lationships before misbehaving, and the PageRank and TrustRank methods (as well as TunkRank

since it is based on PageRank) will not be able to detect this malicious behavior. This issue is one

of the major issues when attempting to determine reputation of a user or piece of information in

these social networks.

3.7 Betweenness Centrality and Modularity

The Betweenness Centrality method, originally proposed by Girvan and Newman [42], is a

divisive8 community detection algorithm. The method eliminates edges that are the most “between”

communities, resulting in distinct, densely connected subgraphs. In subsequent work, Newman and

Girvan [88] add a calculation called “modularity” to measure the best-fit divisions of a graph into

communities using the Betweenness Centrality method.

3.7.1 Related Work

The Betweenness Centrality method is a modification of vertex betweenness centrality first

proposed by Freeman [39] for edges. The calculation of edge betweenness includes shortest-path

calculations in a graph, and two fast algorithms were developed independently by both Newman

[84] and Brandes [15]. The Brandes algorithm has been applied to publications of articles related to

genes by Wilkinson and Huberman [126] in order to determine networks of genes based on how key-

words are linked in the published articles. Everett and Borgotti [32] analyze how different clustering

techniques overlap including betweenness centrality. Pollner et al. [97] compare users who appear

in multiple k -cliques in the Clique Percolation Method (discussed in section 3.9) to betweenness

centrality and find a correlation between many k -clique membership and high vertex betweenness.

Radicchi et al. [99] compare a proposed local edge clustering coefficient community detection algo-

rithm with edge betweenness in both accuracy and complexity. Kitsak et al. [64] compare k -shell

8 “Divisive” algorithms begin with a fully-connected graph and then iteratively remove edges until all vertices are
disconnected.

42

decomposition with betweenness centrality in terms of predicting the spread of information through

the network. Gloor et al. [43] use betweenness centrality to track the importance of a concept in

the web in news, blogs, and forums.

3.7.2 Algorithm

The full betweenness centrality method includes single-source shortest path, betweenness

centrality, and modularity calculations. We will describe each calculation here separately and

describe how all three interact to determine community divisions in a graph.

3.7.2.1 Single-Source Shortest Path

Newman [84] uses a modified depth-first search to calculate shortest paths from a single

vertex j as follows:

(1) Choose a vertex j and assign it distance zero, indicating it is zero steps away from itself,

and set distance d← 0.

(2) For each vertex k whose assigned distance is d, follow each attached edge to the vertex l

at its other end and, if l has not already been assigned a distance, and assign it distance

d+ 1 and also declare node k to be a predecessor of l.

(3) If l has already been assigned a distance equal to d+ 1, there is no need to set the distance

again, but k is still declared to be a predecessor of l, indicating more than one shortest

path to the original vertex j.

(4) Set d← d+ 1.

(5) Repeat from Step 2 until there are no unassigned nodes remaining.

3.7.2.2 Betweenness Centrality

Betweenness centrality for an edge eij from vertices vi and vj is a count of the number of

shortest paths from a single chosen source vertex j to all other vertices in the network that pass

43

over edge eij . In order to calculate the betweenness value for each vertex in the network. The

process is as follows:

(1) A variable bk, taking the initial value 1, is assigned to each vertex k.

(2) Going through vertices k in order of their distances from j, starting from the farthest, the

value bk is added to the corresponding variable on the predecessor vertex of k. If k has

more than one predecessor, then bk is divided equally between them. This means that, if

there are two shortest paths between a pair of vertices, the nodes along those paths are

given a betweenness of 1
2 each.

(3) When I have gone through all vertices in this fashion, the resulting values of the variables

bk represent the number of geodesic paths to vertex j that run through each vertex in the

network, with end points of each path being counted as part of the path. To calculate

betweenness for all paths, the bk are added to a running score maintained for each vertex

and the entire calculation is repeated for each of the n possible values of j. The final

running scores are precisely the betweenness of each of the n vertices.

3.7.2.3 Modularity

Modularity is the key component to this enhanced algorithm to determine the “best fit” of

community divisions. The measure is based on “Assortative Mixing” proposed by Newman [86]

(described in section 3.2.3). The basic algorithm for calculating the modularity Q for a division of

a network (removal of an edge with the highest ”betweenness” value) is as follows:

(1) Choose a division of a network into k communities

(2) Create a k × k symmetric matrix e whose element eij is the fraction of all edges in the

network that link edges in community i to community j. Note that an edge linking commu-

nities i and j must be split, half-and-half, between the ij and ji elements of e to maintain

symmetry.

44

(3) Calculate the trace of the matrix e, which is the fraction of all edges in the network that

connect to nodes within the same community:

Tre =
∑
i

eii (3.15)

(4) Calculate the row (or column) sums which represent the fraction of edges that connect to

nodes in community i:

ai =
∑
j

eij (3.16)

(5) Finally, calculate Q as the trace of the matrix e minus the square of the sum of the rows

(or columns) ai from above:

Q =
∑
i

(eii − a2i) = Tr e − ‖ e2 ‖ (3.17)

As mentioned in [88], if the number of within-community edges is no better than random,

Q = 0. Values approaching Q = 1 indicate strong community, however typically values fall in the

range of 0.3 to 0.7.

3.7.2.4 Edge Betweenness and Modularity

All three of the above calculations work together in the following manner to determine com-

munities within a network:

(1) Calculate the betweenness for all edges in the network,

(2) Remove the edge with the highest betweenness value,

(3) Recalculate the betweenness for all edges affected by the removal, and

(4) Repeat from step 2 until no edges remain.

45

3.7.3 Complexity

The Betweenness Centrality method is quite complex due to the multiple distinct calculations

for shortest path, edge betweenness, and modularity. The shortest path calculation requires O(m)

time where m is the number of edges in the network, the edge betweenness calculation requires

O(n) time where n is the number of vertices in the network, and the modularity measure requires

O(n) time to build the community adjacency matrix. To determine communities for the entire

graph until all vertices are fully disconnected, the running time is O(mn2).

3.7.4 Applying Betweenness Centrality and Modularity to Reputation

The Betweenness Centrality with Modularity measure yields very good community divisions

in any network that is of relatively small size. However, this is the major limitation of the method

since it does have a very bad running time of O(mn2). Newman and Girvan observe that this

algorithm is only feasible for networks of about 10,000 vertices at the time of writing in 2004 [88].

The trade-off is that the algorithm does perform well when determining community. Others have

also cited this limitation as a reason to avoid using the algorithm [28] [25] although Newman [87]

concludes that the algorithm yields the best results compared to other algorithms and should be

used where computationally feasible.

This method may still be useful for small collections or approximations of networks that

expand far enough out from the target group of users in a network to determine community. We

will summarize other community detection algorithms in sections 3.8 and 3.13 that use this method

as a basis with significant speed improvements.

3.8 Global Hierarchical Clustering

The Global Hierarchical Clustering method, proposed by Newman [87], is a graph community

detection method and differs from the Betweenness Centrality method described in section 3.7 in

46

the fact that it is an agglomerative method.9 Newman developed the method to overcome the poor

performance of the divisive Betweenness Centrality algorithm. The method also uses a modularity

calculation in such a way to greedily maximize the modularity value when deciding which vertex to

agglomerate into a specific community. Said differently, the measure only agglomerates the vertex

that yields the largest increase (or smallest decrease) in the modularity. This method also requires

global knowledge of the graph as the algorithm depends on the interconnectivity of all nodes in the

network.

3.8.1 Related Work

The agglomerative method is a general one used in many applications, but has been applied

to football conference groupings, jazz musician collaborations, and co-authorship relationships by

Newman [87]. Clauset et al. [25] further improve the running time of the algorithm by Newman and

apply it to the Amazon purchasing network with over 400,000 vertices and over 2.4 million edges.

Mislove et al. [81] use this method to attempt to globally infer attributes of users in Facebook.

3.8.2 Algorithm

Here I describe the undirected graph algorithm from Clauset et al. [25]. The algorithm

improves on the one from Newman [87] in that it does not store the adjacency matrix, but instead

only stores the change in modularity between two communities, ∆Qij . The data structures required

for the algorithm are as follows:

• A sparse matrix of ∆Qij values for each pair i, j of communities that have at least one edge

between them. This matrix is represented as a balanced binary tree for fast queries and

insertions,

• A max-heap H containing the largest element of each row of the ∆Qij matrix, including

the labels i, j to identify the pair of communities, and

9 “Agglomerative” methods begin with a fully-disconnected graph and then iteratively add edges to re-connect
the vertices.

47

• A vector array containing sum ai of each row of the adjacency matrix

3.8.2.1 Initial State

As with all agglomerative graph algorithms, each vertex begins as a sole member of a com-

munity. The value ki is the degree of community i (which is simply the degree of the single vertex

initially in community i) and m is the number of edges in the network. The initial ∆Qij matrix

and ai vector are set to the following:

∆Qij =

1
2m −

kikj
(2m)2

if i, j are connected,

0 otherwise.

(3.18)

ai =
ki
2m

(3.19)

The max-heap H is then initially populated with the largest element of each row of ∆Q.

3.8.2.2 Joining Communities

The algorithm then selects the largest ∆Qij value from H and joins the corresponding com-

munities. The ∆Q matrix is then updated with new values, but only the communities that also

touch communities i and j need to be updated. To join two communities i and j, the operation

is a merge into one of the two communities i or j, and the other community is removed from the

∆Q matrix. To merge communities i and j into a new community j, all communities that connect

to i and j must be updated with new ∆Q values. To update the matrix and aj values when a

community k is connected to one or both of the merging communities, the following calculations

are used:

∆Q′jk =

∆Qik + ∆Qjk if k is connected to both i and j,

∆Qik − 2ajak if k is connected to i but not j,

∆Qjk − 2aiak if k is connected to j but not i,

(3.20)

48

a′j = ai + aj (3.21)

The selected ∆Qij value is then added to the global modularity value Q. The max-heap H

values must also be updated for each ∆Qij value that was affected by the merging of communities

i and j. This merge step is repeated for all communities until only one final community remains.

3.8.3 Complexity

Merging two communities i and j requires O((ki + kj) log n) time. Recalculating the values

for the max-heap H also requires O((ki + kj) log n) time. In the worst-case, the degree of a com-

munity i is the sum of the degrees of all vertices in the original network that comprise i, meaning

the community connects to many other communities. This means that in the dendrogram that

represents the network, the number of joins is depended on the depth d of the dendrogram as well

as the total degree of all vertices in the network which is 2m where m is the number of edges. This

means the running time is O(md log n).

3.8.4 Applying Global Hierarchical Clustering to Reputation

Much like the Edge Betweenness method described in section 3.7, this method requires full

knowledge of the network graph. One is able to run this algorithm on a subset of a network, but

there’s no way to determine if the modularity values will correspond to any meaningful division of

communities without all of the vertices and edges. For this reason, follow-up work for discovering

local communities lacking global knowledge of the network have been developed, and are described

in section 3.13. However, if I am able to obtain the full network topology, or at least a subset of

the network that spreads far enough from the vertices being considered, the speed of this algorithm

makes it an attractive candidate for determining communities in a network.

49

3.9 Clique Percolation Method

The Clique Percolation Method (CPM), proposed by Derényi et al. [30], is a community

detection algorithm with a distinct characteristic in that is allows a vertex in a network to belong

to multiple communities rather than limiting a vertex to only one community. In most real-world

networks, vertices (or more appropriately, people) may belong to multiple overlapping communities

with different characteristics that define each community.

3.9.1 Related Work

Deréyi et al. [30] and Palla et al. [93] propose the clique percolation method for detection of

overlapping communities initially on undirected graphs. In subsequent work Farkas et al. extend

the method for weighted networks [34] and Palla et al. extend the method for directed networks

[94]. Implementations of all of the above variations of the algorithm are available online.10 The

algorithm was initially tested against Erdős-Rényi (ER) uncorrelated random graphs [30] [34], and

later applied to word associations [93] [94], protein networks [93], Google’s website structure [94],

paper co-authorships [93], correlation graphs of NYSE stocks [34], student email interactions [94],

and also to Twitter relationships [57].

3.9.2 Algorithm

Here I will describe the algorithm from the supplementary information of Palla et al. [93] for

undirected graphs. Before describing the operations, I must first define structures and relationships

for this method. These definitions are given in [30]:

• clique - A set of vertices that are fully-interconnected with one another.

• k-clique - A clique that contains k vertices.

• maximal clique or complete subgraph - The largest fully-interconnected subgraph from

a specific vertex in the graph

10 http://CFinder.org

50

• maximum clique - The largest fully-interconnected subgraph of the entire graph. Note

that a graph may have one or more maximum cliques, and may have multiple, smaller

maximal cliques.

• k-clique adjacency - Two k -cliques are adjacent if they share k − 1 nodes. We see this

illustrated in the left portion of figure 3.1(a) where the highlighted black triangles share

two vertices (or one edge).

• k-clique chain - A subgraph which is the union of a sequence of adjacent k -cliques as

shown in the both portions of figure 3.1(a). The black highlighted clique in the right

portion demonstrates a large k -clique chain. Note that a k -clique chain is not the same as

a maximal clique.

• k-clique connectedness - Two k -cliques are connected if they belong to any part of the

same k-clique chain.

• k-clique percolation cluster - A maximal k -clique connected subgraph, i.e. the largest

k-clique chain discovered in the graph.

The CPM algorithm occurs in three high-level steps:

(1) Search the graph for all maximal cliques (as k -cliques are subgraphs of maximal cliques),

(2) Create an adjacency matrix of each of the discovered maximal cliques where the adjacency

value is the number of shared nodes between each clique, and

(3) Reduce the matrix to evaluate a specific value of k by removing each diagonal entry with

degree less than k and every off-diagonal entry with degree less than k − 1.

To locate the maximal cliques, one must exhaustively search through the graph one node

at a time looking for surrounding nodes that share the same neighbors as the node in question.

The search is a recursive one and consists of finding the intersection of the neighbors of nodes in

the current clique and adding a node in the intersection and continuing the search for subsequent

51

(a) Two networks each with k -cliques of size k = 3. The left network has two small separated 3-clique percolation
clusters. The right network contains one giant 3-clique percolation cluster (in black) overlapping with one small
3-clique percolation cluster (grey).

(b) The k -clique overlap matrices for the networks in figure 3.1(a). k -clique chains are found by removing diagonal
elements of size less than k and off-diagonal elements of size less than k − 1.

Figure 3.1: Visualization of the clique percolation method

52

neighbor intersections. Cliques may overlap, so once a maximal clique is discovered, one must back

up to a previously unconsidered node to continue the search. The clique adjacency matrix may

be created as each maximal clique is discovered by iterating through the matrix and counting the

overlapping nodes for each existing clique with the newly discovered clique.

3.9.3 Complexity

The first step of the CPM algorithm works to find all maximal cliques for a particular graph.

Finding a clique of a specific size k has been shown to be NP-Complete by Karp [62]. Further,

finding maximal cliques is also proven to be unapproximable by Zuckerman [130]. However, once

the maximal clique adjacency matrix is created, it is trivial to analyze different clique sizes as the k -

clique information for all sizes is contained in the matrix. Palla et al. offer a running time of under

2 hours to analyze the Arxiv11 co-authorship data for around 127,000 links using a commodity

desktop PC at the time of writing in 2005 of their supplemental information for [93].

3.9.4 Applying the Clique Percolation Method to Reputation

As mentioned previously, Java et al. [57] apply the undirected algorithm as described in this

section to Twitter relationships, and follow up with analyzing the top keywords that appear in the

different communities. This technique of performing statistical analysis to analyze the trends within

the community is one of assessing group reputation, and therefore the reputation of a user as it is

inherited from the group with which that user associates. As with all other community detection

methods, the statistical analysis may be applied to any attribute or combination of attributes

within the community to determine other information such as common language, location, and

many other details.

However, the CPM algorithm suffers the same issue as the Betweenness Centrality method

described in section 3.7 as the running time is too long to analyze large networks. The algorithm

will still be useful if the network is pruned to a sub-network to perform the analysis. The largest

11 http://arxiv.org

53

benefit of CPM is the fact that users may belong to multiple k -cliques (communities) which allows

for a more accurate analysis of attribute data for users within a community compared to the other

agglomerative and divisive algorithms such as those described in sections 3.7, 3.8, and 3.13 that

completely segregate nodes into distinct, non-overlapping communities.

3.10 Nearest Neighbor Networks

The Nearest Neighbor Networks (NNN) method, proposed by Huttenhower et al. [54], is

a divisive graph algorithm which clusters genes into neighborhoods of genes where they are the

most similar and fully interconnected to each other (in k -cliques). This method differs from other

clustering methods in that it combines a similarity measure of a graph vertex (in this case genes)

in addition to network connectivity to determine communities.

3.10.1 Related Work

The NNN method is from the world of biology and genetics which employ many clustering

techniques to analyze different gene relationships. Huttenhower et al. compare their algorithm

to others that are typically used in the field including Aerie, CAST, CLICK, GenClust, Quality

Threshold Clustering, SAMBA, and k -means12 [54]. In their analysis, Huttenhower et al. use

Pearson’s Correlation Coefficient (as described in section 3.2.2) as well as euclidian distance for the

similarity measure calculation.

3.10.2 Algorithm

Here I describe the algorithm by Huttenhower et al. [54] written in the context of social

network analysis. The algorithm works on a graph G = (V,E) with the following elements:

• d(vi, vj) - A similarity measure which returns the similarity value of two vertices vi and vj ,

• g - The size of k -cliques13 to be found, and

12 K -means clustering is described in section 3.5.
13 For a description of k -cliques, review section 3.9.2.

54

• n - The size of the neighborhood for a vertex.

The algorithm then occurs in five major steps:

(1) Calculate the similarity measure of a vertex and all its neighbors and remove all links except

for the top-n nearest (most similar) neighbors,

(2) Remove all links from the graph that are not bi-directional (and remove all nodes that no

longer have any links),

(3) Find all of the k -cliques of size g in the undirected graph

(4) Overlapping k -cliques are merged (defined as k-clique chains in section 3.9.2) to produce

initial networks, and

(5) Initial networks containing cut-vertices (vertices that are shared between overlapping k -

clique chains) are split into final networks with the cut-vertices occupying both networks.

3.10.3 Complexity

As mentioned in section 3.9.3, finding cliques in a graph is either NP-Complete or unapprox-

imable. Huttenhower et al. mention that their algorithm runs with a lower-bound of 2.5 minutes

(with values of g = 3 and n = 10) and an upper-bound of 11.5 minutes (with values of g = 5 and

n = 40) on a single-threaded 2GHz machine processing their largest data set of 6153 genes across

300 genetic conditions at the time of writing in 2007 [54].

3.10.4 Applying Nearest Neighbor Networks to Reputation

This method has many features which are of interest when analyzing social networks. First,

this method combines a similarity measure with network connectivity which gives us the freedom to

define ”similarity” for my analysis. Since a vertex is a user with a profile and a history of messages,

I can define similarity as profile attributes or topics about which people are discussing. Second,

this method specifically allows a single vertex (or user) to belong to multiple communities, unlike

55

many other methods such as Betweenness Centrality (described in section 3.7), Global Hierarchical

Clustering (described in section 3.8) and Local Hierarchical Clustering (described in section 3.13)

which only allow a vertex to belong to one community.

However, even given the benefits of the algorithm, it also suffers the same issue as the Clique

Percolation Method (described in section 3.9) as it uses k -cliques for discovering communities which

is very slow for small graphs and practically intractable for large graphs. Again, I would need to

approximate a smaller portion of the social network being analyzed to be able to use this method.

3.11 K -core Decomposition

The k -core decomposition method, proposed by Seidman [106], is a clustering method which

ranks vertices based on how closely they are connected to the core of the network. A k-core

subgraph of a larger graph G contains the set of vertices that have at least degree k after all other

vertices with degree less than k − 1 have been recursively removed from the graph G.

