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Abstract—As sensor equipped wearable systems enter the
mainstream, system longevity and power-efficiency issues hamper
large scale and long-term deployment, despite substantial fore-
seeable benefits. As power and energy efficient design, sampling,
processing and communication techniques emerge to counter
these issues, researchers are beginning to look on wearable energy
harvesting systems as an effective counterpart solution. In this
paper, we propose a novel harvesting technology to inconspicu-
ously transduce mechanical energy from human foot-strikes and
power low-power wearable systems in a self-sustaining manner.
Dielectric Elastomers (DEs) are high-energy density electrostatic
transducers that can transduce significant levels of energy from
a user while appearing near-transparent to her, if configured
and controlled properly. Towards this end, we propose DE-based
harvester configuration that capitalizes on properties of human
gait to enhance transduction efficiency, and further leverage
these properties in an adaptive control algorithm to optimize
the net energy produced by the system. We evaluate system
performance from detailed analytical and empirical models of
DE transduction behavior, and apply our control algorithm to
the modeled DEs under experimentally collected foot pressure
datasets from multiple subjects. Our evaluations show that the
proposed system can achieve up to 120mJ per foot-strike, enough
to power a variety of low-power wearable devices and systems.

I. INTRODUCTION

As Wireless Sensor Network (WSN) systems and tech-
niques mature and standardize, sensor integrated wearable
systems are opening up new avenues in several fields, spanning
medicine, environmental monitoring, participatory sensing,
human-computer interaction and entertainment. However, their
energy demands continue to limit operating lifetimes and
sustain maintenance overhead, especially in the mobile context,
as battery energy densities evolve at a significantly lower pace
[1]. To alleviate this problem, several optimizations have been
offered for wearable system design spanning energy-efficient
wearable node configuration [2], communication power opti-
mization [3], energy-efficient compressed sensing [4], power-
efficient context-aware sensor subset selection [5] and plug-
and-play systems that support heterogeneous harvesters [6], to
name a few. In the context of low-power wearable systems that
involve human locomotion, we propose the use of a leading-
edge energy harvester technology to scavenge the energy
produced by a user’s foot strikes and drive a target wearable
system in a self-sustaining manner.

Foot strikes have been estimated to yield significant
amounts of energy - a 154-pound person can produce upwards
of 7W per foot strike [1]. However, the portion of this that
can be scavenged is limited by two factors. First, current
energy transduction technologies are characterized by energy
densities that are insufficient to capture such quantities of
energy. Second, state-of-the-art transducer configurations are
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unable to transduce significant proportions of human energy
output without causing discomfort to the user. For example,
a hydraulic-amplified piezo-electric based foot-strike energy
harvesting system was proposed in [7], capable of producing
675mW per foot-strike while adding significant heft to the
shoe, thereby altering the user’s gait. In contrast, the authors
of [8] proposed a piezo-electric based foot-strike energy har-
vesting system that interfered minimally with the user’s gait
and was capable of producing 10-20mW.

Recently, a new class of harvesters have emerged with the
promise of superior transduction ability and minimal impact
on user comfort. Dielectric Elastomers (DEs) are high energy-
density rubber-like materials that possess the ability to behave
as energy generators, actuators and sensors. Their ability to
yield 5 to 40 times the energy density of piezoelectrics [9]
makes them more effective transducers. Their soft rubber-like
nature further enables near-transparency of the harvesting sub-
system to the user. However, while competing technologies
transduce ambient energy by exploiting underlying physical
phenomena (e.g. seebeck, photovoltaic and piezoelectric ef-
fects), DEs transduce mechanical energy based on an electro-
static principle. Hence, their configuration and control is key
to the levels of energy that they may harvest.

