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Abstract

We present network intrusion detection (ID) mecha-
nisms that rely upon packet snooping to detect aberrant
behavior in mobile ad hoc networks. Our extensions, which
are applicable to several mobile ad hoc routing protocols,
offer two response mechanisms, passive — to singularly de-
termine if a node is intrusive and act to protect itself from
attacks, or active — to collaboratively determine if a node
is intrusive and act to protect all of the nodes of an ad-
hoc cluster. We have implemented our extensions using
the GloMoSim simulator and detail their efficacy under a
variety of operational conditions.

1 Introduction

Mobile ad hoc networks (MANETS) are fundamentally
different from their wired-side counterparts. MANETSs
provide no fixed infrastructure, base stations or switching
centers. Moreover, the nodes of a MANET are computa-
tionally constrained and have limited power. The routing
protocols utilized in MANETS are dependent on each node
serving as a router. Examples of these routing protocols
include: AODV [12], DSR [7], ZRP [4], and TORA [11] as
well as cluster based optimizations as described in [6], [8]
and [9].

The nature of MANETSs not only introduces new se-
curity concerns but also exacerbates the problem of de-
tecting and preventing aberrant behavior. Whereas in a
wired network an intruder could be a host that is either
inside or outside of the network and could be subjected
to varying degrees of access control and authentication, in
a MANET, an intruder is part of the network infrastruc-
ture. Moreover, at the outset, an intruder in a MANET
could be a trusted and integral component of the network
infrastructure and only later exhibit aberrant behavior.
Message mis-routing and message modification are the pri-
mary concerns in MANETS [13].

Existing ID for MANETS capitalize on the collaborate
nature of mobile ad-hoc routing. These mechanisms rely
upon promiscuous packet snooping to detect the mishan-
dling of data in mobile ad-hoc networks. Our work im-
proves and enhances existing mechanisms. Our research

also revealed that the routing protocols typically employed
by mobile ad-hoc networks lack sufficient functionality to
enable robust ID, hence we have added modules that pro-
vide the necessary functionality. These modules are appli-
cable to all of the routing protocols used in MANETS, not
just DSR.

Snooping protocols leverage two properties inherent in
most mobile ad hoc protocols. The first property is that
each node in the network maintains a list containing the
addresses of those nodes with which it is in immediate
proximity or on the path from a source to a destination.
The second property, as is the case in the 802.11 [5] and
MACAW [2] link layer protocols, is that a node is able to
“hear” the RTS/CTS negotiation of its neighbors. Accord-
ingly, each node that participates in the intrusion detection
process “smoops” on its neighbor’s transmissions in order
to ensure that they have not been modified or mis-routed.
The notion of “snooping” is also employed in DSR, which
is used for “reflecting shorter routes” as an optimization
of the route maintenance process.

In our extension, which is viable for DSR and other
ad hoc routing protocols, the snooping nodes listen to all
other nodes in their proximity. This is in sharp contrast
to both Watchdog [10] and Neighborhood Watch [3], which
only work with DSR, watching the forward node on the
patch from source to destination. We have experimented
with, and provide detailed results for, two response mech-
anisms. The passive response mode, where a node, upon
determining that another node is aberrant, will unilater-
ally cease interaction with that node. Although each node
acts independently, eventually the intrusive node will be
blocked from using all network resources. In the active re-
sponse mode, each node relies upon a Cluster Based hierar-
chy. When a node detects an aberrant neighbor it informs
its Cluster Head, who in turn initiates a voting procedure.
If the majority determines that the suspected node is in
fact intrusive, an alert will be broadcast throughout the
network and the intrusive node will be denied network re-
sources.

The remainder of this paper is organized as follows: Sec-
tion 2 details related work. Section 3 details our extension
and implementation of the ID Protocol for MANETS. Sec-
tion 4 presents the intrusion response mechanism. Section



5 details our addition to AODV’s neighbor table so that
it would support our needs. In Section 6 we detail our
experiments and their results and we conclude in Section
7 with future work.

2 Related Work

Watchdog, introduced by Marti et al. was the first
snooping ID protocol for MANETSs . Watchdog relies upon
DSR and each node participates by “watching” its down-
stream node, on the route from source to destination, to
ensure that it has re-transmitted the packet without mod-
ification. Marti et al. hold that if source routing is not
used then a misbehaving node could simply broadcast to a
non-existent node to fool the watchdog. While this is true,
packet modification is not covered up by simply broad-
casting to a non-existent node. To mitigate the effects
of a misbehaving node, Marti et al. introduce Pathrater,
which selects a path from source to destination based upon
a “reliability” metric, instead of the shortest path. This
approach, as observed in [3] relieves the malicious node
from the requirement of participating in the routing pro-
cess, which may be construed as a reward.