3.11.1 Related Work

Batagelj and Zavers̆nik [11] propose a fast algorithm for computing the k -cores of a graph.

Chun et al. [23] calculate the k -cores of the collected graph of the Cyworld social network in

South Korea to observe how strongly connected are people of similar degree. Alvarez-Hamelin et

al. [2] analyze Internet autonomous system (AS) cross-connectivity data from the skitter project at

CAIDA and the Distributed Internet Measurements and Simulations (DIMES) project using k -core

compared to the edge betweenness method (discussed in section 3.7). Carmi et al. [18] modify the

k -core decomposition to create k-shells which are groupings of multiple k -cores to determine the

functional roles of the autonomous systems from the DIMES data set. Kitsak et al. [64] compare

k -shell decomposition with the Susceptible-Infectious-Recovered (SIR) epidemiological model [63]

as a means to reasonably determine the influence a specific vertex has in a network and applies the

algorithm to the LiveJournal.com community, a network of email contacts, the contact network of

inpatients (CNI) from hospitals in Sweden, and the actor network from the Internet Movie Database

56

(IMDB).

3.11.2 Algorithm

Here I will describe at a high-level the algorithm from Batagelj and Zavers̆nik, and the full

description can be found in [11]. Algorithm 1 describes the process for computing the cores of a

network.

Algorithm 1 O(m) cores decomposition of networks [11]

Given a graph G = (V,E) as a list of neighbors
Map core = {}
Compute the degree d for each vertex v ∈ V
Order set of vertices V in increasing order of their degrees
for each v ∈ V in order, do
core[v] = d(v)
for u ∈ Neighbors(v) do

if d(u) > d(v) then
d(u) = d(u)− 1
Reorder vertices V

end if
end for

end for

Figure 3.2 is a visualization of an example network that is split into three k -cores. Note that

the vertices marked with an x both have degree k = 8 but belong to different k -cores. This is

due to the fact that as vertices with degree of k = 1 are removed from the graph, the x-labeled

vertex at the top-right only has a single connection (degree k = 1) to the core of the network, and

therefore belongs to k-core k = 1. Other interesting vertices are denoted with a pound (#) which

are vertices that also have a degree greater than 1, but belong to the k -core k = 1 due to their

neighbors being removed and leaving them with only one connection to other k -cores.

3.11.3 Complexity

The running time of the Batagelj and Zavers̆nik algorithm in [11] is O(m) which is the number

of edges in the graph due to time to sort the vertices by their degrees. The storage requirements

of the algorithm are steep as two arrays of size n must be kept, as well as an array of the starting

57

Figure 3.2: An illustration of the k-cores decomposition of a network [64]. Note that vertices
marked with # have the same degree k = 8 but are not in the same core. Further, vertices marked
with x have degree k > 1 but are still considered to be in core k = 1.

58

position of each vertex of increasing degree. If this algorithm is run on a large graph, a significant

amount memory is required.

3.11.4 Applying K-Core Decomposition to Reputation

The speed of this algorithm makes it very appealing for social graph analysis. As previously

mentioned, Kitsak et al. [64] compare k -shell decomposition (a variant of k -cores) to the SIR

epidemiological model and argue that k -cores are a good means to determine the influence a user

has in the network. More specifically, k -cores are a good measure of how likely a piece of information

spread by a user in a high-value k -core will reach all other users in the network. This measure will

be very useful when identifying who is at the center of a group during an event.

Further, Batagelj and Zavers̆nik [11] mention that this technique may be used to prune

vertices from consideration when attempting to find k -cliques of a specific size. For example, if a

vertex belongs to a k -core of size 4, it may never be a part of a k -clique of size 5. This heuristic may

speed up the running time of finding cliques as used by the Clique Percolation Method (described

in section 3.9) and the Nearest Neighbor Networks method (described in section 3.10).

3.12 Activity Network

The Activity Network14 method is a clustering technique that prunes edges from a social

graph based on user interactions with one another. The result is a subgraph (usually very weakly

connected and disjoint) that represents only those relationships that involve some sort of direction

activity between users.

3.12.1 Related Work

The idea of the Activity Network has been proposed in multiple ways. Huberman et al. [52]

create a directed activity network of users in the Twitter service by considering a user A to be a

“friend” of user B by user B sending at least two directed messages to user A. Wilson et al. [127]

14 An alternate name proposed by Wilson et al. [127] is interaction graph, but is functionally equivalent.

59

combine an activity rate as well as the number of directed messages between two users (both with

varying values) to create an undirected activity network of users in the Facebook service. Chun et

al. [23] analyze the Cyworld service and create an activity network using weighted vertices where

weights are calculated as the sum of all outgoing messages to other users. Unlike the work by

Huberman et al. and Wilson et al., this analysis does not involve determining which users are

friends by interaction, but instead uses the weights to do general analysis on the overall network.

3.12.2 Algorithm

Here I will describe the process for all three of the methods mentioned above. The first I will

describe is from Huberman et al. [52]. They create the activity network based on messages sent

directly from one user to another. However, the Twitter service did not originally have support for

directed messages, so users began messages with what is known as a mention15 among Twitter

users. These mentions are placed at the beginning of a message and denote a directed message to

another user, although every follower of the broadcaster is still able to see the message. Huberman

et al. simply prune all of the “friend” or “follower” links of users that do not have at least two

directed messages to one another.

Wilson et al. [127] perform a similar pruning of links as Huberman et al., however there

are two important differences. First, Facebook relationships are undirected, so two users are only

considered to be “friends” in the activity network if they both send at least one message to each

other. Twitter relationships are directed, meaning they do not have to be reciprocated. Second,

an interaction rate is added to the pruning of links. Two parameters n and t are considered which

are the minimum number of interactions and a window of time, respectively. With both metrics, a

link is in the activity network is only retained if both users have sent at least one message to each

other and have done so within a specific window of time.

The creation of the activity network by Chun et al. [23] is based on weighting each vertex in

the social graph by their “strength”. The strength is the count the number of outgoing messages

15 A mention is when a username is placed in a message prepended by the “@” symbol.

60

to declared friends in the social graph. Once node strength is determined, links may be pruned at

different thresholds to create a subgraph of users who use the network with a specific frequency.

3.12.3 Complexity

The method proposed by Huberman et al. requires three major steps: downloading of the

social graph, downloading of the tweets by each user in the graph, and parsing of each tweet for

those that begin with the mention format. If I disregard the time needed to collect the data from

Twitter, the process of pruning edges requires O(n) time where n is the total number of tweets

downloaded.

The method proposed by Wilson et al. also requires collection of the posts from Facebook

before analysis is possible.16 If I also ignore the time needed to collect the information, determining

the interaction rate can be done in the same pass as determining messages between users which

only takes O(n) time.

The method proposed by Chun et al. simply counts the number of messages sent by users in

the network. This process, like the other two, simply requires a single pass through all messages

by users which requires O(n) time.

3.12.4 Applying Activity Networks to Reputation

The activity network is the basis of potential reputation between users. Since I am using

implicit means of inferring reputation, user actions that directly involve other users, I may have

an indicator that the user who sends the message demonstrates the importance of the target user.

During a specific event, one way to determine clusterings of users will be to observe the messages

sent between users. This method may be modified an extended in a number of ways, including

using all mentions in the Twitter service (not just mentions that begin the messages) to determine

which users are becoming important to that event.

16 The data analyzed by Wilson et al. in [127] was collected by accessing regional networks which no longer exist
in Facebook [33].

61

3.13 Local Hierarchical Clustering

The Local Hierarchical Clustering method, proposed by Clauset [24], is a graph community

detection method. Clauset describes the major limitation of other community detection algorithms,

which is the requirement of having global knowledge of the network structure in order to detect

communities. This requirement is impractical when analyzing networks where the full structure

cannot be known (such as the web), networks that may be too large for even the fastest agglom-

erative algorithms, or networks that require a lot of time to collect data (due to bandwidth or

API limitations). The method includes a local modularity calculation in order to determine good

clusterings without the need for global knowledge of the network. The method attempts to detect

communities from the perspective of a single vertex in the entire network, radiating outward, and

is in the class of “agglomerative” algorithms (such as Global Hierarchical Clustering described in

section 3.8) as it adds vertices and edges to a graph to determine community structure rather than

removing vertices or edges. The local nature of this algorithm implies the detection of concentric

communities, or communities that are subsets of larger and larger single encompassing communities

as the network is explored.

3.13.1 Related Work

Other researchers have investigated means of detecting local community structure to overcome

the global knowledge requirements as previously described. Luo et al. [74] attempt to search a

graph for a local module by both adding and removing vertices to maximize internal links over

external links. Clauset [24] uses a similar modularity metric as Luo, but does not remove vertices

to maximize the modularity value. Bagrow and Bollt [7] use a breadth-first search method to

expand a community shell outward until ratio of in-degree vs. out-degree has reached a user-

defined threshold. Mislove et al. [81] propose a metric called Normalized Conductance, which is

almost identical to the local modularity measure proposed by Clauset in [24] but differs only in

that the Normalized Conductance value is weighted against a random graph.

62

3.13.2 Algorithm (Clauset)

Clauset [24] proposes an algorithm that attempts to minimize arbitrary expansion by visiting

local neighbors that have the lowest degree, thus helping to find the best local community before

moving outward to other unvisited nodes. The algorithm includes a “local” modularity calculation

similar to that of the modularity metric Q from the Global Hierarchical Clustering method (de-

scribed in section 3.8) as it is a measure of how optimal a particular division is when segregating

nodes into communities. The main difference is Clauset’s modularity calculation only depends on

the immediate neghbors of known vertices instead of the entire graph.

3.13.2.1 Local Communities and Neighborhoods

The algorithm assumes that I have a set of known vertices C of which I have perfect knowledge

in the graph G. The implication is there exists a set of vertices U about which I only know are

adjacent to vertices in C. Clauset further subdivides the vertices in community C to the following

groups, which are all illustrated in figure 3.3:

• The boundary vertices B which are the vertices that are connected to both the known

vertices in C and the unknown portion of the network U , and

• The internally connected vertices C that are fully connected only within the known group

of vertices (vertices that do not have neighbors in the unknown portion U)

3.13.2.2 Local Modularity

The existence of boundary B of the community as described above allows us to calculate a

”sharpness” of the boundary of the known community C. The idea is that a ”sharp” boundary will

have few connections from the neighborhood B to the unknown portion U of the network. The

adjacency matrix for the boundary B is given as the following:

63

Figure 3.3: An illustration of the groupings of a network into the local community C, its boundary
B, and the edges which connect B to the unknown neighbors U [24].

64

Bij =

1 if nodes i and j are connected, and either node is in B

0 otherwise.

(3.22)

The local modularity value R is now defined to be the following:

R =

∑
ij Bijδ(i, j)∑

ij Bij
=
I

T
(3.23)

The above function δ(i, j) is 1 when either vi ∈ B and vj ∈ C or vice versa, and is 0 otherwise.

Said differently, δ(i, j) is 1 when an edge in the network crosses the boundary of B into U . Here

T is the number of edges with one or more endpoints in B, while I is the number of edges with

neither endpoint in U (the edges that are fully contained in C).

3.13.2.3 Exploring the Unknown Nodes in U

The only way in which I gain additional knowledge of the graph G is by visiting a neighboring

vertex vi ∈ U , which yields a list of adjacencies. Since I only want to add vertices that give the

largest increase (or smallest decrease) in the modularity R, I will need to calculate the change in

modularity, ∆R, for a vertex vi ∈ U . The computation for ∆R is derived from equation 3.23 is

given as the following:

∆Rj =
x−Ry − z(1−R)

T − z + y
(3.24)

Once a vertex vi yielding the largest increase or smallest decrease in R is discovered, vi is

added a member of C and additional unknown adjacent vertices of vi may be added to U . The

pseudo-code for the algorithm is described in algorithm 2. Figure 3.4 also shows the modularity

values for the Amazon recommender network for two books and a music CD.

3.13.3 Complexity

Each calculation of ∆R requires iterating through all nodes in the unknown portion U of

the network. If I choose a maximum size k for community C with an average degree of d, then

65
Algorithm 2 Local Hierarchical Clustering (Clauset [24])

add v0 to C
add all neighbors of v0 to U
set B = v0
while |C| < k do

for each vj ∈ U do
compute ∆Rj

end for
find vj such that ∆Rj is maximum
add that vj to C
add all new neighbors of that vj to U
update R and B

end while

Figure 3.4: Local modularity R for three items in the Amazon recommender network, shown on log-
linear axes. For comparison, the time series for a random graph with the same degree distribution
is shown. The large open symbols indicate the locations of the five strongest enclosing communities
[24].

66

the calculation of ∆R is roughly O(kd) if the network data exists locally through prior collection.

Therefore the overall running time for the algorithm for all nodes in the network in general is

O(k2d) or O(k2) for a sparse network. However, as observed by Clauset, for networks that exist

on the web, the running time is dominated by time to retrieve the data from the online source,

resulting in a linear running time of O(k). The value of k is not the entire size of the network, but

only that portion of the network that is considered when detecting a community.

3.13.4 Applying Local Modularity to Reputation

As a community detection algorithm that performs with limited knowledge of the overall

network, local modularity clustering is well-suited for use when operating under constraints for

data collection from a social network. As previously mentioned, the running time O(k2d) is bound

by the number of vertices that are evaluated for community division for the subgraph that has

previously been collected. Thus I am able to control how long the algorithm runs and still obtain

useful output.

However, one major limitation of the local method for hierarchical clustering is that I cannot

infer any local information for users that are discovered in super-set communities far from the

originating vertex. This implies that determining the immediate local community for an arbitrary

user will require a separate run of this algorithm for that user. However, users of interest determined

from other methods may be used to seed the collection for this algorithm, which subsequently could

be used to see whether or not the users of interest belong to the same or neighboring communities

in the network graph.

3.14 Hyperlink-Induced Topic Search (HITS)

The hyperlink-induced topic search (HITS) algorithm, proposed by Kleinberg [65], was de-

veloped to solve the problem of many early web search engines where “relevant” sites were ranked

simply by the frequency of the specific keyword on which the search was performed. As the amount

of websites grew (and still grow today), the number of search results have also increased to the

67

point where there are too many results for the human reader to consume. Further, many websites

began injecting multiple keywords in their HTML documents in order to inflate their rank in these

original search engines and appear high on the search result list.

The HITS algorithm improves the search results for these search engines by also considering

the link structure of the websites returned by these search engines. The goal is to determine the

set of pages that are the ”authorities” (the most relevant pages) for the keyword, as well as the

pages that are “hubs” (the pages that link to many related “authorities”).

3.14.1 Related Work

Kleinberg [65] first proposed the HITS algorithm and modifications to the algorithm were

developed by Bharat and Henzinger [12] to solve the problem of “mutually reinforcing relationships

between hosts” (one page on site A links to many pages on site B, or many pages on site A link to

one page on site B) and the problem of “topic drift” (highly-ranked authorities and hubs are not

about the original search query). Further improvements on the Bharat and Henzinger algorithm

were developed by Li et al. [72] and Asano et al. [4]. HITS and its improvements have been applied

many times to the web link structure, but has also been applied to social networks to determine the

“authorities” within the users of the Twitter social network by Java et al. [57] (although without

any keyword search context for the users). Romero et al. [101] apply the HITS algorithm to predict

the popularity of links shared and re-tweeted in the Twitter social network.

3.14.2 Algorithm

Here I will describe the original algorithm by Kleinberg in [65]. The algorithm fundamen-

tally solves for the principle eigenvector of two matrices using the power method after initial data

collection. The algorithm occurs in three major steps:

• Construct a focused subgraph - Collect the t highest-ranked pages (typically t = 200)

for a query σ from an existing web search engine. This set of pages is the root set Rσ.

68

• Expand the root set of search results - The expanded base set Sσ is created by adding

any page pointed to by a page in Rσ and any page that points to a page in Rσ. Note: a

restriction is that a single page in Rσ is only allowed to bring in at most d pages pointing

to it (typically d = 50) into Sσ. Algorithm 3 describes the process for this step.

• Iteratively compute hub and authority values - For each page p ∈ Sσ, compute the

hub and authority values k times (typically k = 20) until the values converge. Algorithm

4 describes the process for this step.

Algorithm 3 HITS Base Set Collection from Kleinberg [65]

Given the following:
Search results Rσ
In-degree limit d
Set Sσ := {}
for each page p ∈ Rσ do

Let Γ+(p) denote the set of all pages p points to.
Let Γ−(p) denote the set of all pages pointing to p.
Add all pages Γ+(p) to Sσ.
if |Γ−(p)| ≤ d then

Add all pages in Γ−(p) to Sσ
else

Add an arbitrary set of d pages from Γ−(p) to Sσ
end if

end for
Return Sσ

3.14.3 Complexity

The first step of the algorithm requires data collection from a separate source (in the case of

the original algorithm, the data were web pages). The time complexity for this step is bound by

the time to collect the data from the web. The space complexity for this step is simply the storage

of each web page as an identifier, as well as the list of links on the page itself. Due to the variable

nature of web pages, the storage needs may only be guessed initially.

The second step of the algorithm requires querying the search engine used to find the initial

root set to obtain the list of pages that point to all the pages in the root set Rσ. Further, another

69

Algorithm 4 HITS Hub and Authority Computation from Kleinberg [65]

Given the following:
Base set Sσ of n pages
Iteration limit k
Let vector z = (10, 11, ..., 1n−1).
Set initial authority values vector a := z.
Set initial hub values vector h := z.
for i = 1, 2, ..., k do

for each page p ∈ Sσ do
Calculate authority score as follows:
for each page p′ that points to p do

Set ap =
∑
p′ hp′

end for
Calculate hub score as follows:
for each page p′ which is pointed to by p do

Set hp =
∑
p′ ap′

end for
end for
Normalize a and h values so that

∑
j a

2
j =

∑
j h

2
j = 1.

end for
Return (a, h).

70

query must be made to collect all the pages to which the root set Rσ point. This can be done by

either querying the search engine or following the outgoing links that exist in the pages in the root

set.

The third step of the algorithm iterates through the links to and from each page in the base

set Sσ and calculates hub and authority values, which means the running time for this step is O(nd)

where n is the number of pages in the base set Sσ and d is the average total degree (in and out)

of all pages in the result set Sσ. The hub and authority values are then normalized for all pages

which results in a running time of O(n) for both values. Finally, this step iterates k times through

the pages, so the overall average case running time for the algorithm is O(knd).

3.14.4 Applying HITS to Reputation

The hubs and authorities calculation of HITS for web pages is a direct calculation of eigen-

vector centrality based on how neighbors link to the page in question, or how the page in question

links out to neighbors in order to determine the importance of a single page relative to all other

pages in the base set Sσ. However, when considering applying the algorithm to a social network,

the situation is not directly analogous. First, the algorithm attempts to remove intrinsic links from

web pages that point to themselves in order to prevent accidental inflation of a hub or authority

score. If I consider the explicit link graph (the ”friends” links) in online social networks, users

are not allowed to make links to themselves, and are only allowed to make a single connection to

another user, which negates the need to worry about intrinsic links or multiple transverse links.

This eases the work done by the algorithm by skipping this pruning process in the second step of

the algorithm where the root set Rσ is expanded to the base set Sσ. Second, the original HITS

algorithm relies on an existing search engine which only exists in limited form from specific social

networks, an example being Twitter. As mentioned previously, Java et al. [57] applies the HITS

algorithm to Twitter, but does not mention any use of keyword search to obtain the seed set of

users to begin the hubs and authorities calculation.

The Twitter service, for example, does allow keyword search on the service via an application

71

programming interface (API), but the results are returned in no particular order as a sampling of

the overall posts that contain the keyword in question. Therefore any hub or authority calculation

for search results may produce very disjoint hubs and authorities that are not related to the keyword

in any way. Instead, this method may be more applicable to determine the influencers within a

particular community or within multiple communities.

