Hardware Implementation of a Low-Power K-best
MIMO Detector Based on a Hybrid Merge Network

Ibrahim A. Bello*, Basel HalakT, Mohammed El—HajjarT and Mark Zwolinski'
*Department of Computer Engineering, Ahmadu Bello University, Nigeria
ibrahimbello@abu.edu.ng

tElectronics and Computer Science, University of Southampton, United Kingdom
{bh9, meh, mz}@ecs.soton.ac.uk

Abstract—Multiple input multiple output (MIMO) technology
is anticipated to play a key role in future wireless communications
systems. However, one of the main challenges of MIMO technol-
ogy is the high complexity of the signal detection, which results in
a high power consumption at the MIMO receiver. In this paper,
we present the hardware implementation of a K -best detector
based on a single-stage architecture, targeted at low-rate and low-
power applications. To achieve a low complexity, we optimise
the sorting stage of the detector by systematically eliminating
redundant comparators. Furthermore, the sorter incorporates
different merge algorithms at selected stages in order to reduce
the total comparator count. For a 64-QAM 4 x 4 MIMO system,
the detector achieves a power consumption of 34 mW using
the STMicroelectronics 65 nm CMOS library, which compares
favourably with similar works from the literature.

Index Terms—K-best, MIMO, Wireless communication algo-
rithms, Low power

I. INTRODUCTION

Multiple input multiple output (MIMO) technology is fast
becoming an indispensable component of future wireless com-
munications systems. When used in the spatial multiplexing
mode, MIMO can significantly increase the channel capacity
by simultaneously transmitting multiple data streams [1].
MIMO can also be used to improve the bit-error rate (BER)
performance of the signal detection by employing spatial
diversity [2].

Despite these advantages, the use of multiple antennas
imposes an increased complexity in communications systems,
especially at the receiver. The maximum likelihood (ML)
detector offers the best BER performance [3], but it requires an
exhaustive search of all possible transmitted symbol vectors,
which makes it unsuitable for VLSI implementation.

Several detection algorithms have been investigated in re-
cent years as alternatives to the ML detector. The K-best
algorithm [4] offers a near-ML performance, with a fixed
complexity, which has made it the algorithm of choice for
the implementation of high-performance MIMO detection in
hardware. Unfortunately, the K -best algorithm is beset with
high power consumption and complexity challenges, especially
when implemented in a pipelined fashion [5], [6], [7]. For
applications requiring low data rates, such as the “Internet of
Things” [8], such a high complexity is unnecessary, as such,
lower-complexity architectures need to be investigated.

The aim of this work is to implement a K -best detector for
low-power and low-throughput applications. To this end, we
undertake the following objectives:

1) Implement a novel merge network to carry out the K-
best sorting with a low complexity and latency

2) Compare the VLSI implementation of the proposed
merge network with other common K-best sorting al-
gorithms

3) Implement the K-best detector using a low-complexity
single-stage architecture

The paper is organised as follows. In Section II, the MIMO
system model and signal detection using the K -best algorithm
are described. In Section III, the proposed merge network
implementation is presented. In Section IV, the architecture of
the proposed K -best algorithm is presented. In Section V, the
results of our implementation are presented and compared with
notable single-stage architectures from the literature. Finally,
the paper is concluded in Section VI

The following notations are used in the paper. R{-} and
J{-} extract the real and imaginary parts of a complex number
respectively; A; ; represents an element in the ith row and jth
column of the matrix A; A; represents the jth column of A,
while A; ;. represents the vector [A; ;, A; j11,..., Akl

II. SIGNAL DETECTION

Consider a transmitter employing Np antennas and trans-
mitting information bits over a wireless link to Ny receive
antennas. The Ng X 1 received signal vector (RSV), y, at the
receiver is given by the following equation:

y = Hs+n, (D

where H represents the Nr x Np channel matrix, s repre-
sents the Np x 1 modulated MIMO symbol vector from the
transmitter and n represents the additive white Gaussian noise.
A QR decomposition can also be performed on the channel
matrix as follows:

¥ =Rs+ Qn, 2)

where H = QR., § = Qfy, Q is a unitary Nr x Ny matrix
and R is an upper triangular Ny x N7 matrix. For simplicity,
we assume an equal number of antennas at the transmitter and

