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Abstract—Modern embedded systems consist of heterogeneous
computing resources with diverse energy and performance trade-offs.
This is because the computing resources exercise the application tasks
differently, generating varying workloads and energy consumption.
As a result, minimizing energy consumption in these systems is
challenging as it requires continuous adaptation of application task
mapping (i.e. allocating tasks among the computing resources) and
dynamic voltage/frequency scaling (DVFS). Existing approaches lack
such adaptation with practical validation (Table I).

This paper proposes a novel adaptive energy minimization ap-
proach for embedded heterogeneous systems. Fundamental to this
approach is a runtime model, generated through regression-based
learning of energy/performance trade-offs between different comput-
ing resources in the system. Using this model, an application task is
suitably mapped on a computing resource during runtime, ensuring
minimum energy consumption for a given application performance
requirement. Such mapping is also coupled with a DVFS control
to adapt to performance and workload variations. The proposed
approach is designed, engineered and validated on a Zynq-ZC702
platform, consisting of CPU, DSP and FPGA cores. Using several
image processing applications as case studies, our proposed approach
can achieve significant energy savings (70% in some cases, i.e. from
43mJ per frame to 13 mJ per frame), when compared to existing
approaches.

Index Terms—Energy efficiency; dynamic voltage/frequency scal-
ing; runtime optimization; linear regression.

I. INTRODUCTION

Energy efficiency continues to be a prime design objective
in embedded systems [1]. To facilitate energy reduction these
systems are equipped with dynamic voltage/frequency scaling
(DVES) capabilities, examples include ARM’s VFS firmware [2]
and Linux’s power governors [3]. With such capabilities the op-
erating voltage/frequency (V/F) can be suitably chosen at runtime
to reduce energy [4]-[6].

To accommodate a broader range of applications, modern
embedded systems consist of diverse computing resources on a
single chip. These include, for example, CPUs for general purpose
computing, DSPs for signal processing tasks and GPUs/FPGAs
for hardware acceleration of compute-intensive algorithms. Since
these resources are architecturally distinct from each other, they
exhibit different performance and energy trade-offs for a given
task [5], [7]. Hence, to minimize the energy effectively, the
energy/performance trade-offs between these resources must be
learned to suitably control the application task mapping (i.e.
allocating a task to a computing resource) [7]. Moreover, to adapt
to dynamic workload and application performance variations, such
control will need to be coupled with DVFS [8].

Over the years, researchers have proposed various approaches
for energy-efficiency in embedded systems, as shown in Table I.
Many of these approaches have employed DVFS controls alone,
using feedback from performance counters during runtime, or
the task information known apriori. For example, Pallipadi [3]

TABLE I
EXISTING DESIGN APPROACHES AND THE PROPOSED APPROACH
Approach| Adaptive?| Validation Key Method
[3] Partially | Practical Runtime optimization + CPU
implementation | only DVFS
[4] No Simulations Offline optimization + task map-
ping and DVES
[5] No Simulations Runtime optimization + task
mapping and DVFS
[7] No Practical Offline optimization + task map-
implementation | ping and DVES
[8] Partially | Practical Runtime optimization + FPGA
implementation | only DVFS
[9] No Simulations Offline optimization + CPU only
scheduling and DVFS
[10] No Simulations Offline optimization + task map-
ping and DVFS
[11] No Simulations Offline optimization
[12] No Simulations Offline optimization + task map-
ping and DVFS
Proposed| Yes Practical Runtime model based task map-
implementation | ping and DVES optimization

proposed a DVFS control approach for maximizing CPU us-
age. When the CPU usage decreases, the operating frequency
(and also the associated operating voltage) is lowered in steps.
Conversely, when the CPU usage increases, the operating fre-
quency is increased to the maximum point. Nabina and Nunez-
Yanez [8] showed a DVFS approach for FPGA-based video
motion compensation engines. Their approach uses application-
specific requirements to monitor the available timing margins
per motion compensation task and control the operating voltage/
frequency accordingly. Luo and Jha [9] showed another DVFS
(and task scheduling) approach for energy-efficiency in heteroge-
neous real-time systems. The DVFS and task scheduling controls
are established through task graph representations of the target
applications with known task execution times. Using these task
graphs, slack times are minimized through simulating annealing
in a multiprocessor system with variable supply voltages.

