
VisionBlocks: A Social Computer Vision
Framework

Abhijit Bendale
MIT Media Lab

Email: bendale@media.mit.edu

Kevin Chiu
MIT Media Lab

Email: kgc@media.mit.edu

Kshitij Marwah
MIT Media Lab

Email:kshitij22@gmail.com

Ramesh Raskar
MIT Media Lab

Email:raskar@media.mit.edu

Abstract—VisionBlocks (http://visionblocks.org) is an on-
demand, in-browser, customizable computer vision application
publishing platform for masses. It empowers end-users (con-
sumers) to create novel solutions for themselves that they would
not easily obtain off-the-shelf. By transferring design capability
to the consumers, we enable creation and dissemination of
custom products and algorithms. We adapt a visual programming
paradigm to codify vision algorithms for general use. As a proof-
of-concept, we implement computer vision algorithms such as
motion tracking, face detection, change detection and others.
We demonstrate their applications on real-time video. Our
studies show that end users (non programmers) only need 50%
more time to build such systems when compared to the most
experienced researchers. We made progress towards closing the
gap between researchers and consumers by finding that users
rate the intuitiveness of the approach in a level 6% less than
researchers. We discuss different application scenarios where
such study will be useful and argue its benefit for computer
vision research community. We believe that enabling users with
ability to create application will be first step towards creating
social computer vision applications and platform.

I. INTRODUCTION

Building computer vision systems is beyond the reach
of people without deep understanding of image processing
and modeling and expertise in computer programming. These
prerequisites limit the ability of creating computer vision
applications to a insular community of researchers and ad-
vanced programmers and serve as a high barrier of entry for
consumers (end-users). While there are many specialized solu-
tions available utilizing computer vision technologies in daily
life, these closed-ended applications provide little capability
for customization. Consider a situation where Alice wants to
watch her baby when she is not in the room. Bob wants to
catch speeders who run through his neighborhood at night.
These situations do not require sophisticated algorithms. Yet,
such vision systems are still beyond the reach of the average
consumer. Can Alice and Bob simply visit a website to get
custom solutions to their problems? How can we build a
unified framework that empowers consumers to easily deploy
and share custom computer vision applications? What are the
right interfaces, if we have to enable end-users without any
programming experience to build their own computer vision
applications? We introduce VisionBlocks (VisionBlocks), a
customizable, real-time, web-based toolkit based on a Vision
as a Service (VaaS) model which facilitates the spread of
computer vision to the masses.

Vision
Blocks

Developers
(Of the People)

Researchers
(By the People)

Consumers
(For the People)

Real-Time Customizable
Computer Vision as a

service

Data and Feedback

Algorithms

Feedback
on Research Monetization

Code

Fig. 1. VisionBlocks Ecosystem: VisionBlocks is a communal effort
where researchers obtain fast massive feedback for their own algorithms,
developers monetize their vision blocks (just like in an app store) and
consumers effectively use the state-of-the-art techniques. With VOT, producers
and consumers co-exist in a single cloud of vision components.

To become widely adopted, VaaS should have following
characteristics:

1) Plug and Play: Consumers visit websites and receive
instant vision service.

2) Ease of Creation, Distribution and Customization: End-
users build services and solutions with no prior experi-
ence.

3) User-controlled data: Users own their data and deter-
mine how it is used.

A. Contributions

1) A programmable computer vision platform that allows
algorithms, content and results to co-exist in a scalable,
communal, dynamic way.

2) User studies that show that the platform provides rela-
tively large benifits to non-programmers when compared
to programmers.

3) An on-demand, cross-platform, programmable computer
vision interface which allows sharing of computer vision
applications across users.

Blocks Menu Scripting Area Output Area Sample Program

Fig. 2. End-users drag Scratch-based processing blocks from the Blocks Menu (left) and arrange them in the Scripting Area (middle-left). VisionBlocks
compiles the script and process it over the subject’s private webcam (middle-right). The sample program (right) runs while the browser window is open,
motion tracking objects without streaming to a server. Additionally, the user can include face detection, skin segmentation and other filters by just dragging
and dropping new blocks in the scripting area.

B. Limitations

VisionBlocks is not intended to be a replacement or re-
implementation of existing scientific programming solutions
like OpenCV, Scipy or Matlab. Such tools are extremely im-
portant for research. VisionBlocks is meant to complement, not
replace them. Task-specific/Mission Critical off-the-shelf vi-
sion systems are cheaper and often have superior performance,
and VisionBlocks is not meant to compete or replace such
efforts. However, as a general purpose system, VisionBlocks
provides solutions for multiple situations at no additional cost
if the user already owns a computer and a camera. Being
a web-based service, VisionBlocks naturally depends on an
Internet connection. Despite these shortcomings, we believe
that VisionBlocks will be rapidly able to diffuse computer
vision research to a wider ecosystem.