Algorithm 1 K-best algorithm
R 2NT
’Ci,lzm <D
Compute T; Vs € D
1 1—1

while i > 1 do
Compute 15V s; j 1
Ki 1.0 < KBEST(s; 5.%)
Update /C; 1.k according to sorted T;Vj >4
i—i—1
end while

é(—IC1

receiver i.e., N = Npg. A real-valued decomposition (RVD)
can be performed to transform (1) as follows:

[m{y}} _ [W{H} —3{H}} [iﬂ{s}] n [m{n}}
I{y} JH} R®{H} | |I{s} I{n} |’
which transforms the complex constellation set into the odd-
valued integer set, D, defined as {—\/M +1,...,V/M— 1},
where M is the modulation order. At the receiver, the detector
attempts to obtain an estimate of the transmitted symbols, S,
with a low bit error rate. This procedure is described in more
detail in the next sections.

A. K-best Algorithm

The K-best algorithm performs the MIMO signal detection
by carrying out a forward-only tree search [4]. The number
of antennas is considered to be the levels of the tree, while
the constellation points are considered to be the branches of
the tree. Each constellation point at a higher level of the
tree is considered to be a “parent” to all emerging branches.
However, in this work, the RVD is considered for the tree
search, which results in doubling the tree depth. The K-best
algorithm is shown in Algorithm 1, where K is a 2Np x K
matrix representing the best K solutions, s; ; 1 is the jth child
of the kth parent at the ¢th level. The KBEST function sorts
the candidates according to their partial Euclidean distances
(PEDs) and selects the top K results. At the end of the
detection, the path with the least metric, K1, is submitted as
the estimate of the transmitted symbol vectors, §. The PED of
a constellation point, 7;, at a level ¢ is computed as follows:

T; = Ti1 + |bs — rigsil, 3)
where 2
2N
bi= i — Y Tijs;
J=i+1

B. Reduced-Complexity K-best Detector

The number of children per parent node in the tree search
can be utilised as a parameter to reduce the complexity of the
K -best algorithm [9]. If the number of children per parent is

100 ‘ E
- \=8|]
—+—A=06 ||
1071 —>—\=4 |
1072 ¢
4 r
m L
m L
1072 ¢ E
F 1
—4
o ®
—5 L L |
1070 15 20 25 30
Eyp/Ny (dB)

Fig. 1: BER performance of the K-best algorithm with K
16 using different values of A

denoted by A, then the K-best detection can be characterised
as KB(K, \), where KB(K, /M) represents the original K-
best algorithm. If A = 1, then the K-best detector essentially
reduces to a successive-interference-based detection, where
each of the K paths extends only its best child.

A similar reduced-complexity K -best detector was proposed
by Kim and Park [10], which was based on the orthogonal real-
valued decomposition (ORVD) channel model [11]. As a result
of the channel model employed in that work, two layers are
processed in parallel, which results in almost a 10X increase
in the number of PED increment computations compared with
the proposed implementation. Furthermore, the ORVD incurs
a BER penalty, as the resulting tree search is not equivalent
to the conventional RVD-based scheme [12].

Figure 1 shows the BER simulation for the proposed K-
best detector using K = 16 for different values of A. The K-
best detector using A\ = 4 displays similar performance to the
original K -best detector up to a BER of 1073. On the other
hand, the K-best detector using A = 2 suffers a significant
SNR loss of approximately 3 dB compared with the original
K-best detector at a BER of 1073, The result of Fig. 1 is
noteworthy, as the choice of A has an impact on the sorting
complexity as will be discussed in the next section.

III. SORTING

Sorting plays a prominent role in many digital signal
processing applications. In the K-best algorithm, sorting is
required to select the best candidates at each level of the
tree search. The choice of sorting algorithm has an impact
on the complexity and performance of the K-best detector.
Single-cycle sort algorithms are suitable for high-throughput
applications, while multi-cycle sort algorithms typically incur
a lower complexity but at the expense of a longer latency. In
this work, a single-cycle merge algorithm is adopted for the
sorting unit.

ay (&) ay

C1

Qo Co g I Co
as C3 as C3
ay Cy Qy I Cy
by Cs by Cs
I)Q Ce b3 I Ce
bs by ! cr

by c8 by
(a) (b)

Fig. 2: Illustration of Batcher’s merge algorithms: (a) odd-even
merge and (b) bitonic merge.

