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Abstract—This paper introduces a privacy-aware Bayesian
approach that combines ensembles of classifiers and clusterers to
perform semi-supervised and transductive learning. We consider
scenarios where instances and their classification/clustering re-
sults are distributed across different data sites and have sharing
restrictions. As a special case, the privacy aware computation
of the model when instances of the target data are distributed
across different data sites, is also discussed. Experimental results
show that the proposed approach can provide good classification
accuracies while adhering to the data/model sharing constraints.

I. INTRODUCTION

Extracting useful knowledge from large, distributed data

repositories can be a very difficult task when such data cannot

be directly centralized or unified as a single file or database due

to a variety of constraints. Recently, there has been an empha-

sis on how to obtain high quality information from distributed

sources via statistical modeling while simultaneously adhering

to restrictions on the nature of the data or models to be shared,

due to data ownership or privacy issues. Much of this work

has appeared under the moniker of “privacy-preserving data

mining”.

Three of the most popular approaches to privacy-preserving

data mining techniques are: (i) query restriction to solve the

inference problem in databases [10] (ii) subjecting individual

records or attributes to a “privacy preserving” randomization

operation and subsequent recovery of the original data [3],

(iii) using cryptographic techniques for secure two-party or

multi-party communications [17]. Meanwhile, the notion of

privacy has expanded substantially over the years. Approaches

such as k-anonymity and l-diversity [14] focused on privacy in

terms of indistinguishableness of one record from others under

allowable queries. More recent approaches such as differential

privacy [8] tie the notion of privacy to its impact on a statistical

model.

The larger body of distributed data mining techniques de-

veloped so far have focused on simple classification/clustering

algorithms or on mining association rules [2], [5], [9], [13].

Allowable data partitioning is also limited, typically to ver-
tically partitioned or horizontally partitioned data [7]. These

techniques typically do not specifically address privacy issues,

other than through encryption [19]. This is also true of

earlier, data-parallel methods [7] that are susceptible to privacy

breaches, and also need a central planner that dictates what

algorithm runs on each site. In this paper, we introduce a

privacy-aware Bayesian approach that combines ensembles

of classifiers and clusterers and is effective for both semi-

supervised and transductive learning. As far as we know, this

topic has not been addressed in the literature.

The combination of multiple classifiers to generate an

ensemble has been proven to be more useful compared to the

use of individual classifiers [16]. Analogously, several research

efforts have shown that cluster ensembles can improve the

quality of results as compared to a single clusterer — e.g.,
see [20] and references therein. Most of the motivations for

combining ensembles of classifiers and clusterers are similar

to those that hold for the standalone use of either classifier or

cluster ensembles. However, some additional nice properties

can emerge from such a combination. For instance, unsu-

pervised models can provide supplementary constraints for

classifying new data and thereby improve the generalization

capability of the resulting classifier. Having this motivation in

mind, a Bayesian approach to combine cluster and classifier

ensembles in a privacy-aware setting is presented. We consider

that a collection of instances and their clustering/classification

algorithms reside in different data sites.

The idea of combining classification and clustering models

has been introduced in the algorithms described in [11], [1].

However, these algorithms do not deal with privacy issues.

Our probabilistic framework provides an alternative approach

to combining class labels with cluster labels under conditions

where sharing of individual records across data sites is not

permitted. This soft probabilistic notion of privacy, based

on a quantifiable information-theoretic formulation, has been

discussed in detail in [15].

II. BC3E FRAMEWORK

A. Overview

Consider that a classifier ensemble previously induced from

training data is employed to generate a set of class labels for

every instance in the target data. Also, a cluster ensemble is

applied to the target data to provide sets of cluster labels. These

class/cluster labels provide the inputs to Bayesian Combina-

tion of Classifier and Cluster Ensembles (BC3E) algorithm.