Scratch as a programming language for computer vi-
sion: VisionBlocks is based on Scratch, a visual programming
language with simplified grammar, vocabulary and state space.
Scratch [12] enables people of any programming experience
and background to build programs. End-users put together
building blocks that fit together like puzzle pieces to create
programs. Scratch allows tinker-ability and the flexibility of
modifying programs on the fly with a shallow learning curve.
Features in mature computer programming languages such as
object oriented programming, error messages, capability of
returning multiple values and abstract data-types are absent
in Scratch and therefore in VisionBlocks as well. Levels of
abstraction, grammar additions, and state spaces essential to
make a powerful computer vision programming language are
important directions of future research.

II. RELATED WORK

Interfaces for Computer Vision over the Web: Sko-
caj et al. [19] discussed a model for delivering an image
segmentation algorithm over the internet. SwisTrack [11], a
generalized tracking system for life sciences proved to be an
extremely valuable tool for life scientists. Chiu et al [9] created
a simple computer vision service over the internet. DAPRA’s

Avidan et al (Blind Vision)

Boult et al (PICO)

Belongie et al (Visipedia)

Torralba et al (LabelMe)

Shi et al (Image Segmentation)

von Ahn et al (ReCaptcha)

Vision on Tap (This Paper)

Aminzade et al (Interactive)

Fig. 3. VisionBlocks in context of related literature in computer vision

IUE program created number of “visual, plug and play”
interfaces [7], [14]. The IUE failed to gain wide usage because
it presented an interface which built on top of advanced
vision concepts, e.g. homographies, which limited its users
to those who possessed both good vision background and
advanced software development skills. The former limited its
use outside of vision, while the latter limited its use among
vision researchers. Simpler but less extensive solutions such
as OpenCV, gained wider acceptance in computer vision but
still had minimal impact in other sciences and use for even
wider audience, since it still required at least modest C++
software development skills. More recently, web services such
as http://visym.com [1] and http://www.iqengines.com [2] are
introducing the notion of Vision as a Service (VaaS) over
the internet. Visym.com provides a Matlab interface to cloud-
hosted algorithms, whereas iqengines.com gives you back the
label of the query image. There are a wide variety of languages
available for building vision applications, such C, C++, Mat-
lab, Python, Java along with libraries such as OpenCV and
others. These have a high barrier of entry, which hinders their
rapid diffusion amongst non-technical populations.

Computer Vision and HCI: In recent years advances in

Humans Computer
Vision

Computer
Vision

Humans

Creating Data
for Computer Vision

LabelMe
ImageNet
Visipedia.....

VisionBlocks

Interaction / Service
from computer vision

Creating Data and Programs
for Computer Vision

Fig. 4. Ask what you can do for computer vision - and what computer vision
can do for you: VisionBlocks facilitates two way interaction between humans
and computer vision

computer vision with human in the loop approaches have
gained significant attention from the computer vision research
community. Approaches such as [22], [21] [23], [17] , [3]
focus on collecting labeled data from the user to help multi-
class object classification systems whereas approaches such
as [15], [8] use a hybrid human-computer system to boost
the performance of underlying computer vision system with
feedback from the user. Maynes-Aminzade [4] created an
interactive system in which developers use visual examples
to train and tune computer vision recognizers, making the
system task specific. In the past, papers at the intersection
of computer vision and HCI [17], visual recognition with
human in loop [8], annotating data with Mechanical Turk [21]
have provided a significant contribution to computer vision
research. We believe this paper is in the same vein. While
these papers allowed end users to create only data for vision,
we are allowing users to create programs for computer vision
and data at the same time. Such tools and interfaces will
help researchers make their work accessible to the masses and
get feedback from the community. As the community grows,
approaches like ours will help computer vision algorithms
to be tested at a very large scale and in diverse, real life
conditions by the consumers of the technology.