Cg

A. Merge Algorithms

Traditional sorting algorithms, such as the bubble sort, re-
quire a large number of clock cycles, which has an undesirable
impact on the attainable throughput. Merge algorithms, on
the other hand, sort a data sequence in a single step and
as such the desired sorted result can be obtained within one
clock cycle. Merge algorithms typically employ a “divide-and-
conquer” approach to sorting, by dividing the data to be sorted
into sublists and then iteratively merging the sorted sublists in
parallel. After each iteration, a larger sublist is formed and
the merge process is repeated until a single list is obtained,
which corresponds to the sorted result. In this way, a merge
network is formed whose depth is proportional to the number
of sublists at the input. In this paper, we will limit ourselves
to the well-known Batcher’s merge networks [13], which are
discussed in the subsequent sections.

1) Odd-Even Merge: Given two length-N lists, a =
[al,ag, R ,CLN} and b = [bl,bg, R ,bN], where a1 < as <
...<apy and by < by < ... < by, the odd-even sorter splits
the two lists into their odd and even-indexed components and
sorts them independently by comparing two items at a time
and then swapping them if they are out of place. The first item
of the odd-index merge is also the first item of the final result,
while the last item of the even-index merge is the last item of
the final result. After the odd and even lists have been sorted,
the odd-even sorter iteratively compares the (z + 1)th item of
the odd-index merge with the ¢th element of the even-index
merge to get the remaining items of the final length-2N result.

By comparing two sublists at a time, a larger merge network
with 2P inputs (where p is some integer) can be constructed.
Figure 2a illustrates the odd-even merge for two 4-item
sublists, where each arrow represents a compare-and-exchange
operation. The top and tip of each arrow correspond with the
smaller and larger number of the comparison respectively.

2) Bitonic Merge: Another parallel merge algorithm pro-
posed by Batcher [13] is the bitonic merge (BM), which sorts
one ascending list and one descending list, otherwise known
as a bitonic sequence. Thus, ay,as,...,an,bn,ON—1,...,01
forms a bitonic sequence if a3 < as < < an and
by > by_1 > ... > by. If two lists are constructed as follows:

Cmin = min(ay, by), min(ag,by—1), ..., min(ay,by)

Cmax = max(a1,by), max(az,by—_1),...,max(an,b1), (4)

4 U4l
16

A usl

4 U42
32

A Ul6l

4 U43
16

A Us2

4 U44

A U321 [64

4 U45
16

4 Us3

4 U46
32

A U162

4 u47
16

A U84

4 U48

Fig. 3: Full unoptimised merge network for 64 candidates. All
the candidates are included in the final sorted result and the
best K candidates are taken to the next level.

then it can be shown that all the elements in the first list are
less than the elements of the second list. Furthermore, each
of cmin and cmax 1S bitonic. After the sequence is split into
Cmin and cpmax, the bitonic sorter compares two elements of
each sublist at a time, swapping them if they are out of place.
This process is continued iteratively until the final length-2/N
list is obtained. The bitonic merge for two 4-item sublists is
illustrated in Fig. 2b. Unlike the odd-even merge, which has
unequal paths from the inputs to the outputs, the input-output
lines of the bitonic merge all have equal lengths. However, the
bitonic sorter requires more compare-and-exchange elements
for a given input sequence, which increases its complexity in
hardware.

B. Implementation of the Merge Network

In this work, the Batcher’s merge networks will be adopted,
as they produce the sorted result within one clock cycle.
The odd-even merge is attractive for constructing the merge
network due to the fewer comparators required compared to
the bitonic merge. The merge network sorts the candidates
in pairs of two A-length sublists, where each candidate is
organised as (s; jx,1; k. k), where k denotes the parent
path, s; ; is the jth child of the kth parent after Schnorr-

4 U4l
16

4 Usl

4 U42

4 U43
16

4 Us2

4 U44

4 16

4 U45
16

4 Us3 —— |

4 U46

I
c
—_
(@)
[3S)

4 U47
16

4 Us4

4 U48

Fig. 4: Optimised merge network for 64 candidates. The merge
units in the third and final stages are modified to produce only
the top 16 results, while discarding the bottom results.