Another property of the algorithm is that all pages which are computed to be of high impor-

tant are assumed to be all related to each other. However, social networks differ from web pages

considerably in this regard where as web pages typically only speak to specific topics, users in a

social network have very diverse interests and connections to others that equates to having many

topics belonging to a single user. This is an important distinction when analyzing nodes in a social

network using algorithms used to analyze the web.

A potential modification to this method that may yield more interesting results for deter-

mining influencers is to observe the change in hub and authority values over time for a particular

user or set of users. A change in hub or authority values may indicate a change in reputation which

may or may not be related to an event (disaster or otherwise). Further, different input graphs may

be created based on the interaction between users instead of simply their declared social network

in order to cull out extra users who may not be important in the network.

3.15 Summary

In this chapter I have investigated a number of analysis methods and tools that may better

inform us as to the form and function of user behavior as it pertains to inferring reputation. Table

3.2 is a matrix of analysis methods and tools versus data attributes on which they operate.

3.15.1 Analysis Methods and Tools Not Described

Many analysis methods and tools exist for investigating the data available to us in social

networks, and I have covered a number of tools that demonstrate the most promise for inferring

reputation. However, other tools are available that I did not cover but warrant further review.

72

Pizzuti [96] proposes a method to detect overlapping communities, the same goal as that of the

Clique Percolation Method described in section 3.9. Van Dongen [119] proposes a method to cluster

vertices in a graph based on stochastic flow simulation. Bagrow [6] proposes a local community

detection method in the same family as the local method described in section 3.13. Many of the

clustering methods that have been inspired from biology and genetics compared by Huttenhower

et al. in have not been included in this analysis. Flake et al. [36] propose a community detection

algorithm that is based on max-flow of vertices in the graph. Chun et al. apply the disparity metric

to the social graph in Cyworld to show the spread of activity of a user over all friends. Blei et al.

[14] propose an unsupervised topic modeling method to determine groupings of words as topics.

73

Table 3.2: Matrix of analysis methods and data attributes

Methods A
tt

ri
b

u
te

s

K
ey

w
o
rd

s/
to

p
ic

s

P
h

ra
se

s

U
R

L
s

D
u

p
li

ca
te

s

M
en

ti
on

s

T
im

es
ta

m
p

s

D
at

a
so

u
rc

e

L
o
ca

ti
on

L
an

gu
ag

e

C
om

m
u

n
it

y

R
el

at
io

n
sh

ip
si

m
il

a
ri

ty

In
fl

u
en

ce
/R

an
k

C
on

n
ec

ti
v
it

y

Statistics/probability X X X X X X X X X

Network motifs X X X

Similarity measures X X X X X X X X X X X X X

TF-IDF X X X X X

LDA X X

N -grams X X X X X

K -means X X X X X X X X X X X X X

PageRank X X

Betweenness Centrality X X X

Global Hier. Clust. X X X

Clique Percolation X X

Nearest Neighbor X X

K -core Decomp. X X

Activity Network X X X

Local Hier. Clust. X X

HITS X X X X X X

Chapter 4

Twitter Data

The research performed in this thesis uses public data available from the Twitter social

network. In this chapter I give an overview of the data that exists in Twitter and describe the

limitations of the data as well as the limitations of collecting the data. We will also show some

general statistics of a sample of the data.

4.1 Twitter API and Data Formats

The Twitter social network is available as a web interface in which people are able to login

and post messages and read the messages of those users they follow. However, for the purposes

of this research, I need access to large amounts of data that are cumbersome to collect via a web

crawler. Twitter does provide an application programming interface (API) that allows for direct

access to the data via a collection program.1

The API available from Twitter uses a RESTful2 interface that is easily accessible through

all major programming languages and some command-line unix tools. In section 3.1 I described the

different types of data available in social networks. The types of data available from the Twitter

service include the three major categories of message and profile text, associated metadata, and

the declared social graph between users.

The data from each API call may be returned in varying formats specified by the developer.

1 http://dev.twitter.com
2 http://en.wikipedia.org/wiki/Representational State Transfer

75

Those formats include JavaScript Object Notation3 (JSON), Atom Syndication Format4 (ATOM),

and Extensible Markup Language5 (XML). Each of these formats may be parsed to extract the

data from the query for use in my analysis.

The Twitter API consists of three distinct types:

(1) Search API - Allows for searching for tweets that match a set of keywords back in history

(2) Streaming API - Allows for searching for tweets that match a set of keywords as the tweets

are created by users real-time

(3) REST API - Allows for querying for tweets, user profiles, and the social graph matching

specific values

The search API has undergone many changes during its existence, originally starting as a

company acquisition by Twitter, and most recently it has been migrated to using a full Lucene

backend [117]. Tweet results from search are always returned in decreasing order based on time

which has effects on what information users are most likely to see when they search for information

on the network. The streaming API was developed as a means to obtain tweets matching keywords,

user IDs, and location polygons [116]. The REST API allows access to data using queries that are

not based on keyword. There are numerous methods that exist that allow access to all data using

user IDs, usernames , timestamps, and others. Examples include queries to gather a user’s full

tweet stream history or friends and followers.

4.2 Collection Limitations

There exist a number of limitations when attempting to collect data from any of the three

above API interfaces. Here I describe each of these limitations.

First and foremost, Twitter sets rate limits based on both authenticated users accessing the

service as well as un-authenticated requests from any public IP address [114]. These limits have

3 http://tools.ietf.org/html/rfc4627, http://www.json.org
4 http://en.wikipedia.org/wiki/Atom %28standard%29
5 http://en.wikipedia.org/wiki/XML

76

varied over time, but typically default values are 350 requests per hour for an authenticated user

and 150 requests per hour for un-authenticated requests from a specific IP address. These limits

may be raised to “whitelisted” status by contacting Twitter for such a status. These requests

require justification, and in fact for this research, Twitter has granted five IP addresses whitelisted

status. Whitelisted status may apply to both authenticated requests and IP addresses, effectively

raising the rate limits for both to 20,000 requests per hour. Further, many requests for information

(such as tweets or friends/followers) require multiple individual API calls in order to gather all the

desired information. For example, Twitter will return a maximum of 5000 user IDs per friend or

follower requests as a “page” of data. This implies that if a user has say, 13,000 followers, three

total requests must be made to collect all of this data, and each individual page request deducts

from the overall allowed limit per hour. Additionally, Twitter currently has a limitation of only

exposing the most recent 3,200 tweets posted by a user [118].

Another limitation in accessing data from Twitter appears in the network latency per query.

Query response times vary depending on the type of query and the time of day the query is made.

For example, a query for a user’s latest tweet may be modified to include or exclude the user profile

in the response. If the profile is included then the response time is greater due to the extra database

query on the Twitter servers to obtain this extra information to be returned in the response. The

time of day of the query also affects the overall response time due to standard internet latency times

that vary with peak usage during the day versus the night. Our observed query response times

have ranged from 200-500ms due to the described factors, and to fully exhaust 20,000 requests per

hour requires one request every 180ms. In order to fully utilize these resources, I must incorporate

multi-threading to reduce the amount of time waiting due to network latency.

The final limitation I encounter includes errors returned by Twitter for valid queries. Twitter

defines many of their own HTTP status codes for errors [115] and many are encountered when

attempting to query all types of data in Twitter. The streaming API nominally will stay open until

the client closes the connection, but occasionally Twitter will return an error, or there will be other

local networking issues that cause the connection to drop. We must write in logic to re-connect

77

to the streaming API when a connection drops. Also in the search and REST APIs, Twitter will

occasionally throw one of it’s 500-level response errors, and in some rare cases, will completely hang

the connection. Further, there are other factors which may cause other 400-level requests, such as

a user changing their username (the user ID is the only attribute that is immutable), or by a user

account being suspended due to terms of service violations. I must account for all of these errors

when trying to collect the data.

4.3 Twitter Data and Attributes

Assuming I have accounted for all of the above described limitations in collecting the data, I

must now understand what data I have exactly, as well as the limitations of that data and what I

can do to infer missing information using additional collection techniques. The three major types

of data obtained from Twitter are the user profiles, tweets generated by users, and the social graph

friends and followers connections for users. Here I give real-world examples of each of these data.

Table 4.1 contains all of the key/value pairs of attributes for user “schenkmanus”. The bolded

attributes are the ones used in this research to determine influence and reputation. The user ID is

one of few immutable attributes of a user and is what I use for the primary key when tracking users.

We are also interested in the friends and followers counts for various reasons will will be described

in section 4.5.2. The screen name attribute I also care about since that is how most average users

find others, even though the name can be changed at any time. The time zone/UTC offset are

also an interesting attributes as they may tell us a general area in which a user may reside. The

location field may also tell us where a user may be, depending on whether or not that user has

entered in a valid location.

Table 4.2 contains all the key/value pairs of attributes for the latest tweet by user “schenkmanus”.

The bolded attributes again are the ones used in this research. Three similar attributes appear in

the tweet which are “coordinates”, “place”, and “geo”. These three attributes are various ways in

which Twitter includes geographic information such as lattitude/longitude for tweets if the user

who posted that tweet enabled GPS or a related feature on their device used at that time. We also

78

see the actual tweet text included, as well as the timestamp of that tweet. Additionally we also

have the source application (such as the web or various phone applications) that people use to post

messages.

Table 4.3 contains two lists representing the social graph of user “schenkmanus”, one of

friends (out-going links made to other users) and one of followers (in-coming links made by other

users to this one). Two separate REST API calls must be made to gather each of these lists. Note

that the information returned for these requests is minimal, only including a list of users. This

has implications which I will describe in section 4.4. In this case user “schenkmanus” has very few

friends and followers which is not the average [57].

Already one can see that there are a number of attributes that are not necessary but are

included in all responses anyway. Some attributes are even duplicated across multiple queries. In

section 4.5.2 I look at the attributes more in depth.

4.4 Data Limitations

A number of limitations appear when analyzing the data returned from Twitter. At a first

observation, Twitter stores very little information about users in general, with only giving fields for

time zone, location, name, and description as identifiers of the user. This is in comparison with,

say, Facebook that contains numerous fields for users to store attributes describing their activities

or interests. With the data available to us, a number of issues arise, and I will describe some of

the major issues encountered in the data analysis. This is not an exhaustive list, but a sample to

illustrate the issues.

First, the data returned from the same API call may vary depending on the format requested.

For example, the ATOM format follows a specific schema which forces Twitter to modify data,

specifically the tweet text when a tweet is a re-tweet. This forces researchers such as myself to

accommodate for these variations by trial and error, and Twitter may make changes with these

subtle variations without notification.

Second, profile fields are not validated by Twitter in any way. For example, the “location”

79

Table 4.1: Table of Twitter profile values returned from the REST API for user “schenkmanus”.
Keys and values in bold are those used in data analysis for this research. Values of “None” are
equivalent to null or empty.

Key Value

follow request sent None
profile use background image True
id 59859467
verified False
profile sidebar fill color 252429
profile text color 666666
followers count 6
protected False
location earth
profile background color 1A1B1F
id str 59859467
status <See table 4.2 for the format of a tweet>
utc offset -25200
statuses count 11
description CS geek, programming, sysadmin, music, composing,

colorado, Hiking, biking, totorcycling, travel
friends count 4
profile link color 2FC2EF
profile image url http://a1.twimg.com/profile images

/330294609/evilherbert normal.jpg
notifications None
show all inline media False
geo enabled False
profile background image url http://s.twimg.com/a/1288305442/images

/themes/theme9/bg.gif
name Chris Schenk
lang en
profile background tile False
favourites count 0
screen name schenkmanus
url None
created at Fri Jul 24 19:06:11 +0000 2009
contributors enabled False
time zone Mountain Time (US & Canada)
profile sidebar border color 181A1E
following None
listed count 0

80

Table 4.2: Table of attributes of the latest Tweet by user “schenkmanus” from the REST API.
Keys and values in bold are those used in data analysis for this research. Values of “None” are
equivalent to null or empty.

Key Value

favorited False
retweeted status <The original tweet that may or may not have been

retweeted will be embedded here and has the same for-
mat of the tweet represented in this table with the orig-
inal author’s attributes listed.>

contributors None
truncated False
text RT @extralife: It occurs to me that today’s

comic means zero to anyone not familiar with
Gauntlet. http://bit.ly/9aizuo

created at Thu Sep 30 00:21:16 +0000 2010
retweeted False
in reply to status id None
coordinates None
id 25931435478
source web
in reply to status id str None
place None
in reply to user id None
in reply to screen name None
retweet count None
geo None
in reply to user id str None
id str 25931435478

Table 4.3: Table of friends and followers of user “schenkmanus” as they are returned from Twitter
via the REST API. This user is barely active in the network and as such, these lists are very small.
Typical users have more friends and followers on average [57].

schenkmanus

Friends Followers

1374921 1374921
2989151 2989151
6274662 72343273

12753892
23838490
627466

81

field is simply a text box in which a user may list his or her location. As you can see in table 4.1,

user “schenkmanus” has listed his location to be “earth”.

Third, the notion of a “re-tweet” is a home-grown idea from the community and not a feature

initially implemented by Twitter. Over time Twitter included support for re-tweets, but they are

unable to track all the ways in which a message is duplicated on the network. As such, I must

search for the multiple ways in which a tweet may be re-tweeted which may change over time based

on the user population.

Fourth, no timestamp data is included with the friend/follower lists so I have no knowledge

of when a user was friended or followed by another. Interestingly, Twitter does return the lists of

users in relative order in which they were friended or followed, but that is not granular enough

for my goals. As such, I must come up with interesting collection techniques such as collecting a

user’s friend/follower lists periodically to see how those lists change. We use this technique in the

algorithm described in chapter 6.

4.5 Statistics for Labor Day 2010 Boulder Fires Data

Before I am able to start searching for influential users in any data set, I first want to explore

the data and see what properties appear using different metrics. I compute numerous statistics on

the attributes and text available from the data collection. I use a dataset collected from the Boulder

Four Mile Canyon fire that started around 10:00am on Monday, September 6th, 2010. During this

time the search and streaming APIs were utilized to search for users using the keywords and phrases

boulderfire, boulder, 4milefire, fourmilefire, and fourmilecanyon. The implication is that

this list is additive, increasing as more people talk about the fire. Subsequently once every 30

minutes I collected the friend/follower lists from the REST API of the unique users that appeared

from the search and streaming API results at that time, however I analyze the social graph data

in chapters 5 and 6.

The statistics generated for the data are as follows. All counts generated are sorted descend-

ing.

82

• Counts of the total number of tweets generated by a user. Note that this number will

always cap at 3200 tweets for users limited by Twitter as mentioned in section 4.1.

• Counts of hashtag occurrences

• Counts of username mentions

• Counts of addressed messages from user A to user B

• Counts of the number of times a user was re-tweeted within the data set

• Counts of the number of times user A re-tweeted user B, a more granular statistic than the

previous statistic

• Counts of different URLs that are posted by users

• Counts of the number of times an application was used to post a message, such as the

Twitter web interface or other third-party applications

• Counts and plots of the latitude/longitude information included in tweets

• Counts of the number of users and edges in the social graph as well as top-ranked in-degree

users

Additionally, any geo-location information is pulled from the tweet metadata and frequency

and graphs of how many tweets are posted each hour are also generated. Each of these statistics

may be computed on a group of users or for individuals. I am also able to limit the statistics to

a specific time window given starting and ending dates and times in order to understand behavior

during the event as it compares to general behavior.

4.5.1 Qualitative Influencers

Given that the Boulder fire occurred within the city in which I live, my fellow researchers

were able to interact directly with people who were speaking actively about the fire. As such, one of

83

Table 4.4: A qualitative list of influencers during the Boulder fire of Labor Day 2010 as given by
fellow researcher Jo White.

Users

epiccolorado laurasrecipies HumaneBoulder fishnette

suzanbond CampSteve ConnectColorado Org9

metroseen palen sophiabliu Mediamum

Tanukun eadvocate kate30 CU BoulderChannel1

my fellow researchers, Jo White, gave me a qualitative list of users in Twitter who were considered

influential during this fire. Table 4.4 is that list of users. Note that user “BoulderChannel1” is

considered an influencer but is also known as putting forth mis-information about the fire and not

interacting in a helpful manner during the fire. However, many of the posts by this user propagated

through the network and therefore is considered influential, even if also delinquent. I use this list

to see where these influential users are appearing in the different statistics. I will return to this list

in the social graph analysis in chapters 5 and 6.

4.5.2 Statistics of the First 24 Hours and First Week

Here I compare statistics from the first 24 hours of the fire as well as the first week of the

fire. The specific time windows begin with Monday, September 6th, 2010 at 10:00:00am MDT and

end with Tuesday, September 7th, 2010 at 10:00:00am MDT and Monday, September 13th, 2010

for the 24-hour and one week windows, respectively. The 24-hour data set contains 398 users and

the week-long data set contains 13,955 users, demonstrating the additional involvement of new

users over time. The number of tweets seen during both time periods are 12,147 and 2,314,700,

respectively.

I begin with table 4.5 which is a simple count of tweets for each user in the data set and

the associated rate of posting. This information tells us who is most active in posting in this

selected group. As you can see from the table, four of the sixteen qualitatively influential users

are listed and are highlighted in bold in the 24-hour column. As the event continues during the

week, many more people are speaking about the fire and very active users appear at the top of

84

the list, about many of whom I have no information and are most likely not involved at all, but

merely mentioning the fire using a re-tweet or one of the keywords used in the initial tweet search.

We do see a well-known Boulder resident and technology entrepreneur, “andrewhyde”, appear in

the data, and others appear in other statistics as well. One user, “364news”, hits the 3200 tweet

limit imposed by Twitter as described in section 4.4. The average and median number of tweets

per person during the first day are 30.52 and 9.00, respectively. The average and median number

of tweets per person during the first week are 165.87 and 38.00, respectively.

In table 4.6 I show the counts for all hashtags found within the data set. A hashtag is an

alpha-numeric-underscore string prepended with the pound sign. Examples include #boulderfire,

#4milefire, and #real estate. As can be seen in the 24-hour column, a number of boulder and

fire-related hashtags appear, including #boulderfire, #boulder, #fourmilefire, #fourmile-

canyonfire, #4milefire, #wildfire, and possibly #colorado. However, one can see that the

only hashtag that survives among the noisy week-long data is #boulderfire. We see the surge of

the “friend friday” hashtag in the one week data (denoted by #ff) and a mention of the San Bruno,

California gas pipeline explosion that occurred in the same week (denoted by #sanbrunofire).

The total numbers of hashtags seen for the first day and first week are 7,422 and 756,785, respec-

tively. The numbers of unique hashtags seen for the first day and first week are 895 and 66,765,

respectively. The average and median appearance of a hashtag seen during the first day are 8.29

and 1.00, respectively. The average and median appearance of a hashtag seen during the first week

are 11.34 and 1.00, respectively.

Table 4.7 shows the top username mentions in all the tweet streams of the users confined to

the Boulder fire data sets. A username mention is simply the appearance of a username in a tweet,

such as “@schenkmanus” or “@fishnette”. As can be seen in the table, we see more of the qualitative

users in the set during the 24-hour period, and as more users enter the event network, a lot of noise

is introduced and we see many other usernames appear that have no relevance. Some qualitative

influencers still appear in the one week column, but we see celebrities such as “@justinbieber”

and “@barackobama” and local news outlets such as “@cbs4denver” and “@denverpost”. The

85

Table 4.5: A list of the top 25 users with the most tweet counts and associated post rate of each
user in tweets per hour in the 24-hour and one week data sets. Users highlighted in bold are part
of the qualitative set listed in table 4.4.