III. VISIONBLOCKS

VisionBlocks is web-based toolkit that allows consumers
to readily build computer vision applications. It is based on a
popular visual programming language, Scratch, in which users
manipulate and connect puzzle-piece like objects to build their
programs. The fundamental abstraction provided by Scratch is
the notion of a “block”. Each block represents a predefined
code snippet. Building computer vision applications in this
language becomes as easy as putting the blocks together in a
logical sequence. 2

VisionBlocks Ecosystem: Three types of users interact
with the VisionBlocks platform. Researchers, who provide
computer vision algorithms, developers who provide code and
software engineering infrastructure to the platform and end-
users who are common people who wish to create computer
vision applications to assist their daily life. End-users pub-
lish their programs to a common public repository, allowing
transparent sharing among the community. Further end-users
(consumers) can build upon community contributed applica-
tions which can provide a foundation for their own solutions.
Users could also write block based micro-apps which others
can use like off-the-shelf vision systems. The co-existence of
such a community that allows algorithms, programs, easy to
use interfaces, tinker-ability and liveness of a vision system,
users, researchers and developers on a common social platform
is the key innovation of this work.

Privacy Concerns: The current implementation of Vision-
Blocks is in Adobe Flash. The processing is currently done on
the user’s machine and images are not transmitted off the users
machine unless explicitly saved to the server. Thus, privacy of
the person using VisionBlocks is preserved. As computational
needs of consumers increase it may be necessary to port some
processing to the cloud in which case smarter ways of handling
user data will have to be investigated. Encryption is an option
and is an active area of research in computer vision [6], [5].

Implementation: We have implemented VisionBlocks as
a web-based service where users can create applications. The
integrated development environment (IDE) lives in the browser
and features seamless integration with the website. The IDE
consists of programming tools (blocks), a scripting area (where
the blocks are placed), and the output area. The IDE is
implemented in Adobe R© Flash (ActionScript 3) which creates
a shockwave file that is embedded in the user’s browser and
uses the user’s computational resources. A saved program is
stored in XML format on the server.

We implemented a few basic functions such as load-
ing/saving of images and videos, streaming videos from the
web, reading images from the Flickr, and simple graphics
as well as Scratch language constructs such as loops, condi-
tional statements and timers. We initially provide some basic
computer vision algorithms as part of the platform. These
included a Viola-Jones based face-detection algorithm, frame
differencing based movement detection, blob tracking, color
based skin segmentation using Adobe’s Pixel Bender and a
few video filters such as edge-detection, distortion etc. For
outputs, we implemented alerts and sending SMS to end-user’s
mobile phone. Scalability beyond these initial demos can be
easily achieved with Adobe’s Alchemy library which allows
integration of Flash and C/C++ code. This enables developers
to bring almost any OpenCV function to the VisionBlocks
platform [24].

IV. EVALUATION

Computer Vision Applications: As a proof-of-concept,
we created few computer vision apps figure 8. We have
provided several input options for the system, including online

Create
Program

Vision as a
Service

Computer Vision
Algorithms

Save
Programs

Share Programs
with CommunityOn-demand,

 in-browser
Computer

Vision

visionblocks.org
servers

Get Data to
Process

visionblocks.orgEnd -User
(Consumer)

Fig. 5. A user visits visionblocks.org, feeds data from his web-camera or any other source, and uses Vision as a Service to assembly his own customized
application. Additional information can be captured and sent to web-based services, such as image repositories, mail and messaging as well as social networks.
He can then share it with others in the community. The developed blocks are saved on the server while the data remains inside subjects computer.

video. A few videos are provided in the toolbox . Sample
applications such as a danger zone alarm, face detection, and
motion tracking for a traffic camera are implemented. These
applications demonstrate the ease and simplicity with which
computer vision applications can be created by people without
any programming experience.

User Studies and Results: To quantify end-user experience,
we evaluated VisionBlocks using a user-study of anonymized
and unknown online users [16]. Users were given a brief video
tutorial on how to use the website (about 2 mins) and then
were asked to build computer vision apps. Later they were
asked to take a questionnaire regarding their opinion of the
website. The questionnaire and results are attached in supple-
mental. The test group consisted of 40 users and contained a
mix of computer vision researchers, programmers and people
with no programming experience. Results are summarized in
figure 6. Non-programmers took by far longest time, which
is understandable because they lacked the knowledge of both
programming and computer vision technologies, but it was
impressive to note that majority of them were able to build
applications in less than an hour. They also seemed to be least
concerned about privacy. Computer Vision researchers with
programming knowledge found the platform most intuitive to
build applications. The pipeline approach of a Scratch-like
language seems to naturally fit a common computer vision
application pipeline which turns out to be a very promising
observation noted in this study. Our website includes list of
programs created by users of this community.