Euchner enumeration [14], and T;; is its corresponding
metric. Before the merge operation at the current level, &
simply takes a value from the ascending sequence 1,2, ..., K.
After the merge operation, k£ is updated according to the
indices of the sorted PEDs at the current level.

Figure 3 illustrates the merge network for 16 sublists
each comprising four elements. The merge units labelled
U4X,U8X,U16X and U32X denote merge units for 4 x 4,
8% 8, 16x16 and 32x 32 inputs respectively. With K = 16, the
candidates are merged in pairs using eight U4X units operating
in parallel, and the outputs are successively doubled at every
stage until the final 64 sorted result is obtained. Thereafter,
the upper 16 results are selected and forwarded to the next
level. The operation of the Batcher’s merge network makes it
more convenient to adopt K values that are powers of two;
however, it is possible to construct a merge network with non-
power-of-two K values by simple architectural modifications.
For example, to construct a merge network for K = 10, U46,
U47, U48 and U84 can be discarded and the bottom inputs to
U83 and U162 can be replaced with dummy candidates having
T; = oo. These dummy candidates will be automatically

Step 1 Step 2 Step 3 Step 4 Step 5

i

7

Odd List

Even List

|««««««««««««««««

Fig. 5: Modified U16 using the odd-even merge. Only one
comparator can be eliminated from the bottom half of the 4th
step given K = 16.

relegated to the bottom of the 64-length sorted output at the
end of the merge operation. It needs to be mentioned that
other than the choice of A\ < v/M, and fixed-point quantisation
effects, the proposed merge network achieves an exact sorting
of the candidates.

1) Area Optimisation: The merge network in Fig. 3 in-
cludes several redundant candidates in the final sorted result,
which will eventually get discarded and play no further role
in the detection process. This is inefficient and leads to
an unnecessary increase in the hardware complexity of the
detector. Since only K = 16 candidates are required, U321
can be replaced with a simpler U16 unit as shown in Fig.
4. Similarly, U161 and U162 can be replaced with simpler
U16 equivalents having only 16 outputs, instead of the 32
outputs in the original merge network. This also has a timing
advantage, as the U16 element requires one less comparator
stage compared with U32.

To construct the optimised U16 unit, all the comparators
that do not contribute to the final output are eliminated.
Interestingly, the bitonic sorter requires fewer comparators to
implement the optimised U16 than the odd-even sorter. This
is due to the unique property of the bitonic sorter whereby the
upper and lower halves of the sorted result are generated in
the first step of the merge process as shown in (4). Therefore,
the lower half can be discarded early in the sorting, and the
subsequent sort operations can be carried out on the upper half
only. By contrast, although the odd-even sorter requires fewer
comparators in general, the two halves of the final sorted result
are only determined in the last stage.

The modified U16 unit, implemented using the odd-even
and bitonic sorters, is shown in Figs. 5 and 6 respectively,
showing the individual comparator operations. While the
bitonic U16 unit is able to eliminate up to 32 comparators, the
odd-even U16 unit is only able to eliminate 9 comparators.

i
Nl
@ s
s
Gk
s
s
Bl

Fig. 6: Modified U16 using the bitonic merge. All the com-
parators in the lower halves of steps 2 to 5 can be eliminated
using the bitonic algorithm given K = 16.

TABLE I: Comparison of full and optimised bitonic and odd-
even merge networks for K = 16 and \ = 4

Sorter Bitonic Merge Odd-Even Merge Hybrid
Design Full Optimised Full Optimised ~ Optimised
Area [kGE] 114.7 72.7 93.2 69.7 62.6
Comparators 576 432 463 340 316

Thus, a hybrid merge network can be constructed with a
bitonic merge for the third and final stages and odd-even merge
for the remaining stages. The optimised U16 unit with 16
outputs is denoted by U16. Overall, the hybrid merge unit
achieves an area saving of approximately 30% compared with
the unoptimised network using odd-even merge for all the
stages. The optimised hybrid merge unit is compared with the
unoptimised bitonic and odd-even merge networks in Table I.
The area is given in kilo-gate equivalent (kGE).