In this paper, we propose a DE harvester array configura-
tion for improved transduction efficiency of the mechanical
energy from foot pressure. We leverage the users plantar
pressure profile to control the design of individual transducers
in the array, such that the energy yield is more uniformly high
across the foot despite spatial variations in the pressure profile.
High efficiency is also achieved via direct transduction of input
mechanical energy. Finally, its mechanical simplicity keeps
system design and maintenance complexity to a minimum.
We also propose a novel adaptive closed-loop DE transduction
control paradigm that exploits characteristics of the user’s
gait to maximize energy output. As electrostatic transducers,
DE output is heavily reliant on the control timing during its
transduction cycle, which will vary between foot steps owing
to variability in the user’s gait. To maximize energy output,
we propose an adaptive control algorithm that makes use of
fool pressure sensors to predict optimal control timing of each
harvester in the array, based on statistical characteristics of
the user’s gait. The sensors are sampled to maximize the net
energy harvested under sampling power constraints imposed
by the power demands of the target system.

We validate our proposed transducer configuration by ex-
perimentally characterizing and modeling its behavior in detail.
The resulting models, in conjunction with our proposed adap-
tive control algorithm, are applied to experimentally collected
datasets of foot pressure of multiple users to demonstrate that
our DE based foot-strike energy harvesting system can yield



upwards of 120mJ per foot-strike, thereby producing enough
energy to independently power a number of wearable platforms
while the user walks [10], [11], [12].

II. RELATED WORK

Energy harvesting mechanisms may be classified into am-
bient radiation, electromagnetic, electrostatic and piezoelec-
tric transduction, among others [13]. Whereas solar radiation
transducers offer the most mature and impactful solutions,
in the context of mobile devices and wearable systems,
their placement requirements and the sporadic availability of
bright light hampers adoptability. Electromagnetic generators
are most effective and widely popular at the macro-scale,
however, they are obtrusive and difficult to miniaturize for
the targeted application domain. Although recently, kinetic
energy harvesting with wearable electromagnetic generators
has been proposed. RF radiation, thermoelectric and con-
ventional air-gap electrostatic harvesters are limited in their
output capacity (uW to low mW range [1]) with electrostatic
harvesters further hindered by their composition of moving
parts. Finally, piezo-electrics have higher energy densities
as compared to electrostatic and electromagnetic transducers,
and are also well suited for harvesting the vibrational forces
commonly experienced by human bodies [13]. However, as
we shall see in section III-A, although DEs are electrostatic
transducers, their superior material properties distinguish them
from conventional transducers in this class, making them a
promising new candidate.

In the wearable systems and body area networks commu-
nity, it is generally agreed upon that energy harvesting poses an
important challenge and opportunity for self-sustenance [14].
Aside from body heat transfer via the skin and vibration from
foot strikes, proposed human-powered transduction alternatives
include movement of knee joints, inertia from backpacks and
change in blood pressure. A wide array of human motion
has been found suitable for exploitation including cranking,
shaking, pumping, pulling as well as the isometric forces of
squeezing and pushing [1], [13]. However, human gait offers
easy pickings as the most innocuous source of human power
for transduction, resulting in a long trail of harvesting designs
and related patents going back to the mid 1920’s [15]. Two
such designs were described in section 1.

DEs are a relatively new entrant to the class of miniatur-
ized generators. An excellent survey of the material proper-
ties relevant to its transduction mechanism, various proposed
transducer configurations, capabilities in comparison to other
common transducers, recent applications, and, operational
boundaries and lifetime issues are detailed in [9]. However,
due to its basis in electrostatic transduction, maximizing the
output of a DE generator, strongly relies on the transducer
configuration and control methodology. We also note that
DEs require charging at high voltage so they may achieve
their output potential; However self-priming circuits have been
proposed that use an inverse charge pump to convert some of
the DE voltage boost into charge, incrementally increasing the
source voltage from 10V to the kV range [16]. Finally, adaptive
control of DEs has been proposed in the context of actuation
[17], however to the best of our knowledge, we are the first to
propose an energy-maximizing adaptive control technique for
DE generators.
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Fig. 1: Dielectric elastomer generator transduction cycle.
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III. PRELIMINARIES

A. Dielectric Elastomer Generators

DEs are deformable yet incompressible insulating polymer
films with high electric permittivity (¢,) and relatively low
mechanical and electrical losses. This leads naturally to their
use as variable capacitors capable of direct transduction of
mechanical to electrical energy. Further, their relatively high
elastic energy density (5 to 40 times that of piezoelectrics)
makes them extremely productive as transducers as they can
store more energy when deformed for the same amount (mass
and volume) of transducer material [9]. At the same time, they
are quite soft compared to piezoelectrics, making them less
intrusive and more acceptable for human use.