To minimize energy effectively in a heterogeneous system,
researchers have also proposed approaches considering joint opti-
mization of task mapping and DVFS. Qiu and Sha [10] presented
one such approach for heterogeneous real-time systems. The
approach formulates the energy minimization problem using task
graph representations of the given applications with given timing
constraints. This is then followed by optimization of probabilistic
task mapping and DVFS controls through offline heuristics. Goh
et al. [4] presented another approach using heuristic algorithm-
based application task mapping. For each task mapping control, an
energy-gradient-based algorithm selects the DVFS controls with
an aim to achieve energy-efficiency. Their approach is validated
through synthetic application task graphs in a simulated hetero-
geneous system. Goraczko et al. [5] proposed a software task



partitioning and mapping approach using a linear programming
(LP)-based runtime optimization. For each task mapping option,
an operating point (i.e. VFS) is pre-determined to reduce the
overall energy consumption. Among others, the authors in [7],
[11], [12] showed system-level approaches for application task
mapping and DVFS, considering the offline profile-driven trade-
offs between performance and energy consumption.

Existing approaches (Table I) have the following limitations.
Firstly, the approaches [4], [5], [7], [10]-[12] use offline heuris-
tics, which cannot minimize the energy consumption effectively
due to lack of runtime adaptation to workload and application
performance variations. Secondly, the other approaches [4], [5],
[7], [11] lack practical implementations, which are much needed
to advance the research in energy-efficient heterogeneous systems.

To address the limitations of the existing approaches, this paper
makes the following contributions:

« an adaptive energy minimization approach for embedded
heterogeneous systems through runtime application task
mapping and DVES controls,

« an energy/performance model, generated through regression-
based learning and runtime measurements, and

e a prototype runtime implementation, engineered and vali-
dated on a Zynq-ZC702 platform.

To the best of our knowledge, this is the first adaptive approach
for energy-efficient embedded heterogeneous systems, demon-
strating implementation and validations using real applications.

II. MOTIVATION

To motivate adaptive energy minimization in heterogeneous
systems, Fig. 1 shows scatter plots of measured energy (in mJ
per frame) and performance (in frames per second, fps) values
obtained from two image processing applications on a Zyng-
7ZC702 platform. Fig. 1(a) shows the energy/performance trade-
offs for an image edge detection application, while Fig. 1(b)
shows the same for a multi-pass image blurring application.
The image processing tasks were executed separately on the
platform’s CPU, DSP and FPGA with available V/F operating
points (see Section IV). Energy and performance values were
measured directly from the on-board performance counters and
power sensors. The following two observations can be made:

40
40

o cry

« FPGA

30
|
30

20
|

Energy per frame (mJ)
20

Energy per frame (mJ)

10
|
10

0 10 20 30 40 50 60 6 10 20 30 40 50 60
Performance (fps) Performance (fps)

(a) Edge detection Filter (b) Multi-pass blurring Filter

Fig. 1. Scatter plot of measured energy (in mJ per frame) and performance (in
fps) for the CPU (red), FPGA (blue) and DSP (green)

Observation 1: For a given implementation, the most energy-
efficient operating point (i.e. minimum energy per frame) depends
on the performance requirement and the chosen VFS. Referring
to Fig. 1(a), both the DSP and FPGA can provide a lower
lower energy consumptions than the CPU for the edge detection

application when the performance requirement is between 5 fps to
35 fps. At higher performance requirements (beyond 35 fps), the
DSP provides with a lower energy consumption than the FPGA.
Observation 2: The energy/performance trade-offs vary depending
on the image processing workload. Referring to Fig. 1(b), with
higher image processing workloads in the blurring application, the
DSP can no longer provide the most energy-efficient operating
point for similar performance requirements to the image edge
detection application (Fig. 1(a)). In fact, the FPGA invariably
provides the lowest energy consumption for all performance
requirements for the given workloads per image processing task.
Note that the energy and performance values of the CPU are not
shown in Fig. 1(b) due to being out-of-range.

From the above two observations, it is evident that, to achieve
energy efficiency, the application task must be suitably mapped on
a computing resource with careful selection of its VFS considering
the energy/performance trade-offs (observation 1). Such mapping
and VFS decisions should also be adapted to workload and
application performance variations (observations 1 and 2). How-
ever, such adaptation requires runtime optimization over a large
decision space of Zf:l D, for each task, where C is the number
of computing resources and D is the number of V/F operating
points available for the c-th computing resource (1 < ¢ < C).
Existing offline approaches, such as [4], [5], [7], [11], are infea-
sible for such optimization as these are highly computationally
intensive. To reduce the optimization space substantially ensuring
low control overheads, an accurate runtime energy/performance
model is much needed, which is one of the aims of this paper. In
the following section, an adaptive energy minimization approach
is proposed highlighting a regression-based learning of runtime
energy/performance model.
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Fig. 2. Block diagram of the proposed energy minimization approach

III. PROPOSED ENERGY MINIMIZATION APPROACH

Fig. 2 shows a block diagram of the proposed approach,
highlighting the interactions between application, runtime and
hardware. The application consists of a number of computation
tasks defining a specific functionality. The performance require-
ment of the application is communicated to the runtime layer
through an application programming interface (API) as below

rts.set_perf (25);
where rts is a runtime variable within the APIL, set perf sets
the performance requirement as 25 frames per second, as an
example. The runtime layer consists of two components: a
learning-based energy/performance model and a runtime manager.