2) Pipelining the Merge Network: The inputs to the pro-
posed merge network described in the previous section pass
through a total of 12 comparators in series before emerging
at the output. This results in a large combinational delay,
which limits the attainable clock frequency of the detector. The
combinational delay of the merge network can be reduced by
inserting one or more pipeline registers at suitable locations,
thereby splitting the merge network into two or more smaller
merge networks. This will however entail an increase in the
area consumption of the design. Furthermore, the latency of
the detection for one symbol vector is increased by one clock
cycle. However, this is compensated by an increased clock
frequency, which allows a higher throughput to be achieved
overall. If pipeline registers are inserted after the first step of
the U16 blocks in the third stage of the merge network in
Fig. 4, then the merge network can be split into two nearly
identical merge networks with seven and five comparators.

TABLE II: Comparison of hardware implementations of dif-
ferent sorting algorithms

Sorter BS DS RS HM P-HM
Area [kGE] 40.8 16.2 5 62.6 72.4
Terit [ns] 1.78 443 3.43 9.50 4.25

3) Results and Discussion: Table Il compares the hardware
implementation results of the proposed hybrid merge (HM)
network with other sorting algorithms, based on a 65 nm
CMOS technology. The relaxed sorter [9] incurs the smallest
area consumption, however, this is at the expense of a degrada-
tion to the BER performance. Despite its simplicity, the bubble
sorter incurs a relatively large area, which is as a result of the
registers required for storing the temporary sorting results as
well as the input elements. Furthermore, a counter needs to
be created to keep track of the number of iterations, which
is the largest among the algorithms compared. The distributed
sort algorithm [15] was implemented with the assumption that
all the child nodes are already enumerated via a table lookup.
In order to find the MIN element in each iteration, assuming
K = 16, two elements are compared at a time, resulting in
a critical path of eight comparators in series. This makes the
distributed sort to have a longer critical path length than the
bubble sort, which only needs to compare two elements in
each cycle. As expected, the proposed hybrid merge incurs
the largest area consumption and longest critical path. The
pipelined hybrid merge (P-HM) increases the area by 15.5%
while reducing the critical path length by 55.3%, which is
almost the same as that of the distributed sort algorithm.

The comparatively large area of the bubble sort, relative
to the distributed and relaxed sort algorithms, as well as its
large latency, further underscores its unsuitability to the K-
best algorithm. For small constellation sizes, however, such as
4-QAM, the bubble sort is attractive since only a few iterations
are required to get the final sorted result. The distributed sorter
is suited to larger constellation sizes since the number of
clock cycles required depends on K only. However, it should
be noted that larger constellation sizes tend to require larger
values of K since the BER performance degrades with the
modulation order. Where area is not critical, the hybrid merge
is attractive as it achieves an exact sorting and also produces
the sorted results within a single cycle. As noted, the hybrid
merge can be pipelined in order to reduce the critical path
at the expense of a larger area and additional clock cycles
to obtain the sorted results. In the next section, the hardware
implementation for the K -best detector, based on the pipelined
hybrid merge network, will be presented.

IV. K-BEST ARCHITECTURE

In this paper, the K-best detector will be implemented
using a single-stage architecture, where a single core is reused
for all the tree levels in a recursive manner. The simplified
architecture is shown in Fig. 7, showing the K -best candidates
at the ith level fed back from the merge network to the PED
computation blocks. T) represents the accumulated PED

Tii+2

Tivip Y Tij127ii Tiy13Tiivl TiaNp—1 Ti2Nr Tit1,16
L L L
M LU T T [l
feed back
[icut_] [icu_] [ict_]
FSM_ - bi,1 bi,2 bi3 bi L4 aa
: PED PED PED i
o bl il L P!
| Merge Network |
L |

KL,S

Kia

Kia

Fig. 7: Simplified architecture of the proposed single-stage K -best detector

up to the (i+1)th level for the kth path, while b; j, represents b;
computed for the kth path. The processing element consists of
K expansion units, each of which consists of an interference
cancellation unit (ICU), which computes b;, and a PED unit
which computes T;. The outputs of each of the expansion
unit are the A best children of the kth path selected after
enumeration from a lookup table [16]. A single finite state
machine (FSM) determines the current level of the tree search,
1, and issues other control signals to the datapath of the K -best
detector.

A single-stage architecture ensures a much lower power
consumption compared with fully-pipelined implementations
[5], [6], which may utilise much more resources than required
for simple low-throughput applications. The PED in the pro-
posed architecture is computed using the /'-norm approxima-
tion presented in [17]. The signal and channel inputs, ¥ and R,
are represented using 14-bit signed Q-format representations,
which are determined after extensive simulations in MATLAB.