Buchegger and Le Boudec [10] build upon Marti et al.’s
work by replacing Watchdog with Neighborhood Watch,
which is also dependent upon DSR, and snoops its down-
stream neighbor. They introduce a Trust Manager, Rep-
utation System, and a Path Manager. Essentially each
node is required to run a finite state machine to calcu-
late trust, which in turn is used to rank the other node’s
reputation and then determine routes with the highest se-
curity metric. Buchegger and Le Boudec seemingly did
not consider the resource constraints imposed upon most
mobile ad hoc devices, nor did they provide analysis of
their protocol with respect to network performance.

We believe our work extends both of these efforts by ex-
panding the malicious detection to collaborate with rout-
ing protocols other than DSR, and offering a more robust
identification procedure of malicious activity in our cluster
voting scheme.

3 Snooping Protocol Extensions

We assume the presence of symmetric omni-directional
links within the ad hoc network. When a node that is
not on the path from source to destination is able to hear
transmissions of two intermediate nodes, A and B, that
are on the source route, it becomes a snooping or monitor
node for node B. Its ID function is to ensure that node
B does not alter the contents of the packet or misroute
the packet. It accomplishes this by comparing certain in-
formation contained in the packet p as it is inbound to
intermediate node B with the same information as con-
tained in packet p' as it is outbound from node B.

This section details the data structures and algorithms
maintained and executed at each node to facilitate our
Intrusion Detection and Response Protocol.

Figure 1 illustrates the scenario where node B snoops
on Node 3 by examining packet p as it is inbound to node

3 from node 2 and packet p’ as it is outbound from node
3 to node 4.
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Figure 1. Node A snoops on Node 2, Node B
shoops on Node 3, etc.

3.1 Data Structures

Each node employing our ID Protocol maintains four
data structures: ID Snoop Table, IDStatus Table, BadNode
Table and Threshold Table. For every packet snooped
the monitoring node makes an entry in its ID Snoop
Table, recording information which will be used to de-
tect intrusions. An entry in the ID Snoop Table is
uniquely identified by the SrcAddr, DstAdrr and the
PacketSeqNumber. Referring to Figure 1, when node B
is snooping on node 3, node 2 is the PrevHopAddr, node 3
is the Current HopAddr and node 4 is the NextHopAddr.

The monitoring node creates an entry in the IDStatus
Table for every node that it is snooping upon. This table
contains the total number of times that the monitoring
node has detected an intrusion of a particular class for a
particular node.

The Threshold Table holds threshold values for the at-
tack classes. When a node exceeds the threshold value for
a particular attack class, the protocol assumes that the
anomalous behavior displayed by the node is in fact mali-
cious and that link errors are not the cause of anomalies.

The BadNode Table holds the address of nodes that
have been deemed to be intrusive. Whenever a node re-
ceives any packet or request from a node that is listed in
the BadNode Table that request or packet is ignored. This
effectively denies the intrusive node access to any resources
in the MANET.



3.2 Algorithms

The Snoop (Packet p) method forms the core of the
intrusion detection protocol. All packets that the moni-
toring node receives (that are not explicitly addressed to
the monitor) are passed to this method. Accordingly, the
Snoop algorithm does one of the following:

1. Ignores non-data carrying packets.

2. If a Route Error Packet is detected, AND the ID Snoop
Table contains an entry (or entries) for the node being
reported as unreachable, the entry (or entries) are removed
from the ID Snoop Table.

3. If there is an entry for the packet in the ID Snoop Table
(implying that the packet was snooped during its previ-
ous hop), AND the CurrentHopAddr is also in the node’s
Neighbor Table then run PerformID (Packet p) and
MakeEntry (Packet p) on the packet.

4. If there is an entry for the packet in the ID Snoop Table,
implying that the packet was snooped during its previous
hop, run PerformID (Packet p) on the packet.

5. If there is no entry for the packet in the ID Snoop Table
AND if the monitor node has an entry for the next hop
recipient in its neighbor table (implying that it will be able
to hear the next hop relay the packet) make an entry in
the ID Snoop Table by running MakeEntry (Packet p),
on the packet.