B. Generative Model

Consider a target set X = {xn}Nn=1 formed by N unlabeled

instances. Suppose that a classifier ensemble composed of r1
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classification models has produced r1 class labels (not neces-

sarily different) for every instance xn ∈ X . Similarly, consider

that a cluster ensemble comprised of r2 clustering algorithms

has generated cluster labels for every instance in the target

set. Note that the cluster labeled as 1 in a given data partition

may not align with the cluster numbered 1 in another partition,

and none of these clusters may correspond to class 1. Given

the class and cluster labels, the objective is to come up with

refined class probability distributions {θn}Nn=1 of the target

set instances. To that end, assume that there are k classes,

which are denoted by C = {Ci}ki=1. The observed class

and cluster labels are denoted by X = {{w1nl}, {w2nm}}
where w1nl is the class label of the nth instance for the lth

classifier and w2nm is the cluster label assigned to the nth

instance by the mth clusterer. A generative model is proposed

to explain the observations X , where each instance xn has

an underlying mixed-membership to the k different classes.

Let θn denote the latent mixed-membership vector for xn.

It is assumed that θn – a discrete probability distribution

over the k classes – is sampled from a Dirichlet distribution,

with parameter α. Also, for the k classes (indexed by i) and

r2 different base clusterings (indexed by m), we assume a

multinomial distribution βmi over the cluster labels. If the

mth base clustering has k(m) clusters, βmi is of dimension

k(m) and
∑k(m)

j=1 βmij = 1. The generative model can be

summarized as follows. For each xn ∈ X :

1) Choose θn ∼ Dir(α).
2) ∀l ∈ {1, 2, · · · , r1}, choose w1nl ∼ multinomial(θn).
3) ∀m ∈ {1, 2, · · · , r2}.

a) Choose znm ∼ multinomial(θn) where znm is a

vector of dimension k with only one component

being unity and others being zero.

b) Choose w2nm ∼ multinomial(βrznm
).

If the nth instance is sampled from the ith class in the mth

base clustering (implying znmi = 1), then its cluster label will

be sampled from the multinomial distribution βmi. Modeling

of the classification results from r1 different classifiers for

the nth instance is straightforward: the observed class labels

({w1nl}) are assumed to be sampled from the latent mixed-

membership vector θn. In essence, the posteriors of {θn}
are expected to get more accurate in an effort to explain

both classification and clustering results (i.e. X) in the same

framework. BC3E derives its inspiration from the mixed-

membership naı̈ve Bayes model [18].

To address the log-likelihood function of BC3E, let us

denote the set of hidden variables by Z = {{znm}, {θn}}.
The model parameters can conveniently be represented by

ζ0 = {α, {βmi}}. Therefore, the joint distribution of the

hidden and observed variables can be written as:

p(X,Z|ζ0) =
N∏

n=1

p(θn|α)
r1∏
l=1

p(w1nl|θn)

r2∏
m=1

p(znm|θn)p(w2nm|β, znm) (1)

In theory, inference and estimation with the proposed model

could be performed by maximizing the log-likelihood in Eq.

(1) – using the Expectation Maximization family of algorithms

[6]. However, the coupling between θ and β makes the exact

computation in the summation over the classes intractable in

general [4]. Therefore, inference and estimation is performed

using Variational Expectation Maximization (VEM) [12].

C. Approximate Inference and Estimation

1) Inference: To obtain a tractable lower bound on the ob-

served log-likelihood, we specify a fully factorized distribution

to approximate the true posterior of the hidden variables:

q(Z|{ζn}Nn=1) =
N∏

n=1

q(θn|γn)

r2∏
m=1

q(znm|φnm) (2)

where θn ∼ Dir(γn) ∀n ∈ {1, 2, · · · , N}, znm ∼
multinomial(φnm) ∀n ∈ {1, 2, · · · , N} and ∀m ∈
{1, 2, · · · , r2}, and ζn = {γn, {φnm}}, which is the set

of variational parameters corresponding to the nth instance.