The energy/performance model is derived and learned through
runtime measurements from the different computing resources
in the system. This model then guides the runtime manager
to carry out optimized application task mapping and DVFS
controls, while meeting the application-specified performance
requirements. These two components are further detailed below.

A. Learning-based Runtime Energy/Performance Model

A runtime model provides the flexibility in terms of system de-
sign, as applications’ behavior can be learnt without expensive en-
gineering efforts associated with offline profiling. Through careful
design of the runtime models, high accuracy can also be achieved
with little overhead (Section. IV-B and Section. IV-D). Hence, our
proposed approach uses runtime model as a critical component
for energy-efficient adaptation. Such a runtime model enables the
prediction of the trade-offs under different operating conditions
(application task mapping and VFS) and their variations. For a
given computing resource, the model is learned using runtime
measurements from hardware performance counters and sensors.
Fig. 3 presents flowchart of learning the model using regression in
5 steps. The modeling starts by varying the operating frequencies
of the computing resources (step 1). For every frame, current
and latency measurements are read from the power sensors and
performance counters (step 2). If the number of frames is equal
to the sampling interval, the measured current and latency values
are averaged over the period to produce a stable learning sample.
The sample is then used to test the hypotheses in the regression
process (step 3). Such sample collection and hypotheses testings
are continued until the learning interval (which is a multiple of
sampling interval) is reached (Section IV justifies the choice of
the learning interval). After this interval, the current and latency
models are generated for the given computing resource (step 4).
Using these models as components the energy/performance model
is then constructed (step 5).
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Fig. 3. Flowchart of the runtime energy/performance model generation

To set up the model, linear regression is used with an aim
of establishing the relationship between the dependent variables
(i.e. energy and performance) and their associated independent
predictor variables (e.g. task mapping, VFS, etc.) [13]. Rigid
linear regression based model is used as it provides with two
advantages. First, such model requires much less training samples,
and hence, results in a low runtime overhead. Second, it provides
with better inference of the dependent variables, when the hy-
pothesis is based on a reasonable assumption of the underlying
property of the modeled system. Section. IV-B shows the accuracy
and cross-validation results of the hypotheses of the proposed
runtime model, despite being a rigid model.

The relationship is defined by a hypothesis function as:
ho(x) = Zem =eTx . (1)

where z; is a predictor, nzfso the number of predictors, 6; is a
fitting coefficient, X and ©7 X are the matrix representations of
x; and 6;. The © values need to be carefully chosen to minimize
the mean-squared prediction error (J(6)) of the hypothesis in (1),
which is given by

J(0)=) _(ho(xV) —yV))?

=©O"X -7)"(e"X - 7), )
where y is the measured value, m is number of learning samples.
J(#) is minimum when its gradient becomes 0. Hence, from (2)
the gradient of J(#) can be defined as

VI(0)=v(©e'X -7) (07X - 7)

=XxTxo-xTy. (3)
From (3), the fitting coefficients © of the hypothesis in (1) can
then be computed as:

o=xTx)"'xTy . 4)

From (4), it is evident that the computation complexity of the

regression-based modeling is O(n? x m), where n is the number
of predictors and m is the number of learning samples. Hence, to
achieve a fast runtime model both n and m need to be small. In
this work, two predictors are used: CPU/DSP frequency ( fcp.,) and
FPGA frequency (fypga); hence, n=2. Section IV demonstrates
the impact of the number of learning samples on prediction
accuracy and the associated runtime overheads.

TABLE I
MODELING HYPOTHESIS

Model

Latency (Tepu/Tqsp)
Current (Iepu/Tgsp)
Latency (Tfpga)

Hypothesis hg(z)
0o + 01 - 7 L

cpu
Op+01-V+02-V- fepu
90+91-f%+92- I

pu frpga

Current (Ifpgq) Oo+01-V+02-V-froga
Performance P(f)=1/T
Energy Ef)y=V-1.T

As energy and performance are not linear functions of fre-
quency, constructing their hypotheses as direct functions of these
will not produce a good energy/performance model. Hence, we
first generate models for output current (/) and latency (7).
These models can then be used to derive the energy/performance
trade-off model. Table II shows the different hypotheses used
to generate such model. Column 1 shows the target model and
column 2 shows the hypothesis used. These models and their
hypotheses are explained further as follows:

1) CPU/DSP latency (Tcpu/Tasp) per frame is expressed as a
sum of a constant term (6y) meaning delay contributed by
frequency-independent factors (such as memory contention,
I/O setup, etc.) and also a term proportional to the CPU
clock period (row 2).