6. If there is no entry for the packet in the ID Snoop Table
AND if the monitor node does not have an entry for the
next hop recipient in its neighbor table, drop the packet.

As stated, Snoop() calls the MakeEntry() and
PerformID(). MakeEntry() creates an entry in the ID
Snoop Table, storing the relevant header and routing in-
formation. The TIM Etamp field in the ID Snoop Table
is used to detect message mis-routing attacks where the
node fails to forward the packet and to clear the table of
“old “ entries.

The Per formID(p') method tests for message modifi-
cation attacks and message mis-routing attacks. It does
so by comparing the entry in the ID Snoop Table derived
from the inbound packet p to information derived from
the outbound packet, p’. To test for a suspected message
modification attack, Per formID(p') compares the check-
sum in the packet p’ to that which was in packet p, as is
recorded in the checksum field of the corresponding entry
in the ID Snoop Table. To test for the altered route mis-
routing attack it ensures the route specified in the route
path was followed. PerformID() makes entries into the
IDStatusTable when it detects a node exhibiting anoma-
lous behavior.

To test for message mis-routing attacks, for each time
period T the monitor node calls the Per formMisRoute()
method to test for entries in the ID Snoop Table that have
exceeded the TimeQutPeriod specified in the Threshold
Table. Whenever a node displays anomalous behavior by
dropping or mis-routing a packet the MisRouteCount en-
try in that node’s entry in the ID Status Table is incre-
mented.

In addition to testing for message mis-routing attacks,
PerformMisRoute() also clears old entries in the ID
Snoop Table. If, in the event that a node moves out
of range of its “monitoring” node after it has received a
packet but before it forwards the packet it could appear
to the monitoring node that the packet was maliciously
dropped. PerformMisRoute() tests and corrects for this
condition.

Depending on which approach is being used (passive or
active), the RAISE Alarm() method in the above algo-
rithm results in one of two different responses. We detail
the responses in the following section.

4 Response to Intrusions

Our ID protocol allows for either an active or passive
response to intrusions. With either response, the outcome
is the isolation of the offending node from the network. In
the passive mode a node makes a unilateral decision based
on its own observations of anomalous behavior. In the
passive mode the more frequent and aberrant the behavior
on the part of an intrusive node, the sooner the intrusive
node will be isolated and denied access to the underlying
network infrastructure.

The active response mode offers a higher level of assur-
ance than does the passive mode. The increased assurance
level is due to a majority voting scheme and consequently
the flooding of the intrusive node’s identity throughout the
network. The active mode, however, is more complex to
implement.

4.1 Passive Response

Once the threshold value, which mitigates the effects of
link error, for message mis-routing or message modification
has been exceeded, an alarm is raised. In the passive mode,
the node that raised the alarm removes the intrusive node
from its Neighbor Table and will no longer participate in
route discoveries, Hello Messages or collaborative routing
with the intrusive node. Additionally, the intrusive node’s
address is recorded in the BadNode Table. As we will show
in the section detailing our experiments, the more dense
the network, the more nodes that simultaneously declare
a node intrusive and prevent the malicious node from uti-
lizing network resources. If the node in question continues
to act intrusively each node in the network will eventually
make a unilateral decision to disassociate itself with the
intruder.

4.2 Active Response

Tay et al. [6] propose the Cluster Based Routing Pro-
tocol (CBRP) where nodes form clusters, each with an
elected cluster head. The role of the cluster head is to op-
timize the route discovery process. We utilize the cluster
heads to enable a voting protocol and active responses to
intrusions.

When a node raises an alarm it forwards that alarm
to all of its cluster heads. In turn, the cluster heads ini-
tiate the voting scheme described below. It is important
that no node be able to spoof identities of other nodes,



as this will enable it to foil the voting scheme by gener-
ating spurious votes. Accordingly, we assume that some
kind of mechanism to authenticate each node is available.
Secondly the voting scheme may fail if the majority of the
cluster heads are in fact malicious nodes. If this were to
be the situation, the malicious cluster heads could vote in
an incorrect manner and foil the protocol. However, we
feel that the likelihood of malicious nodes being elected as
cluster heads to the majority of the clusters is relatively
small.

4.2.1 Data Structures. Each cluster head participat-
ing in the voting scheme is required to maintain the fol-
lowing four data structures: Neighbor Cluster Head Infor-
mation, Two-hop Neighbor Information, Suspect Table,
and Voting History Table. The first two data structures
are available from the underlying Cluster-Based Protocol
while the remaining two are exclusively used for the voting
process.