Further, α = (αi)
k
i=1, γn = (γni)

k
i=1 ∀n, and φnm =

(φnmi)
k
i=1 ∀n,m; where the components of the corresponding

vectors are made explicit. Using Jensen’s inequality, a lower

bound on the observed log-likelihood can be derived:

log[p(X|ζ0)] ≥ Eq(Z) [log[p(X,Z|ζ0)]] +H(q(Z))

= L(q(Z)) (3)

where H(q(Z)) = −Eq(Z)[log[q(Z)]] is the entropy of the

variational distribution q(Z), and Eq(Z)[.] is the expectation

w.r.t q(Z). It turns out that the inequality in (3) is due

to the non-negative KL divergence between q(Z|{ζn}) and

p(Z|X, ζ0) – the true posterior of the hidden variables. Let

Q be the set of all distributions having a fully factorized form

as given in (2). The optimal distribution that produces the

tightest possible lower bound L is thus given by:

q∗ = argmin
q∈Q

KL(p(Z|X, ζ0)||q(Z)). (4)

The optimal value of φnmi that satisfies (4) is given by

φ∗nmi ∝ exp(ψ(γni))

k(m)∏
j=1

βmij
w2nmj ∀n,m, i, (5)

where, w2nmj = 1 if the cluster label of the nth instance

in the mth clustering is j and w2nmj = 0 otherwise. Since

φnm is a multinomial distribution, the updated values of the

k components should be normalized to unity. Similarly, the

optimal value of {γni} that satisfies (4) is given by:

γ∗ni = αi +

r1∑
l=1

w1nli +

r2∑
m=1

φnmi (6)

Note that the optimal values of φnm depend on γn and vice-

versa. Therefore, iterative optimization is adopted to minimize

the lower bound till convergence is achieved.
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2) Estimation: For estimation, we maximize the optimized

lower bound obtained from the variational inference w.r.t

the free model parameters ζ0 (by keeping the variational

parameters fixed). Taking the partial derivative of the lower

bound w.r.t βmi we have:

β∗
mij ∝

N∑
n=1

φnmiw2nmj ∀j ∈ 1, 2, · · · , k (7)

Again, since βmi is a multinomial distribution, the updated

values of k(m) components should be normalized to unity.

However, no direct analytic form of update exists for α, and

a numeric optimization method has to be resorted to. The part

of the objective function that depends on α is given by:

L[α] = N

[
k∑

i=1

log(Γ(αi))− log(Γ(
k∑

i=1

αi))

]

+
N∑

n=1

k∑
i=1

[
ψ(γni)− ψ(

k∑
i=1

γni)

]
(αi − 1) (8)

Note that the optimization has to be performed with the con-

straint α ≥ 0. Once the optimization in M-step is done, E-step

starts and the iterative update is continued till convergence.

III. PRIVACY AWARE COMPUTATION

Inference and estimation using VEM allows performing

computation without explicitly revealing the class/cluster la-

bels. One can visualize instances, along with their class/cluster

labels, arranged in a matrix form so that each data site contains

a subset of the matrix entries. Depending on how the matrix

entries are distributed across different sites, three scenarios can

arise – i) Row Distributed Ensemble, ii) Column Distributed
Ensemble, and iii) Arbitrarily Distributed Ensemble.

A. Row Distributed Ensemble

In the row distributed ensemble framework, the target set

X is partitioned into D different subsets, which are assumed

to be at different locations. The instances from subset d are

denoted by Xd, so that X = ∪D
d=1Xd. It is assumed that class

and cluster labels are available – i.e., they have already been

generated by some classification and clustering algorithms.

The objective is to refine the class probability distributions

(obtained from the classifiers) of the instances from X without

sharing the class/cluster labels across the data sites.

A careful look at the E-step – Equations (5) and (6) – reveals

that the update of the variational parameters corresponding to

each instance in a given iteration is independent of those of

other instances given the model parameters from the previous

iteration. This suggests that we can maintain a client-server

based framework, where the server only updates the model

parameters (in the M-step) and the clients (corresponding

to individual data sites) update the variational parameters of

the instances in the E-step. For instance, consider a situation

(shown in Fig. 1) where a target dataset X is partitioned into

two subsets, X1 and X2, and that these subsets are located in

two different data sites. The data site 1 has access to X1 and

accordingly, to the respective class and cluster labels of their

instances. Similarly, the data site 2 has access to the instances

of X2 and their class/cluster labels.