The operation of a DE as a generator occurs in 4 stages
(Fig. 1). The DE is first stretched by the mechanical pressure
applied to it in the actuation stage, thereby increasing its
capacitance. In the charging stage, electrical charge is be
added to the elastomer’s surface at a fixed voltage V, gen-
erating a charge proportional to the capacitance. Throughout
the transduction stage that follows, the amount of charge ()
on the DE is held constant. Here, as the applied mechanical
pressure reduces to zero, the elastic forces in the DE relax and
are transduced into electrostatic force. As the DE relaxes, its
capacitance decreases leading to an increase in its voltage and
the electrical energy it stores. Over the discharging stage, the
DE is discharged, its voltage rectified and energy added to the
battery. While transduction of DEs can also occur at constant
voltage, it has been analytically shown that this leads to a
lower amount of net energy transduced, when all other factors
are held the same.

The relationship between a DEs capacitance and stretch
can be characterized as follows. If the length and width
of the elastomer film each increase by a factor of A when
stretched, the area will have increased by a factor of A2, As
an incompressible material, the volume must stay constant to
cause a decrease in thickness by a factor of A2, leading to an
increase in capacitance by a factor of A\* (equation (1b)). The
reason behind the high energy density of DEs is underscored
by equations (1b) thru (1d), where AFEpg is the net energy
output of the DE. If it fully relaxes, the electrical energy in the
film will have increased to a factor of A* of the input electrical
energy. This is in contrast to a maximum M? factor increase
in energy in conventional electrostatic transducers, a limitation
of their rigid structure.
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B. Human Gait

Gait is defined as the way in which movement is achieved
by humans with their limbs, such as walking, running, hopping,
etc. The gait cycle, or stride, is divided into two phases, the
stance phase, when the limb is in contact with the ground,
and the swing phase, when the limb is in the air for ad-
vancement. Although gait characteristics vary across people,
human locomotion, but its very nature produces commonalities
across people. One such commonality is that spatial pressure
profile across the sole of the foot exhibits local correlation.
Fig. 2 illustrates sub-phases of the stance phase along with
plantar pressure profiles corresponding to those sub-phases.
These profiles are averages over several strides from one of
our datasets, collected with a high spatial-resolution plantar
pressure monitoring system. They depict the heel at the left
and toes and the right with lighter colors corresponding to
higher pressure.

Three properties of plantar pressure that generalized to all
our datasets may be observed from Fig. 2: (i) The pressure
profiles present spatial correlation localized to small regions
across the sole; (ii) The maximum pressure observed at dif-
ferent regions is different; and (iii) Different regions observe
maximum pressure at different times. Even within a region
of high correlation, adjacent locations may observe maximum
pressure at different times. We use these properties of human
gait to optimize both the configuration and control of the
harvesting system.

IV. DE HARVESTER DESIGN

Fig. 3 depicts the high level mechanical energy harvester
design for DEs that follows from their mode of transduction as
described in section III-A. Here the user’s activity context and
gait, as described by the spatio-temporal foot pressure profile
for each stride, dictates the instantaneous input mechanical
pressure to the DE. From equation (1c), the net energy output
depends on \;,;¢, the stretch in the DE when charge is applied,
and Afinqr, the stretch in the DE when it is discharged.
Therefore, the control of the charging and discharging stages
are crucial to the amount of net energy harvested, and are
respectively controlled by switches 1 and 2 in Fig. 3. The
mechanical and electrical behavior of the DE control the
outcome of the actuation and transduction stages, and are
governed by the DE’s physical configuration and material
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properties. Electrical losses in the DE and the rectification
circuitry impact the net energy output.