The last two data structures are required to avoid mul-
tiple instances of the same voting process from being initi-
ated for a single suspected node. These tables also prevent
a single monitoring node from raising an alarm at different
cluster heads and all of them voting positively based on the
information obtained exclusively from a single monitoring
node.

4.2.2 The Voting Protocol. The voting protocol em-
ploys two key strategies: Distributed Voting and Majority
Voting. They are detailed as follows:

1. Distributed Voting: Whenever the voting process is ini-
tiated, all of the participating nodes send their votes to
all other participating nodes. Each node, on receipt of the
votes, decides locally the outcome of the vote. This avoids
the need for a voting coordinator.

2. Majority Voting: Any vote is successful if a majority of
the participating nodes vote positively.

The Protocol:

1. When the threshold is reached at a node, the node sends
an alarm to all of its cluster heads. This alarm contains
the identity of the monitoring node and the identity of
the suspected node. If a node suspects its cluster head of
being an intruder it will only send the alarm information
to its alternative cluster head, if one exists. If the node
does not have an alternative cluster head it will forward
the alarm information to a cluster head that is two-hops
away. This two-hop information is contained in its Cluster
Adjacency Table as described in [6].

2. When a cluster head receives intrusion information it adds
this information to its Suspect Table. This information
is used to respond to voting requests from other cluster
heads.

3. The cluster head checks the Voting History to ascertain if
a vote is currently in process for this suspect node:

(a) If the cluster head finds that a vote is in progress it
does not initiate a new round of voting.

(b) If no vote is currently in process for the suspect
node the cluster head initiates the voting process. It
sends a VOTE-REQ packet to all its neighboring cluster
heads. The VOTE-REQ includes a list of cluster heads
that are to participate in the vote, the identity of
the suspect node, and the identity of the monitoring
node which raised the alarm.

4. When a cluster head receives a VOTE-REQ containing the
same suspect node for which it has just initiated a vote
process, it resolves the conflict by giving preference to the
initiator with the higher address. The non-initiating clus-
ter heads vote in the following manner:

(a) Vote positive if it finds an entry in the suspect ta-
ble for the same suspected node but reported by a
different monitoring node from that included in the
VOTE-REQ.

(b) Vote neutral if the suspected node is not in it’s two
hop neighborhood. This means that the suspected
node is not a neighbor of any adjacent cluster. Hence
this cluster head cannot judge the behavior of the
suspected node.

(c) Vote negative if the suspected node is in its two
hop neighborhood but does not find an entry in the
suspect table for that suspected node. This indi-
cates the members of this cluster have not noticed
anything malicious about the suspected node even
though the suspected node is a neighbor to some of
the members.

5. Every participating cluster head decides the outcome of
the voting independently. The vote is positive if it has
received a majority of votes in the affirmative, where a
majority is calculated from the number of participating
cluster heads listed in the original VOTE-REQ. Otherwise
the vote is deemed to be negative.

6. If the vote is deemed positive at a cluster head it sends out
a FINAL-RESPONSE packet which is flooded throughout the
network. This FINAL-RESPONSE is to instruct all the nodes
in the network to stop communicating with the malicious
node. It includes the identity of the malicious node and
a list of cluster heads that voted positive in the voting
process.

7. A node in the network that is unaware of this process
cannot arbitrarily trust a single FINAL-RESPONSE message
because the message could have been sent by a mali-
cious node as a denial-of-service attack. Hence a node,
upon receiving the FINAL-RESPONSE, waits to receive the
FINAL-RESPONSE from enough participating cluster heads
to conclusively verify positive results.

8. Upon receiving FINAL-RESPONSE from all of the required
cluster heades, a node enters the malicious node in its
BadNode Table.

5 Protocol Modules

We have extended our base snooping algorithm to work
with other routing schemes such as AODV. While each
packet does not carry the route from source to destina-
tion, a snooping node can determine if the current hop is
the final destination. This allows the snooping node to lis-
ten for the packet to be forwarded without modification.



Obviously, a mis-route can not be determined, but any
modification to the packet, or packet dropping, can easily
be determined and logged.

In order to implement the algorithms, two additional
pieces of support code needed to be in place. It is impor-
tant to recognize that performance of the ID algorithm is
only as good as the underlying protocol that keeps track
of the nodes current one hop neighbors. The only rout-
ing protocol in GloMoSim having a Neighbor Table was
AODV. Unfortunately, the table was only updated when
nodes are expected to route traffic. The fundamental basis
for our algorithms is knowing current one hop neighbors
in order to determine correct packet handling. The imple-
mentation of AODV’s neighbor table was determined to
be woefully inadequate for our purposes.