Now, data site 1 can update the variational parameters

{ζn} ∀xn ∈ X1. Similarly, data site 2 can update the

variational parameters {ζn} ∀xn ∈ X2. Once the variational

parameters are updated in the E-step, the server gathers infor-

mation from the two sites and updates the model parameters.

Here, the primary requirement is that the class and cluster

labels of instances from different data sites should not be

available to the server. Now, Eq. (7) can be broken as follows:

βmij
∗ ∝

∑
xn∈X1

φnmiw2nmj +
∑

xn∈X2

φnmiw2nmj (9)

The first and second terms can be calculated in data sites 1
and 2, separately, and then sent to the server, where the two

terms can be added and βmij can get updated ∀m, i, j. The

variational parameters {φnmj} are not available to the sever

and thus only some aggregated information about the values

of {w2nm} for some xn ∈ X is sent to the server. We also

observe that more the number of instances in a given data

site, more difficult it becomes to retrieve the cluster labels

(i.e. {w2nm}) from individual clients. Also, in practice, the

server does not get to know how many instances are present

per data site which only makes the recovery of cluster labels

even more difficult. Also note that the approach adopted only

splits a central computation in multiple tasks based on how the

data is distributed. Therefore, the performance of the proposed

model with all data in a single place should always be the

same as the performance with distributed data assuming there

is no information loss in data transmission from one node to

another.

In summary, the server, after updating ζ0 in the M-step,

sends them out to the individual clients. The clients, after

updating the variational parameters in the E-step, send some

partial summation results in the form shown in Eq. (9) to

the server. The server node is helpful for the conceptual

understanding of the parameter update and sharing procedures.

In practice, however, there is no real need for a server. Any of

the client nodes can itself take the place of server, provided

that the computations are carried out in separate time windows

and in proper order.

B. Column and Arbitrarily Distributed Ensemble

The column and arbitrarily distributed ensembles are illus-

trated in Figs. 2 and 3 respectively. Analogous distributed

inference and estimation frameworks can be derived in these

two cases without sharing the cluster/class labels among

different data sites. However, detailed discussion is avoided

due to space constraints.

IV. EXPERIMENTAL EVALUATION

We have already shown, theoretically, that the classification

results obtained by the privacy-aware BC3E are precisely the

same as those we would have gotten if all the information

originally distributed across different data sites were avail-

able at a single data site. Therefore, we assess the learning
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Fig. 1. Row Distributed Ensemble Fig. 2. Column Distributed Ensemble Fig. 3. Arbitrarily Distributed Ensemble

capabilities of BC3E using five benchmark datasets (Heart,
German Numer, Halfmoon, Wine, and Pima Indians Diabetes)

— all stored in a single location. Semi-supervised approaches

are most useful when labeled data is limited, while these

benchmarks were created for evaluating supervised methods.

Therefore, we use only small portions (from 2% to 10%) of the

training data to build classifier ensembles. The remaining data

is used as a target set — with the labels removed. We adopt

3 classifiers (Decision Tree, Generalized Logistic Regression,

and Linear Discriminant). For clustering, we use hierarchical

single-link and k-means algorithms. The achieved results are

presented in Table I, where Best Component indicates the ac-

curacy of the best classifier of the ensemble. We also compare

BC3E with two related algorithms (C3E [1] and BGCM [11])

that do not deal with privacy issues. One can observe that,

besides having the privacy-preserving property, BC3E presents

competitive accuracies with respect to their counterparts. In-

deed, the Friedman test, followed by the Nemenyi post-hoc

test for pairwise comparisons between algorithms, shows that

there is no significant statistical difference (α = 10%) among

the accuracies of BC3E, C3E, and BGCM.

V. EXTENSION AND FUTURE WORK

The results achieved so far motivate us to employ soft

classification and clustering. Applications of BC3E to real-

world transfer learning problems are also in order.
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