2) CPU/DSP current (Icp,/I4sp) is expressed as a sum of three
terms: the first two terms (0y + 61 - V') approximate the
leakage current, while the last term (6 - V' - fcp,,) signifies
the dynamic current (row 3).

3) FPGA latency (T'f,q4,) per frame is expressed as a sum
of three terms: the first term (fy) means the delay con-
tributed by frequency-independent factors (such as memory
contention, I/O set up, etc.), the second term (6 - ﬁ) is



a function of the CPU clock period (as CPU carries out
some computations before offloading), and the third term
(2% 7 L yis proportional to the FPGA clock period (row 4).

4) FPGAPé(lleTent ({ tpga) is expressed as a sum of three terms:
the first two terms (fy + 61 - V') define the leakage current
contribution, while the third term (62 - V' - ffpge) estimate
the dynamic current, similar to CPU (row 5).

5) Performance (of CPU, DSP or FPGA) in terms of frames
per second (fps) is expressed as an inversely proportional
function to the latency of the corresponding computing
resource (row 6).

6) Energy consumption (of CPU, DSP or FPGA) per frame is
expressed as a product of the current (), supply voltage
(V') and latency (7') of the computing resource (row 7).

The supply voltage used in these hypotheses (Table II) is de-
rived as a direct function of the operating frequency (see Sec-
tion IV-A for details). The regression-based learning of the energy/
performance trade-offs and their validations are further detailed
in Section IV-B.
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Fig. 4. Block diagram of the proposed adaptive runtime manager

3. Learn energy/
performance model
(using regression)

B. Runtime Manager

The runtime model (Section III-A) enables the runtime opti-
mization of energy and performance of the system for various
task mapping and VFS controls in the presence of workload and
application performance variations. Fig. 4 shows the flowchart of
the adaptation steps in the runtime manager. At each learning
interval, any workload or application performance variation is
detected (step 1); the workload variation is detected through
feedback from the performance counters, while application perfor-
mance variations are detected through the API. If any variation is
detected, the runtime learns (or re-learns) the energy/performance
model through regression as discussed in Section III-A (step
2 and 3). Using this model, the runtime uses gradient-descent
based search in the optimization space to quickly predict the
required mapping and VES controls. However, when no variation
is detected, the runtime continues to use the previously learned
runtime model-driven controls.

Algorithm 1 shows the pseudo-code of gradient-descent based
search for optimized application task mapping and DVFES controls.
The algorithm requires a performance requirement as an input and
generates the minimum energy operating point (i.e. task mapping
and VFS controls) as the output. The operating frequencies (f;)
of the computing resource (CPU, DSP and FPGA) are initialized
(line 1); note that the DSP shares the CPU frequency as they
are tightly coupled (Section IV-A). The learning rate («;) in
the algorithm is also initialized to a high value to ensure a
fast convergence (line 1). The search is initiated through pre-

Algorithm 1 Gradient descent-based task mapping and DVFS control

Input: Performance Requirement: Pi.q
Output: Minimum energy point: Ey,qn, and
Operating freq.: f;, i € (CPU, FPGA)
1: Initialize: f; and learning rate: a;

2: repeat

3:  Predict energy: E"=F1(f")

4:  for Vi do

5: Set [t = fI' — aizp- E"

6: Predict performance: P" " =F,(f*)
7: while P! < P..q do

8: Set a; := 0.5 X o4

9: Set fi"+1 = f' - aiaifiE"

