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Abstract

As use of non-TCP applications such as streaming me-
dia and network games increases, the potential for unfair,
misbehaving flows and the threat of congestion collapse
also increases. This paper introduces a statistical traffic
filtering technique, Stochastic Fairness Guardian (SFG),
that effectively regulates misbehaving flows with minimal
traffic state information. SFG can be used in conjunction
with an active queue management (AQM) mechanism to im-
prove both network protection and efficiency. Simulations
are used to evaluated SFG and the integration of SFG with
a proportional-integral (PI) controller in comparison with
other similar statistical flow management mechanisms in-
cluding RED-PD, SFB and CHOKe. The SFG-PI combi-
nation outperforms other mechanisms in terms of fairness,
queuing delay, stability and TCP performance over a wide
range of realistic traffic loads and conditions.

1 Introduction

While TCP has end-host congestion control mecha-
nisms designed to manage Internet congestion, TCP can
respond slowly to congestion due to the end-host conges-
tion detection that occurs only when router buffers over-
flow. This wastes network bandwidth and lowers network
goodput. The limitations of end-host only congestion con-
trol can be relieved by adding active queue management
(AQM) [3, 11, 14, 15, 17, 18, 20] with explicit congestion
notification (ECN) [28] to network routers. AQM with ECN
provides prompt congestion feedback and adds efficiency
without requiring packet drops.

Despite the robustness of TCP, emerging Internet appli-
cations such as streaming media and network games often
use UDP as their transport protocol. As the use of non-
TCP applications increases, the Internet must support more
flows with improper or no end-to-end congestion control.
This trend carries the potential for significant imbalance in
the link capacities used by TCP and UDP flows that threat-

ens Internet stability. In the worst case, an extrapolationof
this trend could lead to Internet congestion collapse [6].

Router-based approaches to handling unresponsive
flows can be generally divided into scheduling-based
and preferential-based packet dropping mechanisms.
Scheduling-based techniques, such as Fair Queuing
(FQ) [10] and Stochastic Fair Queuing (SFQ) [25], allocate
a separate queue to each flow or group of flows passing
through a router’s outgoing link and transmit packets
from the queues in round-robin fashion. Scheduling-based
mechanisms are generally expensive to implement due to
the complexity of the link/packet scheduling. Moreover,
it may be undesirable to combine a scheduling-based
mechanism with an AQM congestion feedback controller
due to the redundancy inherent in providing queue buffers
needed to support both mechanisms.

Preferential-based packet dropping techniques monitor,
detect and regulate misbehaving flows before forwarding
packets to an outbound link queue that may or may not
be managed by a separate AQM controller. Preferential-
based dropping mechanisms can be further categorized by
their complexity and the amount of state information main-
tained. The most complex mechanisms, including Fair Ran-
dom Early Drop (FRED) [22], Core Stateless Fair Queuing
(CSFQ) [30] and Rainbow Fair Queuing (RFQ) [7], require
per-flow state information. Since per-flow state information
does not scale well for high capacity networks with many
flows, this is a significant weakness for FRED. However,
CSFQ and RFQ reduce this problem