V. RESULTS AND DISCUSSION

The results of the proposed detector are compared with
other single-stage K-best implementations from the literature
as shown in Table IIl. All the implementations are targeted
at a MIMO system employing 64-QAM. The throughputs and
power consumption results are scaled to the 65 nm CMOS
technology at a supply voltage of 1.05 V using a similar
approach to [21]. The area consumption is obtained after a
place-and-route step, while the power is estimated with the
aid of switching activities captured during post-synthesis gate-
level simulations.

TVLST’07 [18] adopts a radius-based pruning strategy and
as such does not have a fixed throughput. The implementation
achieves a comparable throughput to the proposed detec-
tor; however, our implementation outperforms it significantly
in terms of the power consumption and energy-efficiency.
TVLSI’10 [19] employs three detector cores in order to
increase the throughput. With three cores, our implementation

achieves more than x3 of the throughput of TVLSI’10 [19],
while reducing the area consumption by approximately half.

DATE’10 [20] achieves a throughput of 214 Mbps for a
2 x 2 antenna configuration with a relatively small area of
24 kGE. Our implementation requires 14 clock cycles to
completely detect one symbol vector in the 2 x 2 configuration,
resulting in a slightly improved throughput performance of
234 Mbps. With the pessimistic assumption that the proposed
implementation consumes the same power in 2 x 2 as the 4 x 4
case, our implementation will achieve an energy-per-bit of 146
pJ/bit in the 2 x 2 configuration, which is not significantly
higher than that of DATE’10 [20]. Although ISCIT’15 [9]
achieves a higher throughput than the proposed implemen-
tation, this is at the cost of a reduced BER performance due
to the relaxed sorting algorithm that was employed.

VI. CONCLUSION

In this paper, we have presented the VLSI implementation
of a low-power K-best MIMO detector, targeted at low-
throughput applications such as the “Internet of Things”. In
order to reduce the complexity and power consumption of
the detector, a single-stage architecture is presented, where
a single processing element is reused for all levels of the tree
search. We also presented the implementation of a novel low-
complexity hybrid merge algorithm combining features of the
odd-even and bitonic merge algorithms. For a 64-QAM 4 x
4 MIMO system, our implementation achieves a throughput
of 109 Mbps and a power consumption of 34 mW using
the STMicroelectronics 65 nm CMOS library. To achieve a
higher throughput, several cores can be instantiated in an
interleaved fashion. A possible area for future research will
include optimising each individual comparator in the merge
network so as to reduce the latency of the detection without
the use of pipeline registers.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

8]

(9]

(10]

(11]

(12]

TABLE III: Implementation results of single-stage K -best detectors for 64-QAM MIMO

Reference This work TVLSI'07 [18]1 TVLSI’'10 [19] DATE’10 [20] ISCIT’15 [9]
Cores 1 3 N/A 3 1 1
K 16 16 64 64 10 10
MIMO 4x4 4x4 4x4 4x4 2 X2 4x4
Detection Hard Hard Soft Hard Soft Hard
Tech. [nm] 65 65 130 65 130 65
Vaa [V1 1.05 1.05 1.2 1 1.5 1.05
Area [kGE] 285 855 N/A 1760 24 206
fex [MHz] 137 137 270 158 287 287
P [Mbps] 109 327 100 100 214 300
P [mW] 34 103 919 238 27 27
Byt [pl/bit] 312 312 9190 2376 125 91

T Throughput is SNR dependent

REFERENCES

D. Gesbert, M. Shafi, D.-s. Shiu, P. Smith, and A. Naguib,
“From theory to practice: An overview of MIMO space-time
coded wireless systems,” IEEE Journal on Selected Areas in
Communications, vol. 21, no. 3, pp. 281 —302, Apr. 2003.
M. El-Hajjar and L. Hanzo, “Multifunctional MIMO systems:
A combined diversity and multiplexing design perspective,”
IEEE Wireless Communications, vol. 17, no. 2, pp. 73-79,
2010.

M. Damen, H. El Gamal, and G. Caire, “On maximum-
likelihood detection and the search for the closest lattice
point,” IEEE Transactions on Information Theory, vol. 49,
no. 10, pp. 2389-2402, Oct. 2003.