We chose to implement a Neighbor function that peri-
odically sends Hello messages to announce its presence.
The messages are received and tracked in a one hop Neigh-
bor Table. If a node does not receive a Hello packet from
one of its neighbors for three consecutive Hello periods,
then the neighbor is assumed to have moved out of range
and is removed from the Neighbor Table.

The second piece of code added was a dynamic clus-
tering scheme based on the Distributed and Mobility-
Adaptive Clustering (DMAC) algorithm as described in
[1]. The algorithm was slightly modified to use the Neigh-
bor function to determine changes in Clusters, and initiate
the appropriate actions (i.e. new Cluster Head elections).
It should be noted that we are using DMAC to maintain a
cluster hierarchy for voting, and not as a routing protocol.

6 Experiments

The algorithms were simulated using GloMoSim ver-
sion 2.03. We used the simulation environment detailed in
[10] as a starting point. The following subsection details
our simulation environment, metrics, and experimental re-
sults.
6.1 Simulation Environment

1. Grid Size: 2,000 by 2,000 meters.

2. Number of Nodes: 50 (16 nodes involved in constant bit
rate (CBR) connections, and we varied the number of bad
nodes).

3. Packet Traffic: 10 CBR connections are generated simul-
taneously, where 4 nodes are source for two streams each,
and 2 nodes were the source for a single stream each; des-
tination nodes only receive one CBR stream.

4. Mobility: Random Waypoint Model (max speed 20 meters

per sec., pause time 15 sec.).

Routing Protocol: AODV or DSR.

MAC Layer: 802.11, peer-to-peer mode.

Radio: “no fading” radio model, with range of 376 meters.
Simulation Time: 200 sec.

Dropped Packet Time Out: 10 sec.

10. Dropped Packet Threshold: 10 packets.

11. Clear Delay (event expiration timer): 100 sec. (e.g.: the
amount of time that a node considers an event without
coming to a final determination).
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12. Misroute Threshold: 5 events. Detectable only in routing
protocols using Source Routes such as DSR.

13. Modification Threshold: 5 events.

14. Neighbor Hello period: 30 seconds.

6.2 Metrics

We measure False positives, True positives, and packet
throughput each as a function of the percentage of bad
nodes in the network. False positives and True positives
are counted as a single tally for each node making the
identification. By using this method there may be greater
than 50 total False or True positives counted. All results
are averaged over a number of simulation runs.

6.3 Results and Discussion

Results were obtained by averaging 100 simulation runs
for 200 seconds each. The plots in Figure 2 show the true
positives, false positives, and successfully delivered packets
as a percentage of the number of bad nodes in the network
for DSR (top row) and AODV (bottom row) respectively.
Node density of both malicious and normal nodes is a sig-
nificant factor in rates of true positives. For a malicious
node to be detected, it must both act maliciously and be
in proximity to a good node in order to be detected.

As expected, the performance of the both the Passive
and Active response protocols improved, in respect to both
True Positives and False Positives, as the density of the
malicious nodes increased. Likewise, and as expected, the
number of successfully delivered packets decreased as the
density of malicious nodes increases. For the case of 0 bad
nodes, this is attributable to the increased bandwidth for
the current implementation of the voting mechanism.

According to [10] there are two contributing factors that
influence the rate of false positives — speed and collisions.
The node’s speed can cause monitoring nodes to believe
packets have been dropped, when the mobiles move out of
range prior to packet relaying. Collisions at the monitoring
node may also lead to a nodes failure to detect a packet
relay.

7 Conclusions and Future Work

We have extended our base snooping algorithm to work
with not only DSR, but also AODV. While each packet
does not carry the route from source to destination in
AODV, a snooping node can determine whether the cur-
rent hop is the final destination. This allows the snooping
node to listen for the packet to be forwarded without mod-
ification. Obviously, a mis-route can not be determined,
but any modification to the packet, or dropping of the
packet can easily be recognized and logged.

The implementation of both the Passive and Active ID
algorithms in GloMoSim led to a number of parameters
that can be adjusted. The data obtained for this paper was
with our best guess at realistic values for these parameters.
As future work, we will optimize these parameters to effect
better performance as well as varying node density.
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Figure 2. Simulation Results of the Active and Passive Response Protocols for DSR (top) and AODV (bottom)
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