10: Predict performance: P" 1 =F,(f't)
11: end while

12 if (55" x - E") <0 then

13: a; = 0.5 X a4

14: end if

15:  end for

16: until AE =~ 0
17: return E = Fy(f") as Jg

min

diction of the energy consumption (£), which are functions of
fi li € (CPU,FPGA)] (line 3). For each computing resource
fi is updated by a gradient descent (line 5). If the updated
fi"+1 does not meet the specified performance requirement, the
learning rate is reduced (line 8). At this time, the f{”rl is further
updated by another gradient descent (line 9). Such predictions
and updates are continued until the performance requirement is
met (lines 7-10). The gradient of energy/performance predictions
is not continuous due to the clipping of supply voltages. Hence,
it is likely that normal gradient-descent will oscillate between the
slopes of opposite gradients. To avoid such oscillation the learning
rate is reduced (lines 12-13). The task mapping (to a computing
resource) that provides the minimum energy consumption (E)
while meeting the specified performance requirement (P) is
returned as the optimized task mapping with its chosen operating

frequency (f]").
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As an example illustration of DVFS controls through Al-
gorithm 1, Fig. 5(a) shows the energy/performance trade-offs
between the CPU and FPGA for different operating frequencies.
For demonstration purposes, an image edge detection application
is used, which uses the CPU for video decoding and output
display, and implements the image filtering task in the FPGA.
To determine the optimal VFS controls of CPU and FPGA for
such mapping, the energy and performance are predicted using
high operating frequencies (f;) initially, which give a higher
performance (37 fps) than the required performance (26 fps). To



Runtime Modeling (leamt from runtime measurements)

4.313e-04 *\V_CORExF_
4.868e-04 *V_COREXF,

—6.544e-03/F_FP(

1. CPU latency and current model CPU

CORE = 4.202e-03  + 3.998e+01 /F_CORE
CORE = -1.878e-02 + 1.711e-01 *V_CORE

2. DSP latency and current model DsP

¥

—CORE = 4.243e-03 + 1.884e+01 /F_CORE
= -9.837e-02 + 2.715e-01 *V_CORE

¥

3. FPGA latency and current models __FPGA

BT =9.516e-03 + 1.574e+01 /F_CORE
_CORE = -6.278e-03 + 1.798e-01 *V_CORE 4.195e-04 *V_COREF_COR}
FPGA= 2.435e-03 + 9.986e-01 /F_CORE 1.633e-01 /F_FPGA

s + 1.016e-01 *V_FPGA + 2.268e-03 —FPGA

4+

(a) (b)

RTM DVFS

9. Chosen VFS
|CORE Freq: 533MHz PGA Freq: 49MHZ
|CORE VDD : 8.86V PGA VDD : 0.86
| Measured
|CORE Vout (V): 0.86  FPGA Vout (V): 0.86
|CORE Tout (A): 8.3598 FPGA Iout (A): 0.1865
(
(

Filter Imple
Pipeline

Est OpenCV FPS
Est NEON  FPS
Est FPGA  FPS H
Est OpenCV Energy (m)) :
Est NEON Energy (m)) :
Est FPGA  Energy (mJ) :

7. Predicted  |CORE Pout (W): 0.3096 FPGA Pout (W): 0.1604
energy/  |CORE Eout (J): 0.0117 FPGA Eout (1): @.0013

performance |

STATISTICS
4. Performance reguirement

arget FPS 125

5. Measured performance

easured FPS 126,52

6. Measured energy

mes 1137
Per Frame (m]):14 -

(©

Fig. 6. (a) Zynq-ZC702 implementation platform, (b) snapshot of runtime energy/
performance model, and (c) runtime measurements and runtime adaptation
expedite the heuristic search, initially the learning rate is set to an
arbitrarily high value for a larger gradient descent. For each next
operating frequency during the search, the step size is reduced
with the gradient. The frequencies at which the performance
requirement is met and the predicted energy is the minimum,
is chosen as the operating frequencies of the CPU and FPGA.
As can be seen, the gradient-descent heuristic search results in
intermediate operating frequencies: 670 MHz for the CPUs and
70MHz for the FPGA giving a 33 fps, followed by 650 MHz for
the CPUs and 55MHz for the FPGA giving a 30 fps, etc., until
it converges at the operating frequencies: 520 MHz for the CPUs
and 50MHz for the FPGA giving a 26 fps.

Fig. 5(b) demonstrates another example of the same algorithm
applied in a multi-pass image blurring application. Due to higher
workload detected in such application, the runtime re-learns the
energy/performance model. Underpinning this model, a gradient-
descent based heuristic search (Algorithm 1) is carried out to
determine the mapping and VFS controls for a given application
performance requirement. As can be seen, for the same application
performance requirement (i.e. 26 fps), the algorithm requires only
five steps to determine the optimized controls. The effectiveness
of the runtime management, including application task mapping
and DVFS controls, is further validated in Section IV-C.

IV. EXPERIMENTAL RESULTS

To validate the effectiveness of the proposed approach, a
number of experiments are carried out through practical imple-
mentation. The implementation details are given below, followed
by extensive validations of the runtime model and management.