In our effort to maximize the net energy harvested, we
propose a physical configuration that enhances transduction
efficiency. First, rather than a single DE or a few larger DE
generators spanning the shoe sole, we propose an array of
99 DE micro-generators spanning the shoe sole, at locations
corresponding to those in foot pressure profile diagrams in
Fig. 2. As we shall see, the timing at which maximum
pressure is observed at a location is crucial to control over the
charging stage. Since each location may experience maximum
pressure at different times, such a configuration will enable
finer control of DE charging stages, thereby improving energy
output. Second, the DEs harvesters will be operated in a
bulge configuration that will enable direct transduction and
reduce mechanical losses. Fig. 4 shows a harvester in this
configuration, where DE deformation is brought about by a
driver component affixed to the shoe insole. Each harvester
is comprised of a circular active area, lcm in diameter, with
multiple layers of DE film that are each Smm thick and
prestretched to 300% by 300%. The harvesters are made of
the 3M manufactured VBH4905 acrylic DE [18].

V. DE HARVESTER MODEL

To model DE behavior analytically, we must be able to
characterize the elastic forces experienced in the DE, or its
stress, and therefore its geometry. In contrast to the DE
transduction in Fig. 1 wherein the stretch in the DE is equal
and uniform along the x and y axes, the bulge configuration
involves a non-uniform stretch that is also unequal in the
circumferential and longitudinal directions (Fig. 4). Although
the area of the DE when stretched may be deduced via
controlled measurements of its capacitance, the shape of the
DE and therefore its stress may not be deduce in this manner.
We overcome this issue by numerically solving for the shape
that yields minimum area for a given vertical displacement h
of the DE. Such a shape will produce the minimum stretch and
the minimum net energy output (Equation (1d)). The stretched
DE in Fig. 4 can be deconstructed as a surface of revolution
of a curve around the z-axis. In the x-z, this curve experiences
boundaries at (a,0) and (b, h), where a and b are the radii
of the driver and DE active area, respectively. Discretizing the
z-axis and searching for the curve that minimizes DE area
for a give h, numerically resolves our problem. Note, that
mechanical properties of the DE were exploited to prune the
search space.

Given a geometric characterization of the DEs, we modeled
their elastic behavior over the actuation and transduction stages
via the Ogden hyper-elastic material model. DE’s experience
non-linear stress vs. stretch behavior and the Ogden model is
commonly used to characterize this neo-hookean behavior. We
experimentally derived the model’s parameters with prototype
DEs in the bulge configuration. Figure 5 shows the experi-
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mental setup for these stress-stretch measurements - A linear
stage (Zaber linear stage model A-LSQ300A-EO1) was used to
move a driver affixed load cell (Transducer Techniques MDB
Series) into the active area of the DE prototype that was firmly
fastened in place. The displacement h in the DE film was
measured as the displacement in the linear stage, and the input
mechanical pressure measured from the load cell together with
the DE’s geometric characterization were used to arrive at its
stress. A non-linear least squares fit produced the parameters
of the Ogden model.

Ehary = LOSSF(ZCtth(AEDE - ElOSSelec) 2)

The net energy harvested is proportional to the difference
between the net electrical energy generated by the DE and
the electrical losses of the material (equation (2)). From
equation (ld), whereas \;,;; is arrived at with the Ogden
model solely from the mechanical pressure input at the time
of charging, Afinqa depends on the transduction stage that
follows. To model DE behavior over this stage, we modified
the transduction model described in [19] for the geometry
involved in the bulge configuration. Here, starting from A\;,;¢,
the net force that leads to a change in stretch is expressed
in terms of the balance between the elastic, electrostatic,
gravitational and residual mechanical pressure being applied
to the DE. This force balance equation is solved with a Runge-
Kutta forth order method to produce the steady state stretch
value, Afinqr. Electrical losses modeled s, include con-
duction and dielectric losses in the material, and losses in the
charging circuitry. The net energy harvested also considers
DC-DC conversion inefficiencies in the rectification circuit
(LossFact ).

VI. DE HARVESTER ARRAY CONFIGURATION AND

CONTROL OPTIMIZATION

A. Control Parameters

Based on the description of the DE transduction mecha-
nism, we identify 4 parameters that can be crucial to the net
energy harvested.