V. DISCUSSION

Benefits to Computer Vision Research: VisionBlocks
is a communal effort in which researchers, developers and
users will co-exist. VisionBlocks will serve as a platform
where researchers can contribute their algorithms and submit
requests for data (crowd-sourcing efforts like labelled data,
annotations). As the community grows, researchers will be

3.0

3.4

3.6

300.40.8

1.50

2.0
Consumers

Developers
Researchers

1.25

1.75

0.6 0.2

3.2

60 50 40

Intuitiveness

Satisfaction

Privacy Concern Demo Time (mins)

Fig. 6. Here we show a four-axis polar graph which displays the average
of four quantitative metrics derived from our user study. People without
programming experience were able to build computer vision systems in
about 50% more of the time spent by highly trained people. We broke the
wall between researchers and end consumers by finding that end users rate
the intuitiveness in a level only 6% less than researchers. However, the
satisfaction rating reveals that improvements in the usability of the portal
should be made.

able to get real-time feedback from users in real-world applica-
tion scenarios. Algorithms could be deployed to VisionBlocks
with the goal of receiving feedback on how their algorithms
perform when used in a wide variety of user scenarios. Sharing
and creating applications by multiple users (which is already
possible on VisionBlocks website) will raise interesting ques-
tions for research in the area of visual social computing and
collaborative computer vision.

Physical World and VisionBlocks: We demonstrated sup-
port for a web-camera. As we move forward we will have
to create functionality to read, process and manipulate visual
data from a range of imaging devices. We also demonstrated a
simple application where a user could send an SMS based on

a detected event in the video. Advanced methods of actuation
and control like controlling a SRV1 or iRobot’s roomba like
robots, house lighting, alarm system, and tighter integration
with mobile phones will provide opportunities that could be
explored on the VisionBlocks platform.

Billion Cameras and VisionBlocks: With more than a
billion people using networked, high resolution mobile phone
cameras [10], a VisionBlocks-like platform offers tremendous
opportunities. With a programmable computer vision interface
on a mobile platform, one could easily create apps such as an
interactive field guide of scientists (eg recognizing a particular
object on the fly, allowing users to tag it, query information
visually [15] [18]) from many disciplines. They key is some
applications discussed here already exist, but end-users have
no control to modify or change the applications based on
their situations. On-demand mobile visual computing plat-
forms can be of significant use in developing countries, where
the majority of population has camera enabled cell phones.
Applications such as wound recognition on cell phones [13],
citizen journalism, habitat monitoring can be of immense
value.

Other Sciences and VisionBlocks: VaaS over the web
could be useful for improving research productivity in sci-
ences where interpreting and analyzing visual data lies at
the core. Biologist often spend enormous amount of time in
analyzing visual data (eg. videos, images, sensed data from
seizure detections, MRI etc). Cell image analysis, tracking
of organisms, cell morphology, segmentation and localization
of various structures and labeling of them are some of the
common Computer vision tasks often desired [11]. Auto-
mated visual monitoring and cataloging of sea-birds, fishes
in natural habitat, cow behavior and condition monitoring,
animal counting in the wild, bird trajectory reconstruction and
tracking, insect classification, size and shape assessment, pest
counting in greenhouse are computer vision specific questions
often faced by wildlife scientists. One could easily imagine
a situation where a tracking algorithm created by a computer
vision scientist in the form of a vision block, is adopted by
a biologist to track a particular kinds of cell movement [20]
and then shared with his colleague who wants to perform a
similar task.

Parallel Technologies for VisionBlocks: There are several
alternative implementations of VisionBlocks that may be con-
sidered. One can use other techniques for GUI development
such as JavaScript, Java, HTML5. We provide an in-browser
service, whereas from a computational scalability point of
view a cloud-based service can also be implemented. Also,
we decided to use Scratch as the user-facing programming lan-
guage, though there are other visual programming languages
such as Alice, Squeak, Processing, SmallTalk which could
have been used.

VI. CONCLUSION

VisionBlocks has taken the next logical step in engaging the
mainstream, departing from the traditional expert-driven style
of computer vision research and making vision available to the

masses. Recent years have marked a transition from research
being isolated within academia and commercial labs to being
more engaged with the outside world. We demonstrated a
platform that appeals to an audience outside the traditional
circle of vision researchers. We believe that this is a promising
step in disseminating the knowledge of computer vision to
a wider audience and growing the community. Research at
the intersection of HCI, on-demand programmable computer
vision and mobile visual computing will enable computer vi-
sion researchers to increase the rate of diffusion of innovation,
which in turn will benefit computer vision research. We hope
that our work provides a direction for future consideration by
the vision research community.