A. Experimental Setup and Implementation

The proposed approach is engineered as a prototype runtime
framework (implementing application, runtime and hardware) on
a Zynqg-ZC702 development board (shown in Fig. 6(a)), consisting
of a Zynq-7000 chipset with two ARM Cortex-A9 CPU cores,
two DSP cores (Neon SIMD) and an FPGA fabric with 85K
logic cells [14]. The board uses a UCD9248 digital power
controller, with the same voltage/frequency island for the CPU/
DSP cores, and a separate power controller for FPGA. The CPU/
DSP frequency can be varied from 216MHz to 1000MHz in
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Fig. 7. (a) Image processing application implementation, (b)-(d) input and outputs
of the image processing applications
16MHz steps, and the corresponding voltage varies from 0.86V
to 1.10V, derived empirically as
Vddep, = 4.21 x 1074 x Freqep, +0.647 . ®))

Similar to the CPU/DSP, the FPGA operating voltage is also
characterized as a function of its operating frequency as

Vddgpga = 4.53 x 107% x Freqspga +0.554 . (6)
The FPGA operating frequency varies from 10MHz to 100MHz,
while the supply voltage varies from 0.86V to 1.10V.

For demonstration purposes, two image processing applications
were used. Fig. 7(a) shows the block diagram of the application
implementation using three major tasks. Task 1 decodes images
from a video file (360p resolution in this case study), task 2
carries out intended image processing operations, and finally,
task 3 buffers and displays the output images. The CPU image
processing was implemented using OpenCV [15], DSP processing
was implemented using NEON assembly instructions [14] and
that in the FPGA was implemented using synthesized RTL. For
overall system and I/O management, tasks 1, 3 and the runtime
are pre-mapped and implemented in the CPU. Task 2 mapping is
controlled through the runtime manager as it is the most compute-
intensive task. The operating VFS points for all tasks are also
controlled by the runtime manager using the runtime energy/
performance model. Fig. 7(b)-(d) show an example input image
and the corresponding output images of the applications.

Fig. 6(b) shows a snapshot of the runtime energy/performance
model (Section III-A). The energy model shows the current and
latency models for CPU (highlighted, red circle 1), DSP (high-
lighted, red circle 2) and FPGA (highlighted, red circle 3). These
models are learned through regression using real measurements
from power monitors and performance counters. Fig. 6(c) shows
example demonstrations of the runtime measurements and man-
agement (Section III-B). With a given performance requirement
(highlighted circle 4), the energy and performance measurements
are carried out at each frame interval (highlighted, red circles 5 &
6). These measurements set up the runtime energy/performance
model (Fig. 6(c)), to enable prediction during runtime (high-
lighted, red circle 7). Based on the predicted operating point, a
suitable task mapping (highlighted, red circle 8) and appropriate
VES control are chosen (highlighted, red circle 9).

B. Runtime Model Validation

The runtime model validation is carried out in two stages. In
the first stage, to establish the hypotheses (Table II) used in the
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Fig. 9. (a) Measured energy consumption (in mJ per frame) (b) measured
performance (fps), (c) Modeled energy (in mJ per frame) and (d) modeled
performance (fps) for DSP

energy/performance model, a training model is generated using an
extensive samples. The model generated using these hypotheses
is then used to generate the runtime model in the second stage.

Fig. 8 shows the measured and modeled energy consumptions
(mJ per frame) and performances (fps) using these hypotheses
for the CPU. The measured energy (Fig. 8(a)) and performance
(Fig. 8(b)) values are generated with varying operating frequen-
cies, while the modeled values (Fig. 8(c) and Fig. 8(d)) consist
of predictive energy and performance values generated using the
training model. As can be seen, the modeled values exhibit a high
degree of correlation with the measured values (with an average
modeling error of 4.6% and 5.9% for energy and performance,
Table III). Fig. 9 shows the same for the DSP. Similar to the CPU,
there is also a high degree of correlation between the measured
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Fig. 10. (a) Measured energy consumption (in mJ per frame) (b) measured
performance (fps), (c) modeled energy (in mJ per frame) and (d) modeled
performance (fps) for FPGA

values and the modeled values (with an average modeling error
of 12.5% and 12.4% for energy and performance, Table III). The
higher modeling error in DSP is due to uncertainty caused by
instruction cache sharing between the CPU and DSP.