24-Hour One Week

Rank User Count Rate User Count Rate

1 fishnette 394 16.4 364news 3200 19.0
2 wind4me 343 14.3 markayitea 3073 18.3
3 puregemstore 335 14.0 carlosmethelly 2919 17.4
4 shravanp 323 13.5 jonchan02 2696 16.0
5 smartmarketing1 302 12.6 batin is 2687 16.0
6 brendanloy 285 11.9 norskeaviser 2614 15.6
7 tuckertown 267 11.1 hitsbyzuk 2609 15.5
8 world policy 259 10.8 kshypptl 2594 15.4
9 tanukun 251 10.5 dropshipperssa 2567 15.3

10 stiftioree4 241 10.0 indianews247 2561 15.2
11 mattters 240 10.0 djilanihr 2534 15.1
12 karoli 237 9.9 carlosgil83 2523 15.0
13 alltop science 225 9.4 keruffworldnews 2520 15.0
14 sitfu 216 9.0 kpjobs 2506 14.9
15 newsfeeding 211 8.8 vehixcar 2500 14.9
16 hlane 209 8.7 dhayes1098 2500 14.9
17 nicolew247 207 8.6 mikes web page 2486 14.8
18 epiccolorado 183 7.6 cosmonet news 2482 14.8
19 andrewhyde 175 7.3 selvan tengy 2478 14.8
20 twnstar2 155 6.5 cronaca24 2470 14.7
21 theroseinbloom 154 6.4 spotifyuri 2469 14.7
22 sarajuliet 148 6.2 bigmikepromo 2469 14.7
23 notperfume 143 6.0 thenewsblotter 2466 14.7
24 highnicole 138 5.8 phayes4342 2460 14.6
25 mediamum 136 5.7 0341marktplaats 2459 14.6

86

Table 4.6: A list of the top 25 hashtags in use by all users who mentioned at least one keyword
related to the Boulder fire. Note that many hashtags appear that are completely unrelated to the
event. The counts for the one week data have been normalized to per-day averages in column 5 for
comparison with the 24-hour window.

24-Hour One Week

Rank Hashtag Count Hashtag Count Daily Avg.

1 #boulderfire 2767 #boulderfire 27982 3997.4
2 #boulder 513 #jobs 20991 2998.7
3 #news 432 #news 19948 2849.7
4 #fire 255 #ff 14368 2052.6
5 #src 151 #tcot 13113 1873.3
6 #loc 135 #p2 8692 1241.7
7 #evac 134 #health 5542 791.7
8 #business 91 #quote 5076 725.1
9 #info 83 #fb 4963 709.0

10 #fourmilefire 61 #socialmedia 4737 676.7
11 #fourmilecanyonfire 59 #sanbrunofire 4337 619.6
12 #politics 56 #fashion 4247 606.7
13 #4milefire 56 #follow 3960 565.7
14 #wildfire 47 #ebc 3729 532.7
15 #hermine 46 #pets 3728 532.6
16 #shelter 37 #tweetmyjobs 3319 474.1
17 #soccer 36 #pakistan 3319 474.1
18 #fb 35 #bookmark 2897 413.9
19 #world 35 #1 2747 392.4
20 #fifa 35 #business 2679 382.7
21 #2010 35 #iranelection 2607 372.4
22 #cup 35 #in 2553 364.7
23 #sports 34 #kaiser 2510 358.6
24 #colorado 34 #travel 2507 358.1
25 #offer 32 #teamfollowback 2472 353.1

87

percentages of users that mention at least one other user in the first day and first week period are

77.39% (308 users) and 79.08% (11,036 users), respectively. The total numbers of mentions seen

during the first day and first week are 7,877 and 1,224,851, respectively. The average and median

numbers of mentions per user during the first day are 19.79 and 1.00, respectively. The average

and median numbers of mentions per user during the first week are 87.77 and 1.00, respectively.

In table 4.8 I review the number of addressed messages sent between users during the different

time windows. Addressed messages are considered to be those that begin with either “@username”

or prepended with a period as “.@username” (both cases without quotes). The highlighted users

are part of the qualitative set, and we can see in this case that only two of the qualitative set appear

at the top of this list. Again in the one week column, the noise appears when additional users are

added into the event network and numerous messages are sent between users who are unknown

and are most likely not about the Boulder fire. Interestingly, some users address messages to

themselves, as demonstrated by user “back2lifeinc” ranked third in the one week data set. The

percentages of messages that are addressed messages during the first day and first week are 18.85%

(2,291 messages) and 15.90% (368,047 messages), respectively. The percentages of users who have

sent at least one addressed message to others during the first day and first week are 57.04% (227

users) and 60.22% (8,404 users), respectively.

Table 4.9 shows the top re-tweeted users during the two time windows. Here we see a general

pattern of news outlets being re-tweeted among people, but we do see some of the qualitative set

of users appearing in the list. For the first time we see user “BoulderChannel1” appear using this

metric. The percentages of messages that are considered re-tweets during the first day and first

week are 32.88% (3,994 messages) and 21.81% (504,836 messages). The numbers of unique users

re-tweeted during the first day and first week are 1,456 and 134,204, respectively. Of those users

re-tweeted, the percentages of users actually speaking of the Boulder fire during the first day and

first week are 24.45% (356 users) and 1.55% (2,085 users), respectively.

Table 4.10 shows the top re-tweeted source-target user pairs during the two time windows.

This measure is a more fine-grained measure than the previous total count as show in table 4.9.

88

Table 4.7: A list of the top 25 username mentions in the 24-hour and one week data sets of the
Boulder fire. Highlighted users in bold are part of the qualitatively influential set of users.

24-Hour One Week

Rank Username Count Username Count

1 fishnette 540 addthis 4131
2 andrewhyde 223 breakingnews 3150
3 cbs4denver 197 jinxbeatz 2554
4 epiccolorado 188 mikes web page 2416
5 denverchannel 87 youtube 2310
6 mediamum 79 epiccolorado 1861
7 kwgndenver 69 cnnbrk 1812
8 wind4me 50 fishnette 1732
9 thefiretracker2 46 laurasrecipes 1560

10 bouldercounty 46 addtoany 1486
11 humaneboulder 42 justinbieber 1484
12 twitter 41 nytimes 1479
13 dailycamera 39 mashable 1383
14 sandrafish 39 dapitarchuletoy 1292
15 hlane 38 cbs4denver 1199
16 jamesazure 35 c1 1171
17 laurasrecipes 34 barackobama 1151
18 sarajuliet 33 tweetsmarter 1075
19 tuckertown 30 denverchannel 1071
20 suzanbond 30 mikeposner 1065
21 ev 28 denverpost 1064
22 coloradodaily 27 flipbooks 1064
23 beregond 27 cnn 1013
24 kgnu 26 nasa 941
25 shellimeyers 26 thefiretracker2 925

89

Table 4.8: A list of the top 25 counts of addressed messages originating from users speaking of the
Boulder fire within the first day and first week. The message sent to the target user in this context
does not imply the users were speaking of the fire directly. Users highlighted in bold are part of
the qualitative set.

24-Hour One Week

Source Target Count Source Target Count

bellamom beregond 27 darebat c1 809
wind4me fishnette 25 kizziecherry gogumba 697
tuckertown lrockwellatty 20 back2lifeinc back2lifeinc 579
brendanloy inthebleachers 19 darebat iquit 573
brendanloy jeremysbn 19 ei econewsfeed ecointernet 521
brendanloy kilroyfsu 16 socbookmarks iquaks 415
wind4me cbs4denver 13 seobookmarks iquaks 415
tuckertown drmarm 11 davidakhoa c1 361
theroseinbloom monkeyxplosion 11 yomarques lynndaisbellamy 293
karoli harrylyme 11 davidakhoa iquit 274
hlane scottc10 10 bookmarkingnet youblr 260
mike flys cholubaz 9 radu palanga irinabbz 258
highnicole sinisterlukey 9 garyblackmon gumbyiam 255
andrewhyde fishnette 9 lissaloucraigy2 sematalba 247
priscillast fishnette 9 allstarmn sarahallstar94 240
rdwnggrl depmodechick 9 radu palanga 100tulip 240
fishnette priscillast 9 jesusfan 420 ofinfinitejest 231
mike flys dhindmanjr 9 allstarmn itsheather7 223
sarajuliet fishnette 9 radu palanga dearmikeyway 213
brendanloy andy staples 8 karu1402 bensonthehusky 205
fishnette andrewhyde 8 beeblez reddirtisland 202
fishnette sarajuliet 8 mysticjeremy forbescarolinev 199
scobleizer kichigai 8 bluecornpie ally1r 189
kkartphoto laurasrecipes 7 tellydubby anniewestdotcom 188
scobleizer srikanth br 7 theliterator coloursfading 181

90

Table 4.9: A list of the top 25 re-tweeted users in the first day and first week of the Boulder fire.
The one week counts are normalized to per-day averages for comparison with the 24-hour counts.
Users highlighted in bold are part of the qualitative set.

24-Hour One Week

Rank User Count User Count Daily avg.

1 fishnette 301 addthis 4097 585.3
2 andrewhyde 143 breakingnews 3058 436.9
3 cbs4denver 140 youtube 2157 308.1
4 epiccolorado 127 addtoany 1486 212.3
5 denverchannel 69 cnnbrk 1354 193.4
6 kwgndenver 56 epiccolorado 1185 169.3
7 mediamum 46 nytimes 1132 161.7
8 bouldercounty 36 tweetsmarter 997 142.4
9 thefiretracker2 35 flipbooks 978 139.7

10 dailycamera 27 cbs4denver 969 138.4
11 wind4me 27 greychampion 910 130.0
12 breakingnews 25 denverchannel 899 128.4
13 kgnu 24 denverpost 882 126.0
14 coloradodaily 24 mashable 870 124.3
15 boulderchannel1 23 nasa 842 120.3
16 hkoren 21 fishnette 819 117.0
17 kkartphoto 21 thefiretracker2 748 106.9
18 schwartznow 20 laurasrecipes 739 105.6
19 cnnbrk 20 wxchannel 729 104.1
20 cuindependent 19 huffingtonpost 708 101.1
21 tuckertown 19 thenewsblotter 638 91.1
22 humaneboulder 18 detikcom 596 85.1
23 suzanbond 18 kike230 575 82.1
24 douginboulder 17 pixelproject 573 81.9
25 jamesazure 17 mparent77772 570 81.4

91

We immediately see that the noise of the week-long data set drowns out any interaction between

users active in the Boulder fire. We do see many people re-tweeting user “fishnette” in the 24-hour

period.

Table 4.11 shows the top-25 encountered urls in the two time windows. Users very frequently

share URLs that are shortened using services from domains that are themselves short (such as

“bit.ly”) and use a hash function to encode the remainder of the URL and then forward the request

to the target URL. Due to this feature, I am unable to immediately see what are the actual top

URL destinations. In order to determine this information, I must use URL expander services or

write a script that follows the links until an HTTP 200 response is encountered, signifying the

final destination of the links. Without this process, these URLs are meaningless by themselves.

We also see one of the abhorrent behaviors of Twitter in this table with truncated URLs, such as

“http://b” and others. This is due to requesting ATOM format in the API call, and in the case of

re-tweets, Twitter will prepend the text with the “RT @username” construct and truncate the tail

of the message which typically contains the URL. Requesting JSON format from the API call does

not introduce this behavior. The total numbers of unique URLs seen during the first day and first

week are 4,105 and 1,200,927, respectively.

Table 4.12 lists the top 25 applications utilized by users to access Twitter. There exist

numerous applications that allow users to access Twitter. In the 24-hour period we see 85 unique

applications and in the one week period we see 1,026 unique applications. The percentages listed

in the table are calculated from totals of 12,147 and 2,314,700 tweets for the 24-hour and one week

time windows, respectively. The application name actually appears as HTML and the name is

parsed out from the HTML itself and is displayed in the table. By itself, this information isn’t very

useful, but observing the dynamics of what applications are used by people during events compared

to their normal behavior may yield interesting behavioral patterns.

Figures 4.1, 4.2, and 4.3 show the locations of tweets by 30 users among the 398 total users in

the 24-hour data set, accounting for 7.53% of the users. Among these 30 users, 172 tweets contained

latitude/longitude data, accounting for 1.42% of the 12,147 tweets seen during the first day. All of

92

Table 4.10: A list of the top 25 re-tweeted users in the first day and first week of the Boulder fire.
The user in the source column is the originator of the tweet. Users highlighted in bold are part of
the qualitative set.

24-Hour One Week

Re-tweeter Source Count Re-tweeter Source Count

wind4me fishnette 59 canadianinjured greychampion 910
tanukun fishnette 37 nygnowlivetv addthis 663
cuindependent fishnette 27 kike230 kike230 575
mediamum epiccolorado 25 hopemarie 25 peacekaren 25 506
sarajuliet fishnette 24 mamalou52 virtual abbey 356
epiccolorado fishnette 23 ishfaq01 addtoany 347
michaelevs cbs4denver 20 retweeter33 flipbooks 346
theroseinbloom fishnette 19 jap4haiti haiti 11 340
twnstar2 cnnbrk 16 pacifictimesmag youtube 335
wind4me cbs4denver 16 viravita viravita 315
tuckertown cbs4denver 16 mudpie25 dylano 311
palen epiccolorado 15 batin is detikcom 307
michaelevs kwgndenver 14 lodispirit pixelproject 282
wind4me denverchannel 14 newmediadevotee ericpratum 260
jennar fishnette 12 actionscript3 shary20 254
torqueflite tuckertown 12 jazzyaditya detikcom 253
notperfume nannersmom 12 quintinreports thenewsblotter 253
velofemme fishnette 11 8service addthis 247
tanukun thefiretracker2 9 thenewshome addtoany 239
twnstar2 thefiretracker2 9 jonchan02 globalgrind 229
hlane fishnette 9 angelwings0511 adamsconsulting 208
wind4me andrewhyde 9 viravita andinifaramitha 203
cuindependent andrewhyde 9 riqhimon riqhimon 200
notperfume petmamma 9 batin is kompasdotcom 200
wind4me joshlarson 8 cosmoweb cosmoweb 191

93

Table 4.11: A list of the top 15 URLs appearing in the two data sets. Due to idiosyncrasies of the
Twitter API when requesting ATOM format, some URLs are truncated.

24-Hour

Rank Url Count

1 http://bit.ly/ccX7kH 30
2 http://twitpic.com/2m1ghy 29
3 http://www.radioreference.com/apps/audio/?action=wp&feedId=591 23
4 http:// 20
5 http://bit.ly/9yxpOQ 19
6 http://bit.ly/cYIVtM 16
7 http://bit.ly/9c2GjV 14
8 http://bit.ly/bh93Fu 13
9 http://twitpic.com/2lw39r 13

10 http://boulderoem.com/component/content/article/5 13
11 http://bit.ly/c2wnXh 12
12 http://post.ly/vyWH 12
13 http://bit.ly/9IuULq 12
14 http://bit.ly/9AX3JL 12
15 http://bit.ly/b3Mvqx 11

One Week

Rank Url Count

1 http://bit.ly/5yluCl 3028
2 http://bit.ly/9n3Ifc 2249
3 http://thenewslist.com 1766
4 http://bit.ly/b6xyyB 1595
5 http:// 1489
6 http://malufor.ch 1111
7 http://bit.ly/4vPZm1 1062
8 http://bit.ly/9t0MRU 1055
9 http://CarlosGil.us 951

10 http://ow.ly/2k6oa 894
11 http://bit.ly/cbhpXo 848
12 http://ow.ly/2k4Sf 846
13 http://adf.ly/5FcS 820
14 http://www.bit.ly/lookingforwork 780
15 http://b 748

94

Table 4.12: A list of the top 25 source applications used by the users in the Boulder fire network.
Tweet totals for both time windows are 12,147 and 2,314,700 for 24-hour and one week, respectively.
The distribution percentages are given.

24-Hour One Week

Source Count Percent Source Count Percent

web 3471 28.57 twitterfeed 801610 34.63
twitterfeed 2541 20.92 web 453113 19.58
TweetDeck 2457 20.23 TweetDeck 197643 8.54
Echofon 565 4.65 HootSuite 94240 4.07

Twitter for iPhone 548 4.51 ÜberTwitter 63977 2.76
HootSuite 418 3.44 Twitter for iPhone 63774 2.76
Tweetie for Mac 322 2.65 dlvr.it 44222 1.91
Seesmic Desktop 247 2.03 Echofon 38997 1.68

ÜberTwitter 165 1.36 Ping.fm 31788 1.37
Wowd api 165 1.36 Google 30675 1.33
Twitterrific 128 1.05 Twitter for BlackBerry 26068 1.13
Twitter for iPad 127 1.05 mobile web 23750 1.03
twidroid 100 0.82 txt 21477 0.93
hottopics7 94 0.77 twidroid 15056 0.65
Twitter for BlackBerry 88 0.72 Seesmic Desktop 13232 0.57
Twitpic 78 0.64 SocialOomph 10879 0.47
Twitter for Android 58 0.48 Tweetie for Mac 10648 0.46
mobile web 54 0.44 Twittelator 10477 0.45
Seesmic for Android 42 0.35 Tweet Button 8866 0.38
TweetMeme 37 0.30 TweetCaster 8705 0.38
txt 36 0.30 Twitter for Android 8261 0.36
Tweet Button 31 0.26 TwitBird 8238 0.36
TweetCaster 28 0.23 Visibli 6710 0.29
YoruFukurou 28 0.23 Facebook 6707 0.29
foursquare 26 0.21 Seesmic for Android 6556 0.28

95

the 172 points were plotted in a Google map using the Google Maps API.6 The first map in figure

4.1 shows users from California, Nevada, Wisconsin and Indiana did speak about the Boulder fire

in some way. Zooming in closer to Denver in figure 4.2 and 4.3 shows the higher density of Tweets

appearing in Boulder.

The number of users in the one week data that gave location information is 858, accounting

for 6.14% of the users. Among those users, the number of tweets that contain latitude/longitude

location information is 17,903, accounting for 0.77% of the 2,314,700 tweets generated by users

speaking of the fire in any manner during the week. This data is not plotted due to the volume

of points. Points need to be grouped using clustering methods such as k -means (as described in

section 3.5) in order to reduce the overall amount to be feasibly plotted on a map.

Table 4.13 shows information about the social graph associated with users speaking of the

Boulder fire. The table includes the number of users in the network speaking of the fire and the

number of edges connecting those users (considered “active” in the table), as well as all users and

edges encountered in the friends/follower lists. Data are calculated for five different snapshots of

the social network set one day apart from each other beginning with Tuesday, September 7th at

12:40pm and ending on Saturday, September 11th at 3:10pm. As can be seen, the number of users

increases during the week. Although the data suggests people were leaving the network due to the

decrease in users in columns three and four, this is in fact due to data collection errors encountered.

The small-world property [122] of Twitter is immediately apparent with the unique number of users

(in the millions) who are one connection away from those speaking about the Boulder fire.

Table 4.14 shows the ranking of users by the number of followers of users speaking during the

first day of the fire collected on September 7th, 2010 at 12:41pm Mountain time. Both the global

rankings and rankings only among the users who are speaking about the Boulder fire are listed. In

the case of rankings only among the active users in the fire, all user IDs that are encountered that

are not part of the active user set are removed and edges to those users are ignored. In the global

list, no qualitative influencers are found. However, in the list where only users actively speaking

6 http://code.google.com/apis/maps/documentation/javascript/reference.html

96

Figure 4.1: An image of latitude/longitude points extracted from tweet post metadata from posts
by users speaking of the Boulder fire in the first 24 hours overlain on a map of the United States.

Table 4.13: A list of statistics of the social graph in one-day increments during the Boulder fire.
Active edges connect the users who are actively speaking about the fire in some way. All edges and
users are counts of all unique users encountered in the data sets.