K.-w. Wong, C.-y. Tsui, R.-K. Cheng, and W.-H. Mow,
“A VLSI architecture of a k-best lattice decoding algorithm
for MIMO channels,” in IEEE International Symposium on
Circuits and Systems, 2002. ISCAS 2002, vol. 3, 2002, III-
273-111-276 vol.3.

M.-Y. Huang and P.-Y. Tsai, “Toward multi-gigabit wireless:
Design of high-throughput MIMO detectors with hardware-
efficient architecture,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 61, no. 2, pp. 613-624, Feb.
2014.

M. Mahdavi and M. Shabany, “A 13 gbps, 0.13 pm CMOS,
multiplication-free MIMO detector,” J Sign Process Syst,
pp. 1-13, Jun. 6, 2016.

Ibrahim Bello, “Energy-efficient architectures for multi-
gigabit MIMO detection,” PhD thesis, University of
Southampton, Jul. 2017.

M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner,
T. Engel, and L. Ladid, “Internet of things in the 5g era:
Enablers, architecture, and business models,” IEEE Journal
on Selected Areas in Communications, vol. 34, no. 3, pp. 510-
527, 2016.

1. A. Bello, B. Halak, M. El-Hajjar, and M. Zwolinski, “VLSI
implementation of a scalable k-best MIMO detector,” in
2015 15th International Symposium on Communications and
Information Technologies (ISCIT), Oct. 2015, pp. 281-286.
T.-H. Kim and L.-C. Park, “Small-area and low-energy -
best MIMO detector using relaxed tree expansion and early
forwarding,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 57, no. 10, pp. 2753-2761, 2010.

L. Azzam and E. Ayanoglu, “Reduced complexity sphere
decoding for square QAM via a new lattice representation,” in
IEEE Global Telecommunications Conference, 2007. GLOBE-
COM 07, Nov. 2007, pp. 4242-4246.

T.-H. Liu, “Comparisons of two real-valued MIMO signal
models and their associated ZF-SIC detectors over the rayleigh

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

fading channel,” IEEE Transactions on Wireless Communica-
tions, vol. 12, no. 12, pp. 6054-6066, Dec. 2013.

K. E. Batcher, “Sorting networks and their applications,”
in Proceedings of the April 30-May 2, 1968, spring joint
computer conference, ACM, 1968, pp. 307-314.

C. P. Schnorr and M. Euchner, “Lattice basis reduction:
Improved practical algorithms and solving subset sum prob-
lems.,” in Math. Programming, 1993, pp. 181-191.

M. Shabany and P. Gulak, “Scalable VLSI architecture for
k-best lattice decoders,” in IEEE International Symposium on
Circuits and Systems, 2008. ISCAS 2008, 2008, pp. 940-943.
A. Wiesel, X. Mestre, A. Pages, and J. Fonollosa, “Efficient
implementation of sphere demodulation,” in 4th IEEE Work-
shop on Signal Processing Advances in Wireless Communica-
tions, 2003. SPAWC 2003, 2003, pp. 36—40.

A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner,
and H. Bolcskei, “VLSI implementation of MIMO detection
using the sphere decoding algorithm,” IEEE Journal of Solid-
State Circuits, vol. 40, no. 7, pp. 1566 —1577, Jul. 2005.

S. Chen, T. Zhang, and Y. Xin, “Relaxed k-best MIMO signal
detector design and VLSI implementation,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol.
15, no. 3, pp. 328-337, 2007.

S. Mondal, A. Eltawil, C.-A. Shen, and K. Salama, “Design
and implementation of a sort-free k-best sphere decoder,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 18, no. 10, pp. 1497-1501, 2010.

N. Moezzi-Madani, T. Thorolfsson, and W. Davis, “A low-
area flexible MIMO detector for WiFi/WiMAX standards,”
in Design, Automation Test in Europe Conference Exhibition
(DATE), 2010, Mar. 2010, pp. 1633-1636.

F. Borlenghi, E. Witte, G. Ascheid, H. Meyr, and A. Burg,
“A 772mbit/s 8.81bit/nJ] 90nm CMOS soft-input soft-output
sphere decoder,” in Solid State Circuits Conference (A-SSCC),
2011 IEEE Asian, Nov. 2011, pp. 297-300.