Fig. 10 shows the measured and modeled energy consumptions
(m]J per frame) and performances (fps) of the FPGA implemen-
tation for different operating frequencies. Unlike CPU or DSP,
FPGA implementation has two predictors: frequency of CPU
(fepw) and frequency of FPGA (ffpgq). However, despite higher
number of predictors, the measured energy (Fig. 10(a)) values
also show a high degree of correlation with the modeled energy
(Fig. 10(c)) values (with an average modeling error of 9.8%,
Table III). This is because the runtime model (Section III-A)
is generated using realistic component models: current (/) and
latency (7). For the same reason, the measured and modeled
performances (Fig. 10(b) and (d)) also show high correlations
between them (average modeling error of 9.9%, Table III).
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Fig. 11. Energy and performance prediction errors vs learning samples
Using the validated hypotheses, a runtime energy/performance
model is learned using a number of measured samples of current
and latency values. The accuracy of this model depends on a
number of factors: the number of samples acquired, the number
of predictors for a given computing resource, and the underlying



TABLE III
MODELING ERROR INCURRED FOR THE GIVEN HYPOTHESES (TABLE II)

Computing resource | Energy (in %) | Performance (in %)
CPU 4.6 59
DSP 12.5 124
FPGA 9.8 9.9

relationships between current, latency, performance and energy.
Fig. 11 shows this learning trade-offs for all computing resources
(CPU, DSP and FPGA). As can be seen, the model’s error in
terms of misprediction is initially > 80% for both energy and
performance models. After 5 learning samples the prediction
errors of CPU/DSP reduces and converges close to (=6% for CPU
and ~15% for DSP). The FPGA takes about 8§ learning samples
until it converges to ~~13% prediction error for energy and
performance (Fig. 11(a) and (b)). All computing resources require
low convergence time as regression with such small number of
predictors is rigid and the variance in the model is usually small
[16]. The higher convergence time for FPGA is incurred due to
usage of two predictors (fepy and fypgq), compared to only one
predictor in the case of CPU and DSP (f;p.)-

TABLE IV
AVERAGE PREDICTION ERRORS FOR IMAGE PROCESSING WORKLOADS

Workload Models CPU (%) | DSP (%) | FPGA (%)

Edge det. Energy 5.8 15.1 13.0

Edge det. Performance 6.4 15.0 12.1
Edge det.—Blurring Energy 73 40 27
Edge det.—Blurring | Performance 317 62 26

The energy/performance model generated through regression
remains valid for a given workload, based on which the model is
learned. The validity of the model is characterized by low pre-
diction errors (<~ 15%). Table IV shows the average energy and
performance prediction errors of different computing resources (in
rows 2 and 3) of image edge detection application. As can be seen,
the highest prediction error is incurred by the DSP (15.1% for
energy model and 15% for performance model). This is because
both the DSP and CPU share the same instruction queue, which
introduces uncertainty in its performance. The CPU models give
the lowest prediction errors for both energy and performance.

When the workload per image processing increases, the model
will incur larger prediction errors as the previously learned model
does not represent the trade-offs between energy/performance any
more (Section 4). As can be seen in 4th and 5th rows (Table IV),
when the image processing workload increases from edge detec-
tion to multi-pass blurring, the prediction error increases. The
highest mispredictions are incurred by the CPU, with up to 317%
error. This is because the increased workload has the highest
impact on CPU energy and performance. To ensure that the model
always follows the energy/performance trade-offs, re-learning is
initiated when the average prediction errors goes beyond 20%.
With the re-learned model, the runtime manager can adapt to
the changing workloads. See Fig. 12 for experimental results
demonstrating such adaptation.

C. Comparative Evaluation of Runtime Adaptation

Fig. 12 shows the comparative evaluations of the proposed
approach. Fig. 12(a) and (b) show the energy (mlJ, per frame)
and performance (fps) comparisons using the edge detection
application (Fig. 7(a)). For comparison, the following different
image edge detection implementations were carried out: CPU

implementation with Linux ondemand governor (red), DSP im-
plementation with Linux ondemand governor (green), FPGA im-
plementation with 10 MHz frequency (purple square, FPGA_LP),
FPGA implementation with 50 MHz frequency (purple triangle,
FPGA_MP), FPGA implementation with 100 MHz frequency
(purple dot, FPGA_HP) and finally, the filter implementation
using our adaptive approach (black star). The Linux ondemand
governor was chosen as it features practical implementations and
partial runtime adaptation based on core usage (Table I). The
chosen application task mappings are indicated alongside the
plotted points with the first letter of the computing resource (C:
CPU, D: DSP and F: FPGA). Fig. 5 shows example illustrations
of how optimal frequency is chosen for a given task mapping.
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Fig. 12. Comparative evaluations of different image processing applications