1) Charge Timing: A key observation is that the initial
stretch A;,;; that figures in equation (1d) is a function of the
timing of the applied charge. For example, if DEs at the toes
are charged at the beginning of the stance phase when they
experience no input mechanical pressure, \;,;; will be close
to 1 regardless of the user-applied pressure that follows during
the stride. This will result in negative energy harvested due to
the electrical losses. Therefore it is imperative that charge be
applied as close to maximum stretch as possible to maximize
the energy output. Since maximum stretch will be observed
at maximum input mechanical pressure (due to monotonicity
of the stress-stretch curve), the ability to predict when this
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Fig. 5: (a) Prototype DE harvester, and, (b) Experimental Setup
for DE prototype stress-stretch measurements.

maximum pressure will be observed is key to optimal control
at the charging stage. In the following section, we will explore
an adaptive control algorithm that makes use of a few foot
pressure samples to enable such prediction.

2) Input Pressure: While a higher input mechanical pres-
sure will yield a higher stretch and potentially more net energy
output, this parameter is controlled by users gait over the
actuation and transduction stages. However, foot-strikes yield
distinct spatio-temporal properties that may be leveraged to
reduce transduction in-efficiencies with an array configuration
of DE micro-generators, as discussed in in section IV.

3) Harvester Thickness: A thicker DE film can withstand
much more pressure without rupture, while a thinner one
will stretch more at comparable applied pressures. Therefore,
thinner DE films can harvest more energy at acceptable levels
of applied pressure. Fig. 6 plots the stress-stretch data as
well as the best fit curves for our experimental measurements
for 3 DE configurations, one with 3 DE layers, a second
with 6 layers and a third with 9 layers. It is apparent that
the configuration with more layers must experience more
stress to achieve similar levels of strain. Further, different
regions of the foot see different levels of maximum plantar
pressure (Fig. 2). To increase the energy yield of low input
pressure regions of the foot, such as the arches, we propose
an adaptive harvester placement strategy. Here, the thickness
of a harvester in the array will depend on the amount of
pressure observed over the users gait at its location. Based
on the maximum pressure observed over a training dataset for
each DE location, decisions will be made to fit high pressure
locations with thicker harvesters and low pressure locations
with thinner ones. Specifically, to address harvester lifetime
and user-comfort issues, a location is occupied by the thinnest
harvester for which the maximum observed pressure over the
training dataset produces no more than a vertical displacement
h of 9mm, as per the stress-stretch model. This is an acceptable
level of compression for soft cushioned shoes [20].

4) Applied Voltage: Equation (1d) suggests that higher
applied voltages should yield higher net energy outputs, ad
infinitum. However, since the applied voltage is related to
the applied charge, adding too much charge to the elastomer
film will create large electrostatic forces on it, which will
prevent full relaxation of the film at the end of the stance
phase. As Afinqr is driven away from 1 at higher applied
voltages, extremely high voltages are undesirable. Figure 7
shows the net energy output when a harvester is exposed to
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Fig. 6: Experimentally collected measurements for the stress-
stretch relationships of DE harvesters prototypes at different
number of layers, and the corresponding best fit curves.

different input pressures and charged over a range of voltages.
We observe that the output energy is not a monotonically
increasing function of the applied voltage. At voltages beyond
9500V, and especially for input pressures at the higher end of
the spectrum, the net energy output begins to decrease with
increasing voltage owing to large electrostatic forces that are
retained in the DE and prevent it from fully relaxing. As a
result, we restrict system operation to 8000V. The plot also
factors in the DE thickness configuration over the plantar
pressure range, as described above. For this reason, the output
energy does not monotonically increase with input pressure.
The energy output up to 180kPa is governed by the thinner
harvesters and they produce much more energy than the 9 layer
harvester at those pressures. However, sharp transitions occur
when the input pressure surpasses the user-comfort / harvester
lifetime thresholds for the thinner harvester. This necessitates
switching to thicker harvesters leading to sharp declines in
energy output.

B. Control of Harvester Array

Aggregate net energy output is maximized if the harvesters
are charged at the instant when maximum mechanical pressure
is applied to them. It follows that maximum energy may
be harvested over the entire array solely during the stance
phase, when the foot is in contact with the ground. Hence, we
focus on this phase as the temporal domain for DE operation
and energy harvesting, and assume the application of one
of the techniques discussed in [21] to identify the transition
between the stance and swing phases with a few sensors.
By detecting the transition between phases, we are able to
achieve discharge stage control. In other words, all DEs may
be simultaneously discharged at the end of the stance phase.
However, as indicated in Fig. 2, it is not necessary that all DEs
be charged at the beginning of the stance phase, if energy
output is to maximized. In order to accurately predict the
optimal charge timing of each harvester, we propose the use
of a few pressure sensors samples. We may then leverage
the local correlations in the foot pressure profiles to make
accurate predictions about the timing of maximum pressure
at each harvester, thereby accurately predicting the timing of
maximum stretch and maximizing net energy output.