Timestamps (America/Denver)
2010-09-07 2010-09-08 2010-09-09 2010-09-10 2010-09-11

12:40:01 12:40:01 12:40:01 12:40:01 15:10:01

Users (active) 448 1,631 1,623 1,622 4,039

Users (all) 821,609 2,292,929 2,295,885 2,300,838 4,075,573

Edges (active) 3,142 25,193 25,484 25,664 87,539

Edges (all) 1,510,036 5,361,650 5,370,451 5,372,597 30,458,948

97

Figure 4.2: An image of latitude/longitude points extracted from tweet post metadata from posts
by users speaking of the Boulder fire in the first 24 hours, with zoom over the Denver, Colorado
metropolitan area.

98

Figure 4.3: An image of latitude/longitude points extracted from tweet post metadata from posts
by users speaking of the Boulder fire in the first 24 hours, with zoom over the Boulder, Longmont,
and Broomfield cities in Colorado.

99

about the fire are considered, qualitative influencers begin to appear in the data set.

4.5.3 Statistics of User “fishnette”

Now I will investigate statistics for individual users. Since user “fishnette” appears a lot in

the statistics from the previous section, I will look at the same statistics from that user’s point of

view. This user’s statistics will be viewed from two different time periods: the time period before

the start of the fire on September 6th, 2010 at 10:00am and data after the start of the fire. This

user joined Twitter Monday, April 28, 2008 at 7:39pm. For comparison with the data from the

previous section, the total number of tweets posted by this user is 394 for the first day as seen in

table 4.5 resulting in the top ranking. This user posted 879 for the first week resulting in a ranking

of 563 which was lost among the high-volume users in the one week time period.

Figure 4.4 shows the monthly post rates for user “fishnette”. Even though this user joined the

network in April of 2008, only the most recent 3,200 tweets are visible due to the limits imposed

by Twitter [118]. However, even with this limitation the general posting behavior is visible. A

significant increase can be seen at the start of September 2010 which correlates with the Boulder

fire. Figure 4.5 shows the posts aggregated by hour of the day. A large amount of posts can be seen

between 11:00am and 12:00pm Mountain time, indicating a possible lunch hour spike in activity.

Sleep hours can also be seen between 11:00pm and 7:00am.

Table 4.15 shows the hashtags in use by “fishnette” during the pre-fire and post-fire time

periods. A variety of hashtags can be seen in the pre-fire time period, but the frequency is low

relative to the week during the fire. The number of hashtags used before the Boulder fire is 273

yielding a ratio of 8.53% of hashtags to tweets out of 3,200 tweets. During the first day of the

fire the ratio increases to 86.80% of 342 hashtags within 394 tweets. This ratio decreases during

the one week data set to 63.82% of 561 hashtags within 879 tweets. Different events can be seen

in hashtags during the one week period as well, such as the #sanbruno hashtag referencing the

San Bruno, California gas fire mentioned previously. The appearance of support hashtags such as

#evac, #loc, and #needs appear as the event evolves and relief needs become apparent and

100

Table 4.14: A list of the top 25 users ranked by their number of followers in the data sets collected
for September 7th, 2010 at 12:41pm. The first rankings are of global follower counts and the
second rankings are of counts only among the active users speaking about the Boulder fire. Users
highlighted in bold are in the qualitatively influential set.

All Users Active Users

Rank User ID User Name Count User ID User Name Count

1 13348 Scobleizer 138067 841791 andrewhyde 123
2 24269775 marcelomedici 77627 14504258 dailycamera 98
3 19816859 PublishersWkly 76555 16119689 downtownboulder 97
4 15731368 HowardKurtz 36212 14522630 coloradodaily 88
5 18460854 shellykramer 33082 16313592 cbs4denver 81
6 16971072 taylorphinney 22639 14574055 fishnette 72
7 11425612 EthanJaynes 22006 817209 davidcohen 52
8 56597144 mr q 18212 13348 Scobleizer 52
9 4374531 gwenbell 15239 5124341 Mediamum 51

10 16877611 FoxSports 15137 29527113 OnlyInBoulder 50
11 841791 andrewhyde 11790 12627132 melsidwell 40
12 126444618 THEKASESHOW 11709 14911286 Tekee 40
13 80619999 Freedomman11 10301 4374531 gwenbell 40
14 39553219 KaliMarcum 9485 64876717 HumaneBoulder 40
15 16313592 cbs4denver 8860 85647240 epiccolorado 39
16 53153534 craigslistjobs 8767 14945780 ejoep 35
17 980611 Karoli 8396 6752232 Greeblemonkey 35
18 23996960 Jastewart15 8198 16733088 gratzo 34
19 35346943 pops131 8155 14208757 bouldertweep 33
20 22795877 bigdandbubba 7640 1142941 jenmyronuk 33
21 41326847 salivates 6962 16971072 taylorphinney 33
22 21726778 BellaCullen18 6872 14317338 KezzaMcDezza 32
23 14705116 AmeriCares 6578 24663013 hkoren 31
24 18124625 casinclair 6300 19661756 hlane 31
25 45797123 eraseyourdebt 6275 15791661 fionaschlachter 30

101

Figure 4.4: A graph of the posts created each month by user “fishnette” going back to the most
recent 3,200 tweets. A spike in posting activity can be seen in the month of September, correlating
with the start of the Boulder fire.

102

Figure 4.5: A graph of the posts created aggregated by hour of the day by user “fishnette” in the
Mountain time zone. The green line is the average and the red lines are ±1 standard deviation. A
lunch hour and sleep hours are visible.

103

vocalized in the community.

Table 4.16 shows the top 25 usernames mentioned in posts by user “fishnette”. As seen in

the overall event data described in the previous section, user “andrewhyde” appears again who is

the local entrepreneur. Other names that are starting to appear multiple times are “wind4me”,

“sarajuliet”, “priscillast”, and “douginboulder”. User “fishnette” also mentions herself a number

of times during the week.

Table 4.17 shows the counts of messages addressed to and from user “fishnette” in both the

24-hour and one week time periods. Table 4.18 shows the top users re-tweeting user “fishnette” and

the top users retweeted by “fishnette”. Finally, the source applications used by user “fishnette”

pre-fire and during the one week time period are listed in table 4.19.

104

Table 4.15: A list of the top 15 hashtags in use by user “fishnette” before the Boulder fire, during
the first day of the fire, and during the first week of the fire.

Pre-fire 24-Hour One Week

Hashtag Count Hashtag Count Hashtag Count

#cwa2010 46 #boulderfire 206 #boulderfire 387
#cogopassembly 45 #boulder 51 #boulder 53
#ragbrai 15 #fire 50 #fire 50
#cosen 12 #evac 22 #evac 25
#boulder 9 #bocofire 5 #sanbruno 6
#nicar 7 #cu 2 #bocofire 5
#tcot 7 #fourmilecanyonfire 2 #flatironsfire 4
#spj9 6 #loc 1 #src 3
#igniteboulder 6 #info 1 #loc 3
#gypsyjazz 5 #src 1 #info 2
#cologopassembly 5 #evacuated 1 #scanner 2
#2601 5 - - #cu 2
#cogop 4 - - #fourmilecanyonfire 2
#ipad 4 - - #needs 1
#jaws25 3 - - #fingerscrossed 1

105

Table 4.16: A list of the top 25 usernames mentioned by user “fishnette” in the 24-hour and one
week time windows during the Boulder fire. Users highlighted in bold are part of the qualitatively
influential set of users.

24-Hour One Week

Rank Username Count Username Count

1 andrewhyde 18 epiccolorado 31
2 sarajuliet 12 laurasrecipes 29
3 wind4me 10 andrewhyde 21
4 priscillast 10 sarajuliet 17
5 denverchannel 8 denverchannel 15
6 stephanieldavis 6 sophiabliu 13
7 hmcwilliams 6 priscillast 13
8 mediamum 6 wind4me 12
9 pachecod 5 danielpetty 12

10 greeblemonkey 5 fishnette 11
11 catawu 5 mediamum 11
12 fishnette 4 hmcwilliams 10
13 epiccolorado 4 stephanieldavis 9
14 ofuttufo 3 lauren hannah 7
15 davidherrold 3 pugofwar 7
16 douginboulder 3 artworkss 7
17 lioncaller 2 bouldercounty 7
18 tashigonpo108 2 douginboulder 7
19 suesalinger 2 zarchasmpgmr 6
20 metroroadies 2 chelseamoll 6
21 artworkss 2 davidherrold 6
22 hkoren 2 melindadc 5
23 paullewin 2 matical 5
24 trjh 2 ickaickaicka 5
25 milliman 2 catawu 5

106

Table 4.17: A list of the top 15 users who have received addressed messages from user “fishnette”
and who have sent addressed messages to user “fishnette” in the 24-hour and one week time periods.
Users highlighted in bold are part of the qualitatively influential set.

Messages from user “fishnette”
24-Hour One Week

Rank Username Count Username Count

1 priscillast 9 laurasrecipes 20
2 andrewhyde 8 sarajuliet 12
3 sarajuliet 8 danielpetty 11
4 wind4me 7 priscillast 10
5 stephanieldavis 5 sophiabliu 10
6 mediamum 5 andrewhyde 10
7 catawu 5 stephanieldavis 8
8 pachecod 4 wind4me 8
9 greeblemonkey 3 lauren hannah 7

10 davidherrold 2 mediamum 7
11 tashigonpo108 2 chelseamoll 6
12 artworkss 2 zarchasmpgmr 6
13 lioncaller 2 artworkss 6
14 vanillagrrl 2 epiccolorado 5
15 metroroadies 2 catawu 5

Messages addressed to user “fishnette”
24-Hour One Week

Rank Username Count Username Count

1 wind4me 25 wind4me 30
2 andrewhyde 9 laurasrecipes 29
3 priscillast 9 sarajuliet 15
4 sarajuliet 9 andrewhyde 13
5 ofuttufo 5 priscillast 11
6 mediamum 5 sophiabliu 9
7 pachecod 5 mediamum 9
8 greeblemonkey 3 danielpetty 7
9 suesalinger 3 zarchasmpgmr 7

10 lioncaller 3 lauren hannah 6
11 nealmcb 2 nuancechaser 6
12 tekee 1 suzanbond 6
13 dhendersonco 1 ofuttufo 5
14 joseph flasher 1 pachecod 5
15 velofemme 1 ickaickaicka 5

107

Table 4.18: A list of the top 15 users who have been re-tweeted by “fishnette” and who have re-
tweeted “fishnette” in the 24-hour and one week time periods. Users highlighted in bold are part
of the qualitatively influential set.

Users re-tweeting “fishnette”
24-Hour One Week

Rank Username Count Username Count

1 wind4me 59 wind4me 63
2 tanukun 37 tanukun 46
3 cuindependent 27 epiccolorado 32
4 sarajuliet 24 sarajuliet 31
5 epiccolorado 23 theroseinbloom 29
6 theroseinbloom 19 cuindependent 27
7 jennar 12 laurasrecipes 25
8 velofemme 11 luthers 25
9 hlane 9 tweetingdonal 18

10 suesalinger 8 jennar 18
11 pachecod 7 suzanbond 15
12 agahran 5 hlane 14
13 mediamum 4 suesalinger 13
14 kwgndenver 4 fourmilefire 12
15 greeblemonkey 3 thefiretracker2 12

Users re-tweeted by “fishnette”
24-Hour One Week

Rank Username Count Username Count

1 andrewhyde 8 denverchannel 14
1 denverchannel 8 epiccolorado 12
1 hmcwilliams 4 andrewhyde 9
1 douginboulder 3 hmcwilliams 8
1 wind4me 3 douginboulder 5
1 sarajuliet 3 wind4me 4
1 epiccolorado 2 coloradodaily 4
1 cbs4denver 2 laurasrecipes 4
1 hkoren 2 boulderrescue 3
1 greeblemonkey 2 dailycamera 3
1 stephanieldavis 1 cbs4denver 3
1 yulsman 1 bouldercounty 3
1 shellimeyers 1 hkoren 3
1 pachecod 1 sarajuliet 3
1 davidherrold 1 yulsman 3

108

Table 4.19: A list of the top 10 source applications used by user “fishnette”, pre-fire, during the
first day, and during the first week of the Boulder fire.

Pre-fire 24-hour One Week

TweetDeck 1925 TweetDeck 389 TweetDeck 857
Twitter for iPhone 312 Twitter for iPhone 5 Twitter for iPhone 17
API 16 - - Twitter for iPad 3
web 14 - - Tweety Got Back 1
txt 10 - - txt 1
TwitPic 9 - - - -
TweetMeme 2 - - - -
ROFLquiz 1 - - - -
Twitter for iPad 1 - - - -
TimesPeople 1 - - - -

Chapter 5

Analysis of HITS Algorithm

In this chapter I investigate the efficacy of the rankings produced by the Hyperlink-Induced

Topic Search (HITS) algorithm (described in section 3.14) on various types of social graphs from

the September 2010 Boulder fire used as inputs as a means to determine influential users in the

network being considered. Prior to my analysis of the algorithm, I will include an explanation

of the meaning of the ranking values as well as examples to assist the reader in visualizing how

the values correspond to the structure of the graph. The goal is to find a variation of the HITS

algorithm input graph to find the most qualitatively influential users listed in table 4.4.

5.1 Hub and Authority Rank Values

The process of generating hub and authority rank values has been described in section 3.14.2.

However, before describing our analysis of the algorithm, I want to introduce the reader to how the

values relate to the structure of the graph. As described by Kleinberg [65], ”Hubs and authorities

exhibit what could be called a mutually reinforcing relationship: a good hub is a page that points

to many good authorities; a good authority is a page that is pointed to by many good hubs.” The

circular dependency of these values is apparent in the description, but as long as the adjacency

matrix of the graph has a dominant eigenvalue, the algorithm is guaranteed to converge on values

for hubs and authorities given enough iterations.

To illustrate the relationship between hubs and authorities, I present two simple graphs in

figure 5.1 of 5 vertices and 4 edges (5.1(a)) and 6 vertices and 8 edges (5.1(b)), respectively. The

110

(a) A simple network graph of 5 vertices and 4 edges.
Vertex 1 is the only hub in the network and vertices
2-5 all equally split the authority score in the network.

(b) A simple network graph of 6 vertices and 8 edges.
Vertices 1 and 6 equally split the hub score in the net-
work and vertices 2-5 again equally split the authority
score in the network.

Figure 5.1: Sample graphs to illustrate the relationships between hubs and authorities. Hubs are
colored in lavender and authorities are colored in cyan.

111

Table 5.1: Hub and Authority values corresponding to the graphs in figure 5.1(a).

Rank Hub Value Auth. Value

1 2 0.5 1 1.0

2 3 0.5 2 0.0

3 4 0.5 3 0.0

4 5 0.5 4 0.0

5 1 0.0 5 0.0

invariant maintained during the calculation of the hub and authority values is the sum of the squares

of the values must equal 1. Table 5.1 shows the scores for the graph in figure 5.1(a). Intuitively

we see that vertex 1 is the only hub in the entire graph, and vertices 2-5 share the authority scores

equally. Table 5.2 shows the scores for the graph in figure 5.1(b). This time we see vertices 1 and 6

equally share the hub values for the graph, and the authority values for vertices 2-5 are once again

split equally. We can also see that the invariant is held true as the sum of the hub values in the

graph in figure 5.1(b) sum to one (0.7071 ∼
√

2/2, 2×
√

2/2
2

= 1).

Figure 5.2 demonstrates a “clique” graph, which is a fully inter-connected directed graph.

The values in table 5.3 show the resulting identical scores for every single vertex in the graph

for both hubs and authorities, as intuitively, no vertex is any more a hub or authority than the

previous.

5.2 Social Graph Data

As described in section 4.5.2, during the Boulder fire the social graph of friends and followers

was collected for each user every 30 minutes starting September 6th, 2010 at 8:40pm Mountain

time. For the analysis in this chapter, one-day increments of the social graph will be analyzed.

Tables 4.13 and 4.14 in section 4.5.2 show statistics of the social graph data collected as well as

rankings of users by in-degree. This will be the data used for comparison with rankings generated

by the HITS algorithm.

Various types of graphs will be input into the HITS algorithm to look for influential users.

112

Figure 5.2: A fully inter-connected directed graph, also called a “clique”.

113

Table 5.2: Hub and Authority values corresponding to the graphs in figure 5.1(b).

Rank Hub Value Auth. Value

1 2 0.5 1 0.7071

2 3 0.5 6 0.7071

3 4 0.5 2 0.0

4 5 0.5 3 0.0

5 1 0.0 4 0.0

6 6 0.0 5 0.0

Types of graphs include the declared social graphs with variations of that graph as well as graphs

generated from how users are interacting with each other with addressed messages or with username

mentions.

5.2.1 Global Friends/Followers Graph

The global friends/followers graph is considered to be the aggregate data returned for each

user’s individual social graph who were speaking about the Boulder fire. As shown in table 4.13,

the number of users speaking of the Boulder fire on the first day is small (448 users). However, the

total number of unique IDs that are only one hop away from those users is 821,609. The initial

analysis of the HITS algorithm will include all of the unique users seen in the data collection, as

well as pruning of the user list by the frequency by which they appear.

Table 5.4 shows the rankings produced by HITS on varying input graphs after the first day of

the fire on September 7th, 2010 at 12:40pm Mountain time. The first column includes all 821,609

users from the first day, and subsequent columns reduce the number of users included in the graph.

To reduce the number, users are first sorted descending by the frequency in which they appear in

the social graph for this group, and then the top N users are retained in the graph, and all other

users and edges are culled out. In the second and third columns, the top 20,000 and 5,000 most

frequent users are retained in the graph. The fifth column is a reproduction of the ranking of all

users by in-degree from table 4.14 as a baseline comparison.

As can be seen in the table, users who already have a high-indegree are highly ranked by

114

Table 5.3: Hub and Authority values corresponding to the graphs in figure 5.2.

Rank Hub Value Auth. Value

1 1 0.3162 1 0.3162

2 2 0.3162 2 0.3162

3 3 0.3162 3 0.3162

4 4 0.3162 4 0.3162

5 5 0.3162 5 0.3162

6 6 0.3162 6 0.3162

7 7 0.3162 7 0.3162

8 8 0.3162 8 0.3162

9 9 0.3162 9 0.3162

10 10 0.3162 10 0.3162

HITS. Even though user “BarackObama” did not speak about the Boulder fire, he is included in

the set because many of the users who do speak of the Boulder fire also link to “BarackObama”.

This causes this user to appear to have a high in-degree, and therefore ranked high among the users

in the set.

5.2.2 Keyword Friends/Followers Graph

A variation on the input graph into HITS is the graph only containing the users who speak

directly about the fire. This graph eliminates any users who are not actively speaking about the

fire, therefore targeting the very users in which I am interested. This eliminates the issue with

users like “BarackObama” from appearing in the set so active users can be targeted for influence.

To create this graph, only users who have used a keyword related to the Boulder fire are considered

and their declared friend/follower edges included in the graph.

Table 5.5 shows the HITS rankings of the users speaking of the Boulder fire on the graph col-

lected on September 7th, 2010 at 12:40pm Mountain time. For comparison, the in-degree rankings

of the same users are given in the second column, only counting edges among those speaking of the

Boulder fire. Comparing the two columns, HITS is performing no better than simply ranking users

by in-degree, and in fact only differ by two users in each set. The HITS ranking includes users

“benjaminchait” and “highfiredanger” at rankings 23 and 25, respectively. The in-degree ranking

115

Table 5.4: Rankings of the top 25 users produced by the HITS algorithm on the social graph
collected after the first day of the fire on September 7th, 2010 at 12:40pm Mountain. Column one
includes all users, and columns two and three only include the top N most frequently appearing
users. The fourth column is a reproduction of all users ranked by in-degree from table 4.14 as a
baseline comparison. Users highlighted in bold are part of the qualitatively influential set listed in
table 4.4.