As expected, the CPU implementation gives the highest energy
consumption per frame for a given performance requirement
(Fig. 12(a)). The performance of such an implementation is,
however, constrained by the highest permissible operating fre-
quency as it cannot provide more than 22 fps (Fig. 12(b)). The
DSP implementation, on the other hand, gives better energy
efficiency and performance than the CPU. As expected, the
DSP implementation favors higher operating frequencies when
the performance requirement increases due to core usage-based
operating frequency scaling [3]. The FPGA implementations do
not vary the operating frequencies based on the requirement,
which results in non-adaptive energy and performance variations
for all three frequencies chosen. The energy efficiency of FPGA
implementation follows similar trends as the DSP filter for
FPGA_MP and FPGA_HP. The proposed approach can detect
the change in application performance requirement and suitably
learn the energy/performance trade-offs through a runtime model
(Section III-A). Based on this model, the approach can adapt
controls and choose the most energy-efficient computing resource
through optimized task mapping (among CPU, DSP and FPGA)



and VFS controls. As a result, such adaptation can achieve high
energy reduction for the varying performance requirements (up
to 70% energy reduction compared to the CPU-only implemen-
tation for a given performance requirement of 3 fps). At lower
performance requirements the approach favors the mapping of
the task on the FPGA and at higher performance requirements it
favors the mapping of the task on the DSP for the edge detection
application. Note that beyond 45 fps, none of the implementation
can meet the performance requirement.

To show the comparative effectiveness of the proposed ap-
proach with increased image processing workloads, another set of
experiments were carried out using the multi-pass image blurring
application. Fig. 12(c) and (d) show the energy (mJ, per frame)
and performance (fps) comparisons using this application. As can
be seen, due to such a challenging workload, the CPU, DSP,
FPGA_LP and FPGA_MP filters fail to adapt to performance
requirement (beyond 26 fps) and provide energy efficiency (CPU
energy figures not shown in Fig. 12(c) as it is out of range).
FPGA_HP provides better energy efficiency but does not adapt to
the required performance at lower performance requirements. Our
proposed approach continues to adapt to the required performance
and workload per filter task, and provides the most energy-
efficient task mapping and DVFS controls. In fact, compared to
the CPU-only implementation of the application (the CPU-only
energy and performances are not shown due to being out of axes
limits), our approach achieves significantly higher energy savings
(i.e. more than an order of magnitude savings).

TABLE V
RUNTIME MANAGEMENT OVERHEADS FOR COMPUTING RESOURCES

Control/ Occurrence CPU/DSP | FPGA
Monitor (in ms) (in ms)
Modeling Workload change 0.054 0.18
Management Performance/workload change | 0.03 0.06
Perf. monitor | Sampling period 0.77 0.98
VES transition | Performance/workload change | 1.50 2.60

D. Runtime Overheads

The proposed approach incurs runtime overheads due to various
adaptation steps, including optimization, control and monitor
operations. Table V shows the runtime overheads for different
operations during runtime. Column 1 lists the runtime control/
monitor operations, column 2 indicates their occurrences (i.e.
how often these operations are used), column 3 gives the runtime
overheads for the CPU/DSP, while column 4 gives the same for
the FPGA. As can be seen, the runtime model learning, which
is carried out when any workload change is detected, incurs a
small overhead (0.054 ms) for the CPU/DSP. The overhead for
the FPGA is slightly higher (0.18 ms) due to a higher number
of learning samples (Section III-A). The runtime adaptation (and
optimization) exhibits the minimum overhead of all (0.03 ms
for CPU/DSP and 0.06 ms for FPGA) due to simple gradient-
descent based search operation for a given runtime model. Such
adaptation takes place every time a performance or workload
change is detected. The performance monitor results in the second
largest runtime overhead, which depends on the type of computing
resource used; generally the CPU/DSP incurs less than the FPGA
as it involves monitor interaction via the CPU. Such overhead
takes place at every sampling period (50 used in our work for
denoising the measurement errors). The largest single overhead
is generated by the VES transition, which takes place every time

the performance or workload changes. As expected, as FPGA
transition is actuated via the CPU and gives higher VFS transition
overheads than the CPU.

V. CONCLUSIONS

This paper has presented an adaptive energy minimization
approach for embedded heterogeneous systems. The approach is
based on an energy/performance model learned through regression
using runtime measurements from the performance counters and
sensors. Using this model application task mapping and DVFS
controls are suitably optimized during runtime to adapt to work-
load and performance variations. Through extensive validations on
a Zynq-ZC702 platform, the approach demonstrated significant
energy reductions (more than 70% in some cases) compared
to the existing approaches, while meeting a given application
performance requirement. The work is expected to be particularly
useful for applications that require computation on a number
of different computing resource in a heterogeneous system. Our
future work is to extend this technique to deal with concurrent
applications, competing for the computing resources.
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