Multiple approaches may be conceptualized for the inclu-
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Fig. 7: Net Energy Output (AEpg) of harvester model for
different input pressures and applied voltages.

sion of foot pressure sensors into the system. The DEs may
be juxtaposed with passive-resistive sensors, or, the DEs may
support dual-mode operation as sensors or generators. Sensor
mode operation of DEs may consume up to a few nJ more than
passive-resistive sensors, but not more; Since our goal is not
to maximize energy output when they are operated as sensors,
DEs may be charged at a low voltage to measure a change
in capacitance and calculate the applied pressure therefrom. If
the DE is already charged for harvesting, the changes in its
capacitance can still be measured in a similar manner.

We formally define the charge timing prediction problem as
follows. We assume a maximum of 7" epochs between the start
and end of the stance phase, over which we are given the foot
pressure readings at each of the harvester locations. We would
like to predict the time at which maximum pressure is observed
at each location in a manner that maximizes the net system
energy output. Here the net system energy output is computed
as the net harvester output (equation (2)) summed over all
harvester, minus the energy cost of each pressure sample
used in the charge timing prediction. Further, the following
constraints apply:

e If the optimal charge timing for a DE is predicted as
epoch k, the prediction must be made between epochs
1land k- 1.

e If the optimal charge timing for a DE is predicted
as epoch k, the prediction must be based on samples
taken solely between 1 and k — 1.

e There is a maximum number of samples that may
be used at each epoch, which may be different for
different epochs. This constraint is governed by the
battery power rating and the power draw of the target
application that we are trying to power. However, sam-
ples taken for the purposes of the target application
may also be applied to charge timing prediction.

Charge Timing Prediction

We take a statistical approach to solving the charge timing
prediction problem - Given a training dataset, we apply a
semi-parametric survival analysis based technique to predict
optimal charge timing.Originally developed to predict machine
failure times and death of biological organisms, their use



Algorithm 1 ctPred: Optimal Charge Timing Prediction

Algorithm 2 Optimal Predictive Sample Subset Selection

Input: k£ value of next epoch, s; value of sample j,
B; the cox coefficient for samples s;, and Fp the
non-parametric estimates of the cumulative hazard func-
tion

> Bjs;
1: F'+ Fype’
2 Sr e F
3: for ¢ < k to end of stance phase - 1 do
4 Pr(i)« Sr(i) —Sr(i+1)
5: end for
6: Ep < epoch at which Pr(i) is maximum
7. if Ep = k then
8:  Charge Harvester at epoch k
9: end if

has expanded to several applications requiring time-to-event
prediction. Based on a training dataset, the survival rate S(t)
of a harvester is the probability that its optimal charge timing
hasn’t yet occurred. The hazard rate f(t) is the conditional
probability that the optimal charge timing will occur at epoch ¢,
under the condition that it hasn’t occurred yet. The cumulative
hazard rate F'(t) is the sum of the hazard rates less than or
equal to t. And from equation (3a) it follows that it is the
negative log of the survival rate.

S(t) — S(t + At)

10 = ="x5m (3a)

F(t) = f(t) (3b)
t'=0

— —log(S(1)) (30)

Cox regression, coxReg() is a semi-parametric survival
regression technique. Given a dataset of optimal charge timing
for a DE over several steps, and a set of covariates x; thru
T, that signify a subset of samples, the algorithm constructs
a cumulative hazard rate function based on a non-parametric
baseline estimate of the function, and multiplicative effects
parameter composed of a linear combination of the samples
x;. The coefficients (§; are derived as maximum-likelihood
estimates for on the training set.