Rank All (821,609) Top 20,000 Top 5,000 In-degree

1 Scobleizer shellykramer andrewhyde Scobleizer
2 shellykramer EthanJaynes shellykramer marcelomedici
3 andrewhyde Scobleizer Mediamum PublishersWkly
4 HowardKurtz andrewhyde cbs4denver HowardKurtz
5 gwenbell studentoflife Scobleizer shellykramer
6 PublishersWkly KaliMarcum downtownboulder taylorphinney
7 EthanJaynes Freedomman11 EthanJaynes EthanJaynes
8 agahran pops131 gwenbell mr q
9 Karoli Mediamum coloradodaily gwenbell

10 davidcohen 2drinksbehind Greeblemonkey FoxSports
11 2drinksbehind cbs4denver dailycamera andrewhyde
12 Greeblemonkey shannonevans studentoflife THEKASESHOW
13 shannonevans gwenbell Tekee Freedomman11
14 Mediamum salivates OnlyInBoulder KaliMarcum
15 bpm140 Greeblemonkey bouldertweep cbs4denver
16 jenmyronuk downtownboulder ejoep craigslistjobs
17 mtlb eraseyourdebt hlane Karoli
18 studentoflife coloradodaily KezzaMcDezza Jastewart15
19 casinclair wind4me jenmyronuk pops131
20 AmeriCares dailycamera 2drinksbehind bigdandbubba
21 KaliMarcum AmeriCares melsidwell salivates
22 taylorphinney hlane davidcohen BellaCullen18
23 wind4me MaxSportsNet wind4me AmeriCares
24 delchoness Tekee fishnette casinclair
25 cbs4denver cabowabochris BarackObama eraseyourdebt

116

replaces these two users in the list with “Scobleizer” and “taylorphinney” at rankings 8 and 21,

respectively.

5.2.3 Mentions Activity Graph

The mentions graph is created by parsing the messages created by users speaking of the

Boulder fire during the event looking for usernames that appear anywhere in the text. The same

process is used as the one that generated the data in tables 4.7 and 4.16 except the source user

mentioning that user is saved. An edge source is a user A who has mentioned user B, who is the

target. Multiple edges may be created within a single message if a source user A mentions multiple

users in the text. This graph corresponds to the idea of an “activity network” or “interaction graph”

as described in section 3.12. The idea is to create a graph representation of user interactions in

place of the declared social graph as users only interact with about 10% of their declared friends

[52].

Table ?? shows users in the mentions activity graph ranked in HITS during the first day of the

Boulder fire from September 6th, 2010 at 10:00am Mountain to September 7th, 2010 at 10:00am

Mountain. The first column includes all usernames encountered even if those target users were

not speaking of the Boulder fire, and the second column is the ranking in this graph by in-degree

for comparison. The third column is rankings of only the users speaking of the Boulder fire and

the fourth column is the ranking in this smaller graph by in-degree for comparison. The all-users

mentions graph contains 2,794 users with 4686 edges. The active-users mentions graph contains

261 users with 1,077 edges.

Again, the issue of no real difference between in-degree ranking and HITS is apparent in the

table. Even more of an issue is that the percentage of users actually mentioning others in the active

set, for example, is only 58.25% (261 users out of 448 during the first day). This method of using

mentions has the potential of leaving out influential people who aren’t mentioning others at all, and

yet are interacting heavily in the network during the event. We do see more of the qualitatively

influential users in this table, but we are still missing about half of them (8-9 out of 16).

117

Table 5.5: Rankings of the top 25 users produced by the HITS algorithm on the social graph
collected after the first day of the fire on September 7th, 2010 at 12:40pm Mountain. The graph
only includes those users and edges who used a specific keyword in the Boulder fire. The second
column is a reproduction of these users ranked by in-degree from the right half of table 4.14. Users
highlighted in bold are part of the qualitatively influential set listed in table 4.4. Users with an
asterisk are unique per set.

Rank HITS In-degree

1 andrewhyde andrewhyde
2 downtownboulder dailycamera
3 dailycamera downtownboulder
4 coloradodaily coloradodaily
5 fishnette cbs4denver
6 cbs4denver fishnette
7 Mediamum davidcohen
8 Tekee Scobleizer*
9 melsidwell Mediamum

10 OnlyInBoulder OnlyInBoulder
11 davidcohen melsidwell
12 gwenbell Tekee
13 KezzaMcDezza gwenbell
14 jenmyronuk HumaneBoulder
15 bouldertweep epiccolorado
16 hkoren ejoep
17 hlane Greeblemonkey
18 Greeblemonkey gratzo
19 ejoep bouldertweep
20 fionaschlachter jenmyronuk
21 gratzo taylorphinney*
22 HumaneBoulder KezzaMcDezza
23 benjaminchait* hkoren
24 epiccolorado hlane
25 highfiredanger* fionaschlachter

118

Table 5.6: Rankings of the top 25 users produced by the HITS algorithm on the mentions activity
graph during the first day of the Boulder fire from September 6th, 2010 at 10:00am Mountain to
September 7th, 2010 at 10:00am Mountain. Columns one and two include all username mentions
even if those users were not speaking of the Boulder fire and ranked by HITS and in-degree,
respectively. Columns three and four only include the users speaking of the boulder fire ranked by
HITS and in-degree, respectively. Users highlighted in bold are part of the qualitatively influential
set listed in table 4.4.

All Users (2,794) Active Users (261)

Rank HITS In-degree HITS In-degree

1 fishnette andrewhyde andrewhyde andrewhyde
2 andrewhyde fishnette fishnette fishnette
3 epiccolorado cbs4denver epiccolorado cbs4denver
4 cbs4denver epiccolorado cbs4denver epiccolorado
5 mediamum mediamum mediamum mediamum
6 denverchannel kwgndenver kwgndenver kwgndenver
7 bouldercounty denverchannel humaneboulder dailycamera
8 kwgndenver jamesazure coloradodaily coloradodaily
9 jamesazure dailycamera dailycamera humaneboulder

10 twitter bouldercounty wind4me kkartphoto
11 shellimeyers coloradodaily hlane wind4me
12 humaneboulder twitter hkoren hlane
13 kgnu humaneboulder campsteve campsteve
14 suzanbond kkartphoto cuindependent downtownboulder
15 sandrafish boulderchannel1 downtownboulder hkoren
16 coloradodaily ev pachecod melsidwell
17 wind4me suzanbond sarajuliet cuindependent
18 hlane redcrossdenver colo kea pachecod
19 hkoren laurasrecipes greeblemonkey greeblemonkey
20 dailycamera denverpost kkartphoto timescall
21 ev wind4me kktv11news sallyfrancklyn
22 boulderchannel1 hlane joshlarson scobleizer
23 campsteve campsteve melsidwell emergcommnetwrk
24 redcrossdenver sandrafish mattbeaty mattbeaty
25 cuindependent downtownboulder tuckertown sarajuliet

119

5.2.4 Addressed Messages Graph

The next type of graph to be analyzed is the addressed messages graph. This is a subset

of the mentions graph discussed above as only the messages considered “addressed” to another

user are counted as an edge. Addressed messages are explained in section 4.5.2 and addressed

message counts are shown in table 4.8 for the first day and first week of the Boulder fire. This

exact information of source and target user is used in the creating of the addressed messages graph.

Table 5.7 shows the top 25 recipients of addressed messages during the first 24 hours of the

Boulder fire from September 6th, 2010 at 10:00am Mountain to September 7th, 2010 at 10:00am

Mountain. The first two columns include all users encountered, even if they were not speaking of

the fire. Columns three and four only contain users who were speaking of the Boulder fire. The

all-users graph contains 1,177 users and 1,345 edges, and the active users graph contains 261 users

with 258 edges between them. Again some of the qualitative users are seen in the list, but a number

of them are still missing.

5.3 Analysis and Discussion

Four different types of graphs have been constructed for input into the HITS algorithm: the

global friends/followers graph, the keyword friends/followers graph, the mentions graph and the

addressed messages graph. Including variations of each graph, a total of eight graphs were input

into HITS. For comparison, the rankings by in-degree for each graph was included as a baseline

comparison.

Ranking users by in-degree is not a sufficient measure to find influential users. This problem

has motivated research in areas of betweenness centrality [42], eigenvector centrality calculations

such as HITS here [65] and PageRank [16], or k -shell decomposition [64]. HITS has been used to

analyze the propagation of URLs within Twitter [101], or for finding influential users on the social

graph just like the analysis in this chapter [57].

Although HITS is an attractive algorithm for use in the context of finding influential users

120

Table 5.7: Rankings of the top 25 users produced by the HITS algorithm on the addressed mes-
sages activity graph during the first day of the Boulder fire from September 6th, 2010 at 10:00am
Mountain to September 7th, 2010 at 10:00am Mountain. Columns one and two include all target
users of addressed messages even if those users were not speaking of the Boulder fire and ranked
by HITS and in-degree, respectively. Columns three and four only include the users speaking of
the boulder fire ranked by HITS and in-degree, respectively. Users highlighted in bold are part of
the qualitatively influential set listed in table 4.4.

All Users (1,177) Active Users (130)

Rank HITS In-degree HITS In-degree

1 fishnette fishnette fishnette fishnette
2 andrewhyde andrewhyde andrewhyde andrewhyde
3 sarajuliet epiccolorado epiccolorado epiccolorado
4 wind4me wind4me wind4me wind4me
5 eatplaylove joeyschusler mediamum mediamum
6 epiccolorado mediamum sarajuliet cbs4denver
7 stiricide laurasrecipes melsidwell hlane
8 tashigonpo108 eatplaylove cbs4denver sarajuliet
9 vococreative cbs4denver priscillast melsidwell

10 joeyschusler stiricide scobleizer kwgndenver
11 mediamum suzanbond tanukun scobleizer
12 laurasrecipes sarajuliet tekee theinnermarykay
13 davidherrold kwgndenver greeblemonkey suesalinger
14 tekee kyleindenver joshlarson colo kea
15 morganbast hlane wiscobeth lioncaller
16 greeblemonkey melsidwell suesalinger joelwish
17 tanukun sandrafish paullewin mattbeaty
18 bouldercounty suesalinger mattbeaty chrisennis
19 joshlarson kate30 cu joelwish tuckertown
20 scobleizer nuancechaser chrisennis tanukun
21 melsidwell colo kea ofuttufo thenoodleator
22 userealbutter tashigonpo108 pachecod wiscobeth
23 vanillagrrl liminalison michaeldwan joseph flasher
24 kyleindenver scobleizer dhendersonco theroseinbloom
25 priscillast davetaylor nattyz woodardj

121

within a specific event, the situation is not analogous to the original problem described by Kleinberg.

The data collection process for this research does include a search performed on the network for

messages matching a set of keywords followed by the collection of the social graph for those users

representing web pages in the original algorithm context, so it appears to be very similar. The

original problem was web page search results on old search engines such as HotBot1 which returned

results based on keyword frequency within the web pages. This led to hosting sites inflating their

result rankings by hiding keywords among the page that are not visible to human readers, but

would be seen by web crawler bots.

The key point as to why the two situations are not analogous is that web pages typically

represent one or very few topics. A node in the input graph is a page, and links to other pages

rarely include pages of a different topic. However, users within social networks represent what

could be considered many different “topics” within their lives and links represent connections to

other users (pages) that are significantly varied between one another. The edges represent many

different relationships, such as co-worker, gaming friend, exercise partner, sister, and many others.

This is the fundamental issue that causes the HITS algorithm to perform no better than ranking

users by in-degree only. HITS by design places all nodes in the same context, and as such the

results are confounded among many relationship types. Further, users tend to link to each other

with very little impetus leading to a very densely connected graph, which is also unlike the internet

web graph.

The conclusion is that the HITS algorithm applied to specific events is not very effective.

However, HITS may still be useful if an even has very large scale, and could possibly cull out users

who may be discussing an event without being involved such as the Haiti earthquakes, for example.

The speed and ability to parallelize the HITS algorithm would make it attractive for this purpose.

Further analysis would be required on the subset of users returned to find influencers within the

context of the event. More analysis is warranted on HITS, but for small events the algorithm is

not effective.

1 HotBot no longer exists in the same form as it did in 1998.

Chapter 6

Context-Specific Indegree Ranking

Here I examine a dynamic approach to finding influential users within a specific context.

The Boulder fire data will once again be used in this analysis. I develop an algorithm that records

the changes over time to the social graph among users speaking of the Boulder fire. The context

of this ranking algorithm is built around the messages collected from the Twitter network using

the keywords described in section 4.5. Every 30 minutes the unique list of users appearing in the

search results were obtained and then those users’ friends and followers lists were collected. In this

chapter only one-day increments are reviewed for brevity.

The idea is to observe the change in the network over time in order to determine who is being

listened to the most. Twitter does not save the timestamp in which a user follows another user

which motivated the 30-minute collection window in order to see the dynamics of the network. In

this chapter the one-day incremental data described in table 4.13 is used for the dynamic analysis.

6.1 Ranking by Global Follower Counts

The first way to look at the dynamics of the network is to simply look at the global friend/fol-

lower counts that appear in the profile for all users. Table 4.1 shows two integer values, friends count

and followers count, corresponding to the current number of friends and followers for a user at the

moment the profile is collected. Algorithm 5 describes the process for counting the change in fol-

lowers count values in profiles collected with the friend/follower lists for each user involved in the

Boulder fire.

123

The algorithm takes snapshots of the profiles for each user speaking about the Boulder fire

at the times described in table 4.13 as previously mentioned. For each snapshot, the followers cont

value is stored for each user and changes in this value are computed for each subsequent snapshot.

Users who are added to the network later in the event are simply given count values of −1 and

delta values of 0. Rankings can be computed on either the overall counts or the largest deltas at

any snapshot to inspect what is occurring in the social graph at that moment.

Table 6.1 shows the rankings of users using algorithm 5 over the five network snapshots each

one day apart of the Boulder fire from September 7th, 2010 at 12:40pm Mountain to September

11th, 2010 at 3:10pm Mountain. Only the change in follower counts are shown in the table instead

of the raw counts. Deltas with a value of zero occur due to the user appearing later during the

Boulder fire event and therefore the social graph was not collected at that time. Although we do

see three users from the qualitatively influential set, most users that appear are already popular

in the network in some way. Users such as “NASA”, “Scobleizer” and various news outlets appear

to have large gains in followers globally within Twitter during this time period. Using only profile

follower count metadata, one is unable to determine where these connections are being formed and

why.

6.2 Ranking by Active Users with Pre-existing Network

To improve upon the algorithm given in the previous section, I eliminate edges in the social

graph to users who are not involved in the event. This is a first step in eliminating users who are

globally influential in some manner such as those described in the previous section. The graph

analyzed in this algorithm is identical to the graph in section 5.2.2 as it only considers edges among

users who are speaking of the Boulder fire.

Algorithm 6 describes the process for counting connections made only among those speaking

about the Boulder fire. The algorithm functions differently than the profile algorithm as it operates

on the social graph snapshots collected during the Boulder fire. As users speak of the Boulder fire

using the keywords, they are added to a set of users to be collected. These users are contained in

124

Algorithm 5 Calculates the change in the global profile follower count values for users considered
active (using a keyword) during an event.

1: Given the following:
2: List of profile snapshots S
3: Assign snapshotIndex = 0
4: Assign inDegreeCounts = {}
5: Assign inDegreeDeltas = {}
6: for each snapshot Pi ∈ S do
7: for each profile p ∈ Pi do
8: Assign username = p[′screen name′]
9: if username 6∈ inDegreeCounts then

10: Assign inDegreeCounts{username} = []
11: Assign inDegreeDeltas{username} = []
12: for i ∈ range[0,snapshotIndex) do
13: Append −1 to inDegreeCounts{username}
14: if i < snapshotIndex− 1 then
15: Append 0 to inDegreeDeltas{username}
16: end if
17: end for
18: end if
19: Assign count = p{′followers count′}
20: Append count to inDegreeCounts{username}
21: if snapshotIndex > 0 then
22: if inDegreeCounts{username}{snapshotIndex} 6= −1 then
23: Assign delta = count− inDegreeCounts{username}{snapshotIndex− 1}
24: Append delta to inDegreeDeltas{username}
25: else
26: Append 0 to inDegreeDeltas{username}
27: end if
28: end if
29: end for
30: Assign snapshotIndex = snapshotIndex+ 1
31: end for
32: Return inDegreeCounts,inDegreeDeltas

125

Table 6.1: Rankings of the top 25 users speaking of the Boulder fire during September 7th, 2010
through September 11th, 2010 by the most followers gained globally within Twitter. Users high-
lighted in bold are from the qualitatively important set listed in table 4.4.

Rank Name Delta 1 Delta 2 Delta 3 Delta 4 Total

1 NASA 0 1818 1532 1732 5082
2 marcelomedici 478 514 404 476 1872
3 THEKASESHOW -12 531 468 530 1517
4 PublishersWkly 281 324 298 269 1172
5 Scobleizer 427 263 233 218 1141
6 HowardKurtz 128 149 169 117 563
7 zaibatsu 0 120 168 221 509
8 alwaysbestrts 0 92 282 120 494
9 DellU MA 0 121 163 108 392

10 adventurevida 0 144 94 123 361
11 fema 0 121 121 90 332
12 thaz7 0 9 259 32 300
13 LGEsolutions 89 46 43 57 235
14 epiccolorado 58 73 89 15 235
15 LauraMoore7 110 30 36 35 211
16 dailycamera 41 46 93 19 199
17 USDAgov 0 81 80 37 198
18 laurasrecipes 0 73 85 37 195
19 taylorphinney 59 55 41 35 190
20 10rWfe 0 24 98 63 185
21 tlrd 0 6 94 78 178
22 HumaneBoulder 77 39 34 27 177
23 MissingScoop 0 26 97 44 167
24 TheFireTracker2 0 4 161 2 167
25 thundercatsnyy 0 32 94 38 164

126

the set Uσ in the algorithm. If a user is not a part of this set, she is ignored when counting the

number of followers for an active user in the event. Line 14 shows the calculation of the size of the

set resulting from the intersection of the set of users speaking of the event and the current user’s

follower list from the previous line.

Table 6.2 shows the top 25 users ranked by the number of followers gained in the event

only among users speaking of the event as calculated by algorithm 6 during the same time period

from September 7th, 2010 at 12:40pm Mountain to September 11th, 2010 at 3:10pm Mountain.

The qualitatively influential users who do not fall in the top 25 are listed in the lower section of

the table for reference. Three users are missing completely from the set, specifically kate30 CU,

eadvocate, and BoulderChannel1. These users are missing from most of the data collection due

to errors in the collection process.

Half of the qualitatively influential set are still not appearing high on the rankings list, and a

number of globally influential users are ranked highly once again. This is due to pre-existing edges

counting in favor of users active within the network. The inflation of rank in this regard occurs

when a user begins interacting during the event any time after the start of the event. The situation

occurs as follows:

(1) User A has a pre-existing connection to user B

(2) The Boulder fire event begins

(3) User A speaks of the Boulder fire using a keyword

(4) The social graph for user A is collected along with those of all others speaking of the event

(5) User B speaks of the Boulder fire at some time ∆t after N snapshots of the event network

are taken

(6) The pre-existing edge from user A to user B counts as a gain of one follower for user B

based on the logic in algorithm 6.

127

Algorithm 6 Calculates the change in follower lists of the users considered active (using a keyword)
during an event, ignoring all other users who appear in the follower lists and are not speaking of
the event.

