Loading [a11y]/accessibility-menu.js
Energy aware Networks-on-Chip cortex inspired communication | IEEE Conference Publication | IEEE Xplore

Energy aware Networks-on-Chip cortex inspired communication


Abstract:

Ultra-deep sub-micron technology is shifting the design paradigm from area optimization to power optimization. In the context of Network-on-Chip (NoC) based design, energ...Show More

Abstract:

Ultra-deep sub-micron technology is shifting the design paradigm from area optimization to power optimization. In the context of Network-on-Chip (NoC) based design, energy consumption due to data transfer among network nodes is no longer negligible. Starting from the observation that, among the two brain hemispheres around 1 out of 106 synapses are active at the same time, in this paper we propose to mimic such behavior to trade-off transmission throughput with energy cost per transmitted bit in NoC based systems. In order not to alleviate the system performance, low level control mechanisms are proposed to use the so called “Cortex Inspired Communication” (CIC). We propose a set of strategies aimed at improving the energy efficiency of the NoC and we assess them in terms of energy saving, silicon area overhead and impact on performance metrics, namely, communication delay and throughput. The experimental analysis, carried out on a cycle-accurate and bit-accurate NoC simulator and under traffic scenarios generated by real applications show up to 30% of energy saving with almost no impact on the processing throughput.
Date of Conference: 25-27 September 2017
Date Added to IEEE Xplore: 16 November 2017
ISBN Information:
Conference Location: Thessaloniki, Greece

References

References is not available for this document.