F(t) = FO(t)65111+,3ﬂ2+..<+ann 4)

Algorithm 1 outlines the procedure used to decide whether
a DE should be charged at the following epoch based on
the samples available so far. The algorithm is called for
each uncharged harvester and at each epoch, and is provided
the samples available thus far, along with the corresponding
cox regression parameters. With these inputs, the algorithm
computes the cumulative hazard function for the following
epoch k and converts the function to the corresponding survival
rate function Sr. While the survival rate function tells us the
probability that the optimal charge timing won’t have occurred
at each future epoch, lines 3 thru 5 of the algorithm convert
this to the probability that optimal charge timing will occur at
each future epoch. If the highest probability co-incides with
the following epoch, a decision is taken to charge the DE. The
algorithm waits until just before the optimal charge timing
is expected for two reasons. First, this provides additional
information that is likely to lead to a better decision. Second,
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Input: Sy, set of available samples, C, set of energy costs of
samples in Sy, and H, set of harvesters
Output: S, selected predictive sample subset

1. S« NULL

2: loop

3: Spj —Cj v S5 € So

4 for all h; € H, S5 € So, k > t(Sj) do

5: CP < coxReg(h;, k, (SUs;))

6: if AIC fails on (S U s;) then

7: Continue

8: end if

9: AE « avglmp(h;, S, ctPred(h;, k, (S U s;), CP))
10: if AE > 0 then

11: spj < sp; + AE

12: end if

13:  end for

14: s {s; | sp; > sppVsi € So}

15:  if spr <0 then

16: return S

17:  end if

18: S+ SUsy

19:  Sp < So\ (sxU (s | s; violates power constraints))
20:  if Sp is empty then

21: return S

22:  end if

23: end loop

we observed that with fewer epochs remaining until the end
of the stance phase, it increases the kurtosis of the optimal
charge timing probability density function thereby improving
our expectation.

C. Offline Optimization

Given our use of the survival analysis technique, the charge
timing prediction problem stated in section VI-B turns into a
sample selection problem that offers the best predictions while
abiding by the constraints therein. We solve the problem with
the stepwise-regression based optimization in algorithm 2. In
the absence of samples, each harvester’s timing is predicted
from its baseline hazard functions. Else, each sample, s;, is
evaluated via avgI'mp() that measures the improvement s;
affords to the prediction of harvester h; (line 9), averaged
over training steps. This improvement contributes to s;’s
profit sp; (lines 10 thru 12). The prediction’s improvement
is measured in terms of the increase in energy output of h;
due to the addition of s; into its predictive sample subset
for epoch k. At each iteration, the most profitable sample is
selected into the predictive subset (lines 14 thru 17). Note,
that if a sample is available freely, due to its necessity in
the target application, its cost C; is 0. Otherwise, its cost
corresponds to the energy expended in acquiring the sample.
Power constraints are observed by line 19, and overfitting is
prevented by applying the Akaike Information Criterion (AIC)
to evaluate goodness of fit before accepting a sample into a
harvester’s predictive subset for an epoch (lines 6 thru 8). For
the sake of brevity, we have implicitly assumed that lines 11
and 18 include mechanisms to denote which harvester and
epoch each included sample will be used to predict.
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Fig. 8: The maximum energy harvestable from the left and
right feet of a user in the plantar pressure dataset, averaged
over strides, with uniformly thick DEs across the array (right),
and those with location sensitive DE thickness (left)

VII. PERFORMANCE EVALUATION

We evaluate the system performance with experimentally
collected foot plantar pressure datasets by Hermes [10] from
3 users. Hermes is a wireless low-power human balance
monitoring system, which measures foot plantar pressure via
a multi-sensory array comprised of ninety-nine passive resis-
tive pressure sensors. While Hermes was used to collect the
datasets we use in our evaluation, the goal of our evaluation is,
in part, to assess whether the designed system can be applied
to power Hermes in a self-sustaining manner as it monitor’s
the wearers gait. Two of the datasets correspond to the gaits of
lighter individuals, one male and one female. The third dataset
corresponds to a heavier male individual. Each of the datasets
offer several steps worth of data at each of the ninety-nine
harvester locations. This allows us to derive performance at all
harvesters and apply the predictive sample subset selection and
control algorithms, thereby evaluating the system net energy
output. We divide each dataset into a training subset comprised
of 80% of the data and a testing subset comprised of the rest.