1: Given the following:
2: Set of all users Uσ involved in the event
3: List S of sets of users involved at each snapshot of the event
4: List F of user follower sets for each user in Uσ
5: Assign inDegreeCounts = {}
6: Assign inDegreeDeltas = {}
7: for each user ∈ Uσ do
8: Assign currentUsers = []
9: for snapshotIndex ∈ range[0,|F|) do

10: Assign currentUsers = S[snapshotIndex]
11: if user ∈ currentUsers then
12: Assign followers = F{user}[snapshotIndex]
13: Assign common = currentUsers ∩ followers
14: Assign count = |common|
15: Append count to inDegreeCounts{user}
16: else
17: Append −1 to inDegreeCounts{user}
18: end if
19: if snapshotIndex > 0 then
20: Assign prevCount = inDegreeCounts{user}[snapshotIndex− 1]
21: Assign curCount = inDegreeCounts{user}[snapshotIndex]
22: if prevCount 6= −1 and curCount 6= −1 then
23: Append (curCount− prevCount) to inDegreeDeltas{user}
24: else
25: Append 0 to inDegreeDeltas{user}
26: end if
27: end if
28: end for
29: end for
30: Return inDegreeCounts,inDegreeDeltas

128

Table 6.2: Rankings of the top 25 users speaking of the Boulder fire during September 7th, 2010
through September 11th, 2010 by the most followers gained only among those speaking of the
Boulder fire. In this ranking, any pre-existing edges between active users that existed before the
start of the fire count as a gain in followers. Users highlighted in bold are from the qualitatively
important set listed in table 4.4.

Rank Name Delta 1 Delta 2 Delta 3 Delta 4 Total

1 cbs4denver 211 4 1 165 381
2 dailycamera 194 2 9 150 355
3 downtownboulder 184 0 2 161 347
4 andrewhyde 185 2 4 145 336
5 coloradodaily 162 0 2 130 294
6 NASA 0 0 0 244 244
7 Scobleizer 101 0 1 138 240
8 HumaneBoulder 107 4 3 95 209
9 OnlyInBoulder 113 0 2 76 191

10 epiccolorado 73 16 15 87 191
11 fishnette 103 4 12 66 185
12 zaibatsu 0 0 1 182 183
13 gwenbell 98 -1 1 72 170
14 CFHeather 0 -1 0 166 165
15 ConnectColorado 0 7 3 152 162
16 Mediamum 82 7 2 70 161
17 hlane 83 5 3 60 151
18 BrettGreene 0 9 5 136 150
19 KDVR 74 2 3 68 147
20 Greeblemonkey 85 -1 3 60 147
21 shellykramer 64 0 0 76 140
22 davidcohen 85 1 0 49 135
23 bouldertweep 67 0 1 57 125
24 DenverChannel 0 3 1 119 123
25 Tekee 72 -1 0 49 120

37 laurasrecipes 0 19 11 75 105
45 metroseen 0 7 1 84 92
57 CampSteve 23 2 3 50 78
59 suzanbond 0 14 9 51 74
80 Org9 0 13 2 43 58

123 sophiabliu 0 2 6 36 44
163 palen 10 0 4 20 34
427 Tanukun 7 3 0 2 12

129

6.3 Ranking by Active Users with New Edges

To eliminate the inflation of a user’s in-degree ranking that occurs from the process in algo-

rithm 6, a simple modification is made to the algorithm to prevent pre-existing edges from counting

in favor of a user. Line 9 includes the addition of a new variable that holds a reference to the first

set of followers seen for this user as assigned on lines 13 to 14. This set is used for set subtraction

from any subsequent follower set at any future snapshot which occurs on line 18. This prevents

any pre-existing edge counting in favor of a user.

Table 6.3 shows the rankings of the top 25 users speaking of the Boulder fire during the same

time window. Immediately seen are the top seven users ranked are part of the qualitatively influen-

tial list as well as 12 of the 16 qualitatively influential users appearing within the top 23 users overall.

Aside from the three users who do not appear at all within the data set, user Tanukun appears

very low in the list. All other users that appear in the list are related to the Denver/Boulder area

in some way. News outlets or personnel include users dailycamera, kwgndenver, BrettGreene,

coloradodaily, and cbs4denver. Local city or county organizations include bouldercounty,

bouldercolorado, boulderpolice, and redcrossdenver. The remaining users are all local indi-

viduals: Colo kea, LizEmmettMattox, andrewhyde, and SchwartzNow.

6.4 Analysis and Discussion

The time for each algorithm is similar as each has to iterate over the users in each snapshot,

resulting in a baseline performance of O(ns) where n is the average number of users over all

snapshots, and s is the number of snapshots. This is the performance of algorithm 5 as it only

has to compute count derivatives for the integer value given in each profile snapshot. Algorithms 6

and 7 require extra steps to perform set operations in order to find the users common to both the

current active set and the set of followers for any particular user, and also subtract the pre-existing

edges from user follower sets in algorithm 7. This costs an additional factor d which is the average

in-degree of all users in the set, resulting in an overall running time of O(nsd).

130

Algorithm 7 Calculates the change in follower lists of the users considered active (using a keyword)
of an event, ignoring all other users who appear in the follower lists and are not speaking of the
event as well as ignoring any edges that existed between active users before the event started.

1: Given the following:
2: Set of all users Uσ involved in the event
3: List S of sets of users involved at each snapshot of the event
4: List F of user follower sets for each user in Uσ
5: Assign inDegreeCounts = {}
6: Assign inDegreeDeltas = {}
7: for each user ∈ Uσ do
8: Assign currentUsers = []
9: Assign initFollowers = null

10: for snapshotIndex ∈ range[0,|F|) do
11: Assign currentUsers = S[snapshotIndex]
12: if user ∈ currentUsers then
13: if initFollowers = null then
14: Assign initFollowers = F{user}[snapshotIndex]
15: end if
16: Assign followers = F{user}[snapshotIndex]
17: Assign common = currentUsers ∩ followers
18: Assign count = |common \ initFollowers|
19: Append count to inDegreeCounts{user}
20: else
21: Append −1 to inDegreeCounts{user}
22: end if
23: if snapshotIndex > 0 then
24: Assign prevCount = inDegreeCounts{user}[snapshotIndex− 1]
25: Assign curCount = inDegreeCounts{user}[snapshotIndex]
26: if prevCount 6= −1 and curCount 6= −1 then
27: Append (curCount− prevCount) to inDegreeDeltas{user}
28: else
29: Append 0 to inDegreeDeltas{user}
30: end if
31: end if
32: end for
33: end for
34: Return inDegreeCounts,inDegreeDeltas

131

Table 6.3: Rankings of the top 25 users speaking of the Boulder fire during September 7th, 2010
through September 11th, 2010 by the most followers gained only among those speaking of the
Boulder fire. In this ranking, only new edges created between active users count as a gain in
followers. Any pre-existing edges between users are ignored. Users highlighted in bold are from the
qualitatively influential set listed in table 4.4.

Rank Name Delta 1 Delta 2 Delta 3 Delta 4 Total

1 epiccolorado 16 16 15 43 90
2 laurasrecipes 0 19 11 32 62
3 HumaneBoulder 17 4 3 26 50
4 fishnette 6 5 14 24 49
5 suzanbond 0 16 10 16 42
6 CampSteve 1 2 3 32 38
7 ConnectColorado 0 7 3 26 36
8 dailycamera 6 2 9 16 33
9 bouldercounty 0 11 9 12 32

10 kwgndenver 3 8 2 11 24
11 bouldercolorado 0 3 9 12 24
12 Org9 0 13 2 9 24
13 BrettGreene 0 9 5 9 23
14 coloradodaily 5 0 2 15 22
15 Colo kea 3 6 1 11 21
16 metroseen 0 7 1 13 21
17 Mediamum 3 8 2 7 20
18 LizEmmettMattox 3 11 1 4 19
19 palen 0 1 4 14 19
20 cbs4denver 4 4 1 9 18
21 andrewhyde 5 3 4 5 17
22 boulderpolice 0 5 4 7 16
23 sophiabliu 0 2 7 7 16
24 redcrossdenver 0 0 3 13 16
25 SchwartzNow 0 3 3 10 16

146 Tanukun 0 3 0 1 4

132

As mentioned in section 6.2, users missing from the data collection are due to errors in

the collection process. These errors are easily remedied through more robust collection techniques.

However, given these collection errors, the results of algorithm 7 clearly yield influential users during

an event, specifically 12 out of the 16 qualitatively influential users are found. These results indicate

a significant improvement in ranking over every other metric used in this research, including all

statistical measures in chapter 4, all variations of the HITS algorithm described in chapter 5, and

in first two algorithms presented in this chapter.

However, some limitations of the algorithm exist, as illustrated by user Tanukun. This user

appears very low in the list indicating other features account for this user’s influence that are not

illustrated by this data. Also, this data alone is a summation of the total change in followers by

users active within the event. An improvement to be made on the algorithm is to separate the total

change into separate loss and gain counts of followers among the users speaking of the event. This

could possibly inform of activity that may be considered untenable by users in the network, such

as user BoulderChannel1 who is considered to be a delinquent. A limitation that will never be

addressed is the fact that gains or losses in followers in between snapshot times may be missed if a

single user A un-follows and re-follows user B. Also, this approach does not properly identify users

as being influential who are already influential among the population as it only measures new links

being created in the network during the event. Therefore users like andrewhyde who are locally

popular in Boulder may be very important, but are not discovered through this algorithm.

Aside from the intuitive nature of this algorithm counting the gain in followers during an

event, the rankings can be viewed within the context of a specific snapshot in order to determine

who is entering the network at that time and gaining a following. This approach does not account

for on-going influential measures after a followers are gained, and that information must be gained

through analyzing the content of the messages sent among the network. Also, news outlets appear

in the list, and using other statistical or natural language processing techniques, there may be ways

of categorizing these accounts through their tweeting patterns to find bot or news behavior in order

to remove these users from the rankings.

133

The process in algorithm 7 appears to be a good start to finding many influential users, but

will need to be augmented by other means in order to be robust in many varying events.

Chapter 7

Future Work and Conclusions

In this research I have described the four layers of the problem of attempting to infer reputa-

tion on users during an event, reviewed literature for each of the areas touched by those four layers,

investigated the data available on Twitter, analyzed the existing HITS graph ranking algorithm,

and proposed my own ranking algorithm for finding influencers during an event on the Twitter

network verified by qualitative data. This research area is rich with problem areas and hypotheses

to be tested.

7.1 Future Work

The problem space for this research is quite large as described in chapter 2. Numerous

issues arise when trying to answer the questions in each layer as described in figure 2.1. Even

simply finding influencers immediately introduces the problem of understanding why users are

influential. Definitions are also a problem, and must be clearly stated when working on these

issues. The different mechanisms that can be used to define “influence”, such as number of followers,

frequency of tweets, or frequency of username mentions each describe different types of influence,

and clarification of what those types can be is necessary for understanding the different roles that

users may play in the network.

The notion of reputation is becoming increasingly important as numerous organizations and

websites are appearing which are discussing the need of determining online reputation or trying

to quantitatively infer reputation on people or information. Blogger Jeff McCord discusses how

135

online information is affecting recruiters interviewing candidates for positions [77]. An example of

a company attempting to quantify reputation of users on Twitter is Klout which has developed

a reputation ranking based on numerous variables similar to those described in chapter 4 [67].

Former Twitter CEO Evan Williams recently mentioned the fact that Twitter maintains internal

reputation scores on users for its own recommendation features [76].

One of the biggest challenges in determining a quantitative reputation score on users or

information is the diversity in how people use social networks. For example, the metrics used in the

Klout score may apply to some users and not others depending on how they interact on Twitter.

For example, the addressed messages as displayed in chapter 4 only account for in 15%-18% of

all messages seen, and among those messages it’s very difficult to determine whether or not the

addressed message is a reply to another message (what Klout considers a spark in “conversation”)

or is simply a targeted initial message from one user to another. The essence of the issue is that the

features of interaction are not equally used by everyone in the network. As such, all scores must

be normalized to what is considered “average” behavior per user. This requires analysis of a user’s

historical activity on the network, much like that seen for user “fishnette” in chapter 4. Figure 4.4

illustrates this point where the average number of tweets per month is much lower than appears

during the Boulder fire at the start of September in the graph.

A second challenge involves determining reputation within the context of a specific event as

investigated in this research. The reputation scores mentioned previously from Klout and Twitter

are for global reputation. This information may be interesting when looking at a user’s activity

over many months or years of activity, but is not useful when analyzing specific events. The same

argument holds true in the issue illustrated by Jeff McCord [77] when potential employers will search

for candidate information online in Facebook or elsewhere which can be taken out of context.

The remaining third major challenge is composing the different measures of user activity

performed in chapter 4 or by techniques used by Klout into a conclusion of trust, reputation, or

influence about a user. Composability was described in section 2.2.1 as the property of combining

measures into a single conclusion just as this. Again, due to the variation of how users behave

136

on the network, normalization of activity must be taken into account in order to make sense of

the different activities, and great care must be taken to not confound two types of measures as

measuring the same property of a user. Any measurements must also be explicitly and carefully

defined to remove any ambiguity of what property is being measured about a user.

Reputation must be validated as described as the third layer of the overall problem. This

requires incorporating multiple sources of data in order to cross-reference and verify claims made

by users within the different events that are occurring. A clear direction to take within this layer is

to expand to additional social networks or websites that contain public data in order to illustrate

a broad picture of what is occurring online beyond Twitter. Shared links may be expanded and

followed, major news websites may be tracked for news releases, and blogs may be monitored

for activity around an event. This would require an expansion of data collection and a concise

analysis plan to compose the new and existing data into a coherent form, as each of these different

data sources have different attributes themselves. Blogs tend to be more thoughtful and come

later within an event, and articles posted by news organizations lie somewhere between Twitter’s

real-time user stream and blog posts.

Security is a major concern in all of the three previous layers, but is listed at the top to be the

governor of what information is publicly reported. Algorithm 7 described in chapter 6 is vulnerable

to many types of attacks, such as a simple user interacting using keywords and generating followers

by acting as an information source. More sophisticated techniques such as Sybil attacks would be

easily employed to infiltrate an event activity network to manipulate who are considered influencers

by the algorithm. Additional mechanisms of cross-validation, most likely with user location data

or inference of location using the posted text is necessary in order to try to combat these sorts of

attacks.

The data analysis in chapter 4 is only a first attempt at simple statistics and pattern analysis

to assist in the security and validation layers. Many more interesting multi-variate questions may

be asked of the data such as, “what words or other hashtags co-occur with any particular hashtag

or keyword?”, or “what are the similarities or differences among user profiles or messages of those

137

who speak of the boulder fire?” In fact, many different applications of similarity measures such as

those described in section 3.2 are possible among all the available data.

The methods in chapter 3 are worth exploring in terms of their efficacy and how they may

expose patterns occurring within the users during an event. Analysis could follow a similar style

much like the analysis performed on the HITS algorithm in chapter 5 with implementations and

execution over various forms of the data from Twitter events.

Empirical measurements of the dynamics of the social network occurring during an event

is possible as performed by algorithm 7 presented in chapter 6. With data collected from many

different types of events, models can be developed to simulate activities on the network to predict

where future links may be created, or determine the expected influence of a user or number of users

who may fill those influential roles, all compared to measured empirical data from each event.

Many more techniques are worth investigating and are not fully explored here.

7.2 Conclusions

While the area of reputation scoring has a set of methods as reviewed in chapter 2, the area of

determining reputation through inference is wide open for more investigation. As seen in chapter

2, few researchers can agree on the definitions of trust and reputation which creates difficulty

in defining goals for inferring trust and reputation on users or data which have no associated

explicit ranking scores. Ideas of what is meant by “influence” are also not in agreement, and

many assumptions are made about graph structures that may not make sense in the context of

social network graphs. Notions of centrality and betweenness may have applications in flow-based

networks where the flow of information is governed by explicitly defined behaviors, such as routers

on the internet. However, people are much less predictable in how they decide to allow information

to flow over their links, and as such, each method, tool, or algorithm considered for use must always

be analyzed through this type of lens.

The analysis in chapters 3 through 6 begin to demonstrate that features of the social network

being analyzed (such as Twitter in the case of this research) largely determine how effective the

138

available tools and algorithms will be in the analysis. For example, the process in algorithm 7

in section 6.3 would not apply to Facebook, for example, as the design of the friend/follower

relationship is fundamentally different in Facebook and the algorithm would not find influential

users in the same way. In addition to the differences in design, existing features are changed

and new features are added requiring maintenance of existing data collection and algorithms to

accommodate these changes.

The analysis of the HITS algorithm in chapter 5 yields results that do not perform any better

than simply ranking users by their number of followers. Any variation of the social graph, whether

taken from the declared friend/follower lists of users or from interaction graphs from how users are

speaking to each other. These results are due to the fact that the graphs are very densely connected

and do not differentiate between users who are and are not active during an event.

The algorithm developed in chapter 6 proves to be very useful in finding many of the qualita-

tively influential users listed in table 4.4. Although the method has some limitations as described

in that chapter, it is a good first step toward finding influential users to begin to ask the follow-up

question of “why are these users influential?”

To return to the original thesis question, I ask whether or not the question of ”are there

tools available to determine influential users in social networks in the context of a specific event?”

has been answered. The newly developed algorithm in chapter 6 performs well specifically in the

Twitter network in the context of the Boulder fire, finding influencers. However, the question

remains to be answered for future events of types and sizes different than the Boulder fire but

that exist on Twitter. Further algorithms must be developed to incorporate other types of social

networks or websites in use by people involved in these events.

Bibliography

[1] Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust in virtual communities.
In HICSS ’00: Proceedings of the 33rd Hawaii International Conference on System
Sciences-Volume 6, page 6007, Washington, DC, USA, 2000. IEEE Computer Society.

[2] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespignani. k-core
decomposition: a tool for the analysis of large scale internet graphs. CoRR Networks and
Heterogeneous Media, 3:371–393, 2008.

[3] Jeffrey Jensen Arnett. The myth of peer influence in adolescent smoking initiation. Health
Educ. Behav., 34:594–607, 2007.

[4] Yasuhito Asano, Yu Tezuka, and Takao Nishizeki. Improvements of hits algorithms for spam
links. IEICE - Trans. Inf. Syst., E91-D(2):200–208, 2008.

[5] Ganesh Bagler and Somdatta Sinha. Assortative mixing in protein contact networks and
protein folding kinetics. Bioinformatics, 23(14):1760–1767, 2007.

[6] James P. Bagrow. Evaluating local community methods in networks. J. Stat. Mech., 2008.

[7] James P. Bagrow and Erik M. Bollt. Local method for detecting communities. Phys. Rev.
E, 72(4):046108, Oct 2005.

[8] Coralio Ballester, Antoni Calv-Armengol, and Yves Zenou. Who’s who in networks. wanted:
The key player. Econometrica, 74(5):1403–1417, 2006.

[9] Coralio Ballester, Antoni Calv-Armengol, and Yves Zenou. Delinquent networks. Journal of
the European Economic Association, 8(1):34–61, 2010.

[10] Ziv Bar-Yossef and Li-Tal Mashiach. Local approximation of pagerank and reverse pager-
ank. In CIKM ’08: Proceeding of the 17th ACM conference on Information and knowledge
management, pages 279–288, New York, NY, USA, 2008. ACM.

[11] Vladimir Batagelj and Matjaz Zaversnik. An o(m) algorithm for cores decomposition of
networks. CoRR, cs.DS/0310049:1–9, 2003.

[12] Krishna Bharat and Monika R. Henzinger. Improved algorithms for topic distillation in a
hyperlinked environment. In SIGIR ’98: Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval, pages 104–111, New
York, NY, USA, 1998. ACM.

140

[13] Mikhail Bilenko and Ryen W. White. Mining the search trails of surfing crowds: identifying
relevant websites from user activity. In WWW ’08: Proceeding of the 17th international
conference on World Wide Web, pages 51–60, New York, NY, USA, 2008. ACM.

[14] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach.
Learn. Res., 3:993–1022, 2003.

[15] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25:163–177, 2001.

[16] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst., 30(1-7):107–117, 1998.

[17] Javier Carbo, Jesus Garcia, and Jose M. Molina. Subjective trust inferred by kalman filtering
vs. a fuzzy reputation. In Conceptual Modeling for Advanced Application Domains, volume
4389/3005, pages 496–505, 2004.

[18] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir. A model of
internet topology using k-shell decomposition. Proc. Natl. Acad. Sci. USA, 104:11150–11154,
2007.