VII. ACKNOWLEDGEMENTS

We thank the reviewers for their insightful feedback and
recognize the support of members of Camera Culture group
at MIT Media Lab. The project is inspired from Scratch, Visual
programming language for kids and we would like to thank
Prof. Mitch Resnick, Evelyn Eastmond and John Maloney
from Lifelong Kindergarten Group at MIT Media Lab for their
guidance and support. We would like to thank Dr. Sylvain Paris
and Dr. Jon Brandt from Adobe Advanced Technology Labs
for their help and guidance for this project. We would also
like to thank the sponsor companies of MIT Media lab for
their continued support. Ramesh Raskar was supported by an
Alfred P. Sloan Research Fellowship.

REFERENCES

[1] http://www.visym.com.
[2] http://www.iqengines.com.
[3] Advancing computer vision with humans in the loop. CVPR Workshops,

2010.
[4] S. M. Aminzade. Interactive visual prototyping of computer vision

applications. PhD Thesis, Stanford, 2008.
[5] S. Avidan and M. Butman. Blind vision. pages 1–13, 2006.
[6] T. Boult. Pico: Privacy through invertible cryptographic obscuration.

IEEE/NSF Workshop on Computer Vision for Interactive and Intelligent
Environments, 2005.

[7] T. Boult. Personal Communications, 2011.
[8] S. Branson, C. Wah, B. Babenko, S. Schroff, P. Welinder, P. Perona, and

S. Belongie. Visual recognition with humans in the loop. ECCV, 2010.
[9] K. Chiu and R. Raskar. Computer vision on tap. 2009.

[10] A. Efros, R. Raskar, and S. Seitz. Next billion cameras. ACM
SIGGRAPH Courses, 2008.

[11] T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacques, and A. Marti-
noli. Swistrack - a flexible open source tracking software for multi-agent
systems. IROS, 2008.

[12] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The
scratch programming language and environment. ACM Transactions on
Computing Education, 10(4):1–15, 2010.

[13] H. Mesa, F. Veredas, and L. Morente. A hybrid approach for tissue
recognition on wound images. Conf. on Hybrid Intell Systems, 2008.

[14] J. Mundy, T. Binoford, T. Boult, A. Hanson, R. Beveridge, R. Haralick,
V. Ramesh, C. Kohl, D. Lawton, D. Morgan, K. Price, and T. Strat. The
image understanding environment program. CVPR, 1992.

[15] P. Perona. Visions of visipedia. Proceedings of the IEEE, 2010.
[16] J. Preece, Y. Rogers, and H. Sharp. Beyond human computer interaction.

Chapman and Hall, 2002.
[17] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme:

A database and web-based tool for image annotation. Int. J. Comput.
Vision, 77:157–173, May 2008.

[18] S. Shirdhonkar, S. White, S. Feiner, D. Jacobs, J. Kress, and P. N.
Belhumeur. Searching the worlds herbaria: A system for the visual
identification of plant species. ECCV, 2008.

[19] D. Skocaj, A. Leonardis, A. Jaklic, and F. Solina. Sharing computer
vision algorithms over the world wide web. 1998.

Developing Countries
Health Monitoring
Acgricultural Management: Pest Recognition

Habitat Monitoring
Interactive Citizen Journalism

Collect/Annotate/Recognize
data as it is collected

Event based recording/
on-capture data filter

Customizable
Collaborative

Computer Vision

Wound Recognition VisionBlocks to recognize and control rat physiology experiments

Fig. 7. VisionBlocks Application Scenarios: VisionBlocks on cell phones will give rise to tremendous opportunities for computer vision application creation
and deployment. Similarly, once matured, VisionBlocks can be used to automate experiments in other sciences [25]

(a) (b)

(c) (d)

Fig. 8. Sample programs created with VisionBlocks platform (a) Color based skin segmentation (b) Viola-Jones face detection system (c) Warn if change
is detected (d) Read Video from the web and perform blob tracking

[20] K. Smith and A. Carleton. General constraints for batch multiple-target
tracking applied to large-scale videomicroscopy. CVPR, Jan 2008.

[21] A. Sorokin and D. Forsyth. Utility data annotation with amazon
mechanical turk. CVPR Workshop on Internet Vision, 2008.

[22] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images:
A large data set for nonparametric object and scene recognition. IEEE
TPAMI, 30:1958–1970, 2008.

[23] P. Welinder and P. Perona. Online crowdsourcing: rating annotators and
obtaining cost-effective labels. Workshop on Advancing Computer Vision
with Humans in the Loop at CVPR. 2010, 2009.

[24] E. Zatepyakin. ASSURF on Google Code, 2010.
[25] D. F. Zoccolan, B. J. Graham, and D. D. Cox. A self-calibrating, camera-

based eye tracker for the recording of rodent eye movements. Frontiers
in Neuroscience, 2010.