Figure 8 presents the maximum energy scavengable (with
perfect charge timing prediction), averaged over the strides
in the datasets, for both feet of a single user. Here, the
maximum achievable output with and without the location-
specific thickness configuration are juxtaposed. While the
areas that normally produce large amounts of plantar pressure
produce exactly the same amounts of energy, surrounding
areas, that were previously anemic in their output begin to look
more promising. To test the predictive sample subset selection
algorithm, we leveraged the research in [21] towards power-
constrained sub-sampling with Hermes. The authors therein,
proposed a semantic accuracy preserving sampling strategy
that reduced the energy consumption of Hermes from 72mJ to
43m] per stride, under power constraints of at most 5 sensors
sampled at a time. We leverage the output of the algorithm
proposed in that work and constrained our algorithm by those
samples. Additional samples were allowed to be chosen. if a
power constraints of 5 samples per epoch permitted this.
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Fig. 9: Bar Plots for the prediction accuracy of different sample
selection and optimal charge timing prediction techniques over
the testing subsets of each of our datasets

Table I compares the average aggregate energy output of
our proposed system, under both DE configurations (with
and without location-specific thickness), for each of the
datasets. Owing to the superior material properties of DEs
and the accuracy of our algorithm, our system outperforms
the piezoelectric-driven system in [1] that produced 20mJ per
stride. Also, across our datasets and with both our configura-
tions, we are able to satisfy the energy demands of our target
applications (43mlJ). Furthermore, owing to our algorithm’s in-
built penalties for overfitting, we observed minimal difference
between performance over the training and testing subsets for
all datasets ( <1%).

We also tested the necessity for a sampling subset selection
algorithm. In figure 9, we compare the performance over the
testing subset of 3 sampling subset selection techniques: (i)
Our proposed technique, (ii) an adaptive system where all
available samples are provided to the cox-regression algorithm,
and, (iii) an algorithm that estimates charge timing of each
harvester as the median epoch, over the training dataset, at
which its net energy output was maximum. The comparison is
shown for all 6 datasets. It is clear that an adaptive system can
yield more energy. Furthermore, the prediction accuracy of the
second technique over the training subset was more than 98%
for each of the datasets. However, the accuracy over testing
does not rise beyond 75%, clearly a case of overfitting.

Another question we sought to answer was whether there

TABLE I: Performance
Harvesting Output.

Comparison of Foot Strike Energy

Scavenger Net Energy Net Energy

Mechanism Output (mJ) Output (m])

- Layers - Uniform
User 1, Left 107.1 91.5
User 1, Right 120.5 98.3
User 2, Left 86.9 68.0
User 1, Right 81.9 69.5
User 3, Left 90.0 71.8
User 3, Right 80.8 71.2
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Fig. 10: Performance of our propose predictive sample subset
selection algorithm under different power constraints

was something inherent in the samples afforded by the algo-
rithm in [21] that yielded such high outputs. As it turns out,
the answer is yes. Figure 10 shows the prediction accuracy
from using between 1 and 5 samples per epoch restricted to
the samples produced by [21]. It also shows the prediction
accuracy when the samples are randomly chosen at each epoch.
Note that the sample subset selection algorithm was run on
the chosen samples for all cases. Both curves correspond to
averages across 3 of our datasets. The blue curve in figure 10
shows that a few random samples per epoch are insufficient in
producing accurate predictions. In these cases, the prediction
accuracy depends mostly on the baseline hazard function as no
samples are chosen into the predictive subset. As the number
of samples per epoch increases beyond 22, the results improve
to recognizable levels!

VIII. CONCLUSION

We have experimentally characterized and modeled a
novel high energy-density harvesting technology to harvest
foot-strike energy and drive low-power wearable and mobile
systems. We laid out harvester configuration and control
techniques to leverage characteristics of the user’s gait and
optimize energy output. Towards optimized control, we have
proposed a novel and adaptive charge-timing prediction tech-
nique and a predictive sample selection algorithm to aid in the
adaptive control of the harvesters. Finally, we have validate the
performance of our algorithms over experimentally collected
datasets of foot pressure produced by different users.
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