[19] James Caverlee, Ling Liu, and Steve Webb. Socialtrust: tamper-resilient trust establishment
in online communities. In JCDL, pages 104–114, 2008.

[20] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue Moon. I tube,
you tube, everybody tubes: analyzing the world’s largest user generated content video system.
In IMC ’07: Proceedings of the 7th ACM SIGCOMM conference on Internet measurement,
pages 1–14, New York, NY, USA, 2007. ACM.

[21] Meeyoung Cha, Alan Mislove, and Krishna P. Gummadi. A measurement-driven analysis
of information propagation in the flickr social network. In WWW ’09: Proceedings of the
18th international conference on World wide web, pages 721–730, New York, NY, USA, 2009.
ACM.

[22] Alice Cheng and Eric Friedman. Manipulability of pagerank under sybil strategies. In First
Workshop on the Economics of Networked Systems (NetEcon06), 2006.

[23] Hyunwoo Chun, Haewoon Kwak, Young-Ho Eom, Yong-Yeol Ahn, Sue Moon, and Hawoong
Jeong. Comparison of online social relations in volume vs interaction: a case study of cyworld.
In IMC ’08: Proceedings of the 8th ACM SIGCOMM conference on Internet measurement,
pages 57–70, New York, NY, USA, 2008. ACM.

[24] Aaron Clauset. Finding local community structure in networks. Phys. Rev. E, 72(2):026132,
Aug 2005.

[25] Aaron Clauset, M. E. J. Newman, and Christopher Moore. Finding community structure in
very large networks. Phys. Rev. E, 70, 2004.

[26] Mark Claypool, Phong Le, Makoto Waseda, and David Brown. Implicit interest indicators. In
IUI ’01: Proceedings of the 6th international conference on Intelligent user interfaces, pages
33–40, New York, NY, USA, 2001. ACM.

141

[27] CNN. http://money.cnn.com/1999/01/28/technology/yahoo a/, January 1999. Visiting June
2010.

[28] Luciano da F. Costa, Francisco A. Rodrigues, Gonzalo Travieso, and Villas P. R. Boas.
Characterization of complex networks: A survey of measurements. Advances in Physics,
56(1):167–242, Aug 2007.

[29] Stefania Costache, Wolfgang Nejdl, and Raluca Paiu. Personalizing pagerank-based ranking
over distributed collections. In CAiSE, pages 111–126, 2007.

[30] Imre Derényi, Gergely Palla, and Tamás Vicsek. Clique percolation in random networks.
Phys. Rev. Lett., 94(16):160202, Apr 2005.

[31] Ying Ding, Erjia Yan, Arthur Frazho, and James Caverlee. Pagerank for ranking authors in co-
citation networks. Journal of the American Society for Information Science and Technology,
60-11:2229–2243, 2009.

[32] Martin G. Everett and Stephen P. Borgatti. Analyzing clique overlap. Connections, 21(1):49–
61, 1998.

[33] Facebook. http://blog.facebook.com/blog.php?post=91242982130, June 2009. Visited June
2010.

[34] Illés Farkas, Dániel Ábel, Gergely Palla, and Tamás Vicsek. Weighted network modules. New
J. Phys., 9:180, 2007.

[35] Randy Farmer and Bryce Glass. Building Web Reputation Systems. O’Reilly Media, Inc.,
2010.

[36] Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans M. Coetzee. Self-organization
and identification of web communities. Computer, 35(3):66–71, 2002.

[37] R. Forsati and M. R. Meybodi. Effective page recommendation algorithms based on dis-
tributed learning automata and weighted association rules. Expert Syst. Appl., 37(2):1316–
1330, 2010.

[38] Ana L.N. Fred and Anil K. Jain. Robust data clustering. IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2:128, 2003.

[39] Linton C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
40(1):35–41, March 1977.

[40] Daniel Gayo-Avello. Nepotistic relationships in twitter and their impact on rank prestige
algorithms. CoRR, abs/1004.0816, 2010.

[41] Rumi Ghosh and Kristina Lerman. Predicting influential users in online social networks.
CoRR, abs/1005.4882, 2010.

[42] Michelle Girvan and M. E. J. Newman. Community structure in social and biological net-
works. PROC.NATL.ACAD.SCI.USA, 99:7821, 2002.

142

[43] Peter A. Gloor, Jonas Krauss, Stefan Nann, Kai Fischbach, and Detlef Schoder. Web science
2.0: Identifying trends through semantic social network analysis. Computational Science and
Engineering, IEEE International Conference on, 4:215–222, 2009.

[44] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks of diffusion
and influence. In KDD ’10: Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1019–1028, New York, NY, USA, 2010. ACM.

[45] Google. http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-
you.html, August 2006. Visited June 2010.

[46] Google. http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html, July 2008.
Visited June 2010.

[47] Sonja Grabner-Kräuter, Ewald A. Kaluscha, and Marliese Fladnitzer. Perspectives of online
trust and similar constructs: a conceptual clarification. In ICEC ’06: Proceedings of the 8th
international conference on Electronic commerce, pages 235–243, New York, NY, USA, 2006.
ACM.

[48] Weisen Guo and Steven B. Kraines. Inferring trust from recommendations in web-based
knowledge sharing systems. In Advances in Intelligent Web Mastering, volume 43/2007,
pages 148–153. Springer Berlin / Heidelberg, 2007.

[49] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. Combating web spam with
trustrank. In VLDB ’04: Proceedings of the Thirtieth international conference on Very
large data bases, pages 576–587. VLDB Endowment, 2004.

[50] Andreas Herzig, Emiliano Lorini, Jomi F. Hubner, and Laurent Vercouter. A logic of trust
and reputation. Logic Jnl IGPL, 18(1):214–244, 2010.

[51] John E. Hopcroft and Daniel Sheldon. Manipulation-resistant reputations using hitting time.
Internet Mathematics, 5(1):71–90, 2008.

[52] Bernardo A. Huberman, Daniel M. Romero, and Fang Wu. Social networks that matter -
twitter under the microscope. First Monday, 14(1-5), 2009.

[53] Lee Humphreys, Phillipa Gill, and Balachander Krishnamurthy. How much is too muich?
privacy issues on twitter. In 60th Conference of the International Communication Association,
2010.

[54] Curtis Huttenhower, Avi I Flamholz, Jessica N Landis, Sauhard Sahi, Chad L Myers, Kellen L
Olszewski, Matthew A Hibbs, Nathan O Siemers, Olga G Troyanskaya, and Hilary A Coller.
Nearest neighbor networks: clustering expression data based on gene neighborhoods. BMC
Bioinformatics, 8:250, 2007.

[55] Khalid Jaber, Nur’Aini Abdul Rashid, and Rosni Abdullah. The parallel maximal cliques
algorithm for protein sequence clustering. American Journal of Applied Sciences, 6:1368–1372,
2009.

[56] Paul Jaccard. Étude comparative de la distribution florale dans une portion des alpes et des
jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547–579, 1901.

143

[57] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter: understanding
microblogging usage and communities. In WebKDD/SNA-KDD ’07: Proceedings of the 9th
WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis,
pages 56–65, New York, NY, USA, 2007. ACM.

[58] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay. Accurately
interpreting clickthrough data as implicit feedback. In SIGIR ’05: Proceedings of the 28th
annual international ACM SIGIR conference on Research and development in information
retrieval, pages 154–161, New York, NY, USA, 2005. ACM.

[59] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation systems for
online service provision. Decis. Support Syst., 43(2):618–644, 2007.

[60] Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd Edition)
(Prentice Hall Series in Artificial Intelligence). Prentice Hall, 2 edition, 2008.

[61] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigentrust algo-
rithm for reputation management in p2p networks. In WWW ’03: Proceedings of the 12th
international conference on World Wide Web, pages 640–651, New York, NY, USA, 2003.
ACM.

[62] R. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, pages 85–103, 1972.

[63] W. O. Kermack and Ag McKendrick. A contribution to the mathematical theory of epidemics.
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character, 115(772):700–721, August 1927.

[64] Maksim Kitsak, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik, H. Eugene
Stanley, and Hernan A. Makse. Identifying influential spreaders in complex networks. In
Proceedings of the International School and Conference on Network Science (NetSci2010),
2010.

[65] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46(5):604–
632, 1999.

[66] Konstantin Klemm, M Angeles Serrano, Victor M Eguiluz, and Maxi San Miguel. Dynam-
ical influence: how to measure individual contributions to collective dynamics in complex
networks. Technical Report arXiv:1002.4042, Feb 2010. Comments: 6 pages, 4 figures, 1
table.

[67] Klout.com. http://klout.com/kscore, 2010. Visited Nov 2010.

[68] Balachander Krishnamurthy, Phillipa Gill, and Martin Arlitt. A few chirps about twitter. In
WOSP ’08: Proceedings of the first workshop on Online social networks, pages 19–24, New
York, NY, USA, 2008. ACM.

[69] Ugur Kuter and Jennifer Golbeck. Sunny: a new algorithm for trust inference in social
networks using probabilistic confidence models. In AAAI’07: Proceedings of the 22nd national
conference on Artificial intelligence, pages 1377–1382. AAAI Press, 2007.

144

[70] Joris Lammers, Diederik A. Stapel, and Adam D. Galinsky. Power increases hypocrisy mor-
alizing in reasoning, immorality in behavior. Psychological Science, 21-5:737–744, 2010.

[71] Amy N. Langville and Carl D. Meyer. Google’s PageRank and Beyond: The Science of Search
Engine Rankings. Princeton University Press, Princeton, NJ, USA, 2006.

[72] Longzhuang Li, Yi Shang, and Wei Zhang. Improvement of hits-based algorithms on web
documents. WWW ’02: Proceedings of the 11th international conference on World Wide
Web, pages 527–535, 2002.

[73] S. Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on,
28(2):129–137, January 2003.

[74] Feng Luo, James Z. Wang, and Eric Promislow. Exploring local community structures in
large networks. pages 233–239, 2006.

[75] J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In
L. M. Le Cam and J. Neyman, editors, Proc. of the fifth Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281–297. University of California Press, 1967.

[76] Mashable.com. http://mashable.com/2010/11/17/twitter-reputation-scores/?utm_

source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Mashable+%28Mashable%

29&utm_content=Google+Reader, Nov 2010. Visited Nov 2010.

[77] Jeff McCord. http://www.jeffmccord.org/reputation-20/, 2008. Visited Nov 2010.

[78] Marcelo Mendoza, Barbara Poblete, and Carlos Castillo. Twitter under crisis: Can we trust
what we rt? In 1st Workshop on Social Media Analytics (SOMA ’10). ACM Press, July 2010.

[79] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby Bhat-
tacharjee. Measurement and analysis of online social networks. In IMC ’07: Proceedings of
the 7th ACM SIGCOMM conference on Internet measurement, pages 29–42, New York, NY,
USA, 2007. ACM.

[80] Alan Mislove, Ansley Post, Peter Druschel, and Krishna P. Gummadi. Ostra: leveraging
trust to thwart unwanted communication. In NSDI’08: Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation, pages 15–30, Berkeley, CA,
USA, 2008. USENIX Association.

[81] Alan Mislove, Bimal Viswanath, Krishna P. Gummadi, and Peter Druschel. You are who you
know: inferring user profiles in online social networks. In WSDM ’10: Proceedings of the
third ACM international conference on Web search and data mining, pages 251–260, New
York, NY, USA, 2010. ACM.

[82] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse datasets.
In SP ’08: Proceedings of the 2008 IEEE Symposium on Security and Privacy, pages 111–125,
Washington, DC, USA, 2008. IEEE Computer Society.

[83] Bonnie A. Nardi, Diane J. Schiano, Michelle Gumbrecht, and Luke Swartz. Why we blog.
Commun. ACM, 47(12):41–46, 2004.

145

[84] M. E. J. Newman. Scientific collaboration networks. ii. shortest paths, weighted networks,
and centrality. Phys. Rev. E, 64(1):016132, Jun 2001.

[85] M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89(20):208701, Oct
2002.

[86] M. E. J. Newman. Mixing patterns in networks. Phys. Rev. E, 67(2):026126, Feb 2003.

[87] M. E. J. Newman. Fast algorithm for detecting community structure in networks. Phys. Rev.
E, 69, 2004.

[88] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Phys. Rev. E, 69(2):026113, Feb 2004.

[89] David M. Nichols. Implicit rating and filtering. In In Proceedings of the Fifth DELOS
Workshop on Filtering and Collaborative Filtering, pages 31–36, 1998.

[90] Brendan O’Connor, Michel Krieger, and David Ahn. Tweetmotif: Exploratory search and
topic summarization for twitter. In Proceedings of the International AAAI Conference on
Weblogs and Social Media, Washington DC, May 2010.

[91] Paul Ormerod and Kristin Glass. Predictability in an unpredictable artificial cultural market.
Technical Report arXiv:0908.1320, Aug 2009.

[92] Leysia Palen, Sarah Vieweg, Sophia B. Liu, and Amanda Lee Hughes. Crisis in a networked
world. Soc. Sci. Comput. Rev., 27(4):467–480, 2009.

[93] Gergely Palla, Imre Derényi, and Tamás Vicsek. Uncovering the overlapping community
structure of complex networks in nature and society. Nature, 435:814–818, 2005.

[94] Gergely Palla, Illés J Farkas, Péter Pollner, Imre Derényi, and Tamás Vicsek. Directed
network modules. New J. Phys., 9:186, 2007.

[95] Wei Pan, Manuel Cebrian, Wen Dong, Taemie Kim, and Alex Pentland. Modeling dynamical
influence in human interaction patterns. Oct 2010.

[96] Clara Pizzuti. Overlapped community detection in complex networks. In GECCO ’09:
Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pages
859–866, New York, NY, USA, 2009. ACM.

[97] Péter Pollner, Gergely Palla, Dániel Ábel, Andrés Vicsek, Illés J. Farkas, Imre Derényi, and
Tamás Vicsek. Centrality properties of directed module members in social networks. Physica
A: Statistical Mechanics and its Applications, 387(19-20):4959 – 4966, 2008.

[98] Krishna P.N. Puttaswamy, Alessandra Sala, and Ben Y. Zhao. Starclique: guaranteeing user
privacy in social networks against intersection attacks. In CoNEXT ’09: Proceedings of the
5th international conference on Emerging networking experiments and technologies, pages
157–168, New York, NY, USA, 2009. ACM.

[99] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and Domenico Parisi.
Defining and identifying communities in networks. Proceedings of the National Academy of
Sciences of the United States of America, 101(9):2658–2663, March 2004.

146

[100] Stephen Robertson. Understanding inverse document frequency: On theoretical arguments
for idf. Journal of Documentation, 60:2004, 2004.

[101] Daniel M. Romero, Wojciech Galuba, Sitaram Asur, and Bernardo A. Huberman. Influence
and passivity in social media. Social Science Research Network Working Paper Series, August
2010.

[102] Jordi Sabater and Carles Sierra. Social regret, a reputation model based on social relations.
SIGecom Exch., 3(1):44–56, 2002.

[103] M.J. Salganik, P.S. Dodds, and D.J. Watts. Experimental study of inequality and unpre-
dictability in an artificial cultural market. Science, 311(5762):854–856, 2006.

[104] Jagan Sankaranarayanan, Hanan Samet, Benjamin E. Teitler, Michael D. Lieberman, and
Jon Sperling. Twitterstand: news in tweets. In GIS ’09: Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems,
pages 42–51, New York, NY, USA, 2009. ACM.

[105] Hassan Sayyadi, Matthew Hurst, and Alexey Maykov. Event detection and tracking in social
streams. In Proceedings of International Conference on Weblogs and Social Media (ICWSM),
2009.

[106] Stephen B. Seidman. Network structure and minimum degree. Social Networks, 5:269–287,
1983.

[107] Wanita Sherchan, Seng W. Loke, and Shonali Krishnaswamy. A fuzzy model for reasoning
about reputation in web services. In SAC ’06: Proceedings of the 2006 ACM symposium on
Applied computing, pages 1886–1892, New York, NY, USA, 2006. ACM.

[108] Karen Spärck Jones. A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation, 28:11–21, 1972.

[109] Kate Starbird, Leysia Palen, Amanda L. Hughes, and Sarah Vieweg. Chatter on the red:
what hazards threat reveals about the social life of microblogged information. In CSCW ’10:
Proceedings of the 2010 ACM conference on Computer supported cooperative work, pages
241–250, New York, NY, USA, 2010. ACM.

[110] Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. Impact of similarity measures
on web-page clustering. In Proceedings of the 17th National Conference on Artificial Intel
ligence: Workshop of Artificial Intelligence for Web Search (AAAI 2000), 30-31 July 2000,
Austin, Texas, USA, pages 58–64. AAAI, July 2000.

[111] LA Times. http://latimesblogs.latimes.com/technology/2009/10/geocities-closing.html, Oc-
tober 2009. Visited June 2010.

[112] Riitta Toivonen, Lauri Kovanen, Mikko Kivelä, Jukka-Pekka Onne la, Jari Saramäki, and
Kimmo Kaski. A comparative study of social network models: Network evolution models
and nodal attribute models. Social Networks, 31(4):240–254, October 2009.

[113] Daniel Tunkelang. http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank/,
January 2009. Visited June 2010.

147

[114] Twitter.com. http://dev.twitter.com/pages/rate-limiting, 2010. Visited November 2010.

[115] Twitter.com. http://dev.twitter.com/pages/responses errors, 2010. Visited November 2010.

[116] Twitter.com. http://dev.twitter.com/pages/streaming api methods, 2010. Visited November
2010.

[117] Twitter.com. http://engineering.twitter.com/2010/10/twitters-new-search-
architecture.html, October 2010. Visited November 2010.

[118] Twitter.com. http://support.twitter.com/entries/13920-frequently-asked-questions, 2010.
Visited November 2010.

[119] Stijn Van Dongen. Graph clustering via a discrete uncoupling process. SIAM Journal on
Matrix Analysis and Applications, 30(1):121–141, 2008.

[120] Quang Hieu Vu, Mihai Lupu, and Beng Chin Ooi. Trust and reputation. In Peer-to-Peer
Computing, pages 183–214. Springer Berlin Heidelberg, 2010.

[121] S. Wasserman and K. Faust. Social network analysis: Methods and applications. Cambridge
Univ Pr, 1994.

[122] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of /‘small-world/’ networks.
Nature, 393(6684):440–442, June 1998.

[123] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. Twitterrank: finding topic-sensitive
influential twitterers. In WSDM ’10: Proceedings of the third ACM international conference
on Web search and data mining, pages 261–270, New York, NY, USA, 2010. ACM.

[124] Sebastian Wernicke and Florian Rasche. Fanmod: a tool for fast network motif detection.
Bioinformatics, 22(9):1152–1153, 2006.

[125] Ryen W. White, Joemon M. Jose, and Ian Ruthven. An implicit feedback approach for inter-
active information retrieval. In Information Processing and Management: an International
Journal, volume 42, pages 166–190, Tarrytown, NY, USA, 2006. Pergamon Press, Inc.

[126] D. M. Wilkinson and B. A. Huberman. A method for finding communities of related genes.
Proceedings of the National Academy of Sciences of the United Sta tes of America, 101(Suppl
1):5241–5248, April 2004.

[127] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P.N. Puttaswamy, and Ben Y. Zhao.
User interactions in social networks and their implications. Proceedings of the 4th ACM
European conference on Computer systems, pages 205–218, 2009.

[128] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham Flaxman. Sybilguard:
defending against sybil attacks via social networks. SIGCOMM Comput. Commun. Rev.,
36(4):267–278, 2006.

[129] Cai-Nicolas Ziegler and Georg Lausen. Analyzing correlation between trust and user sim-
ilarity in online communities. In Proceedings of Second International Conference on Trust
Management, pages 251–265. Springer-Verlag, 2004.

[130] David Zuckerman. On unapproximable versions of np-complete problems. SIAM J. Comput.,
25(6):1293–1304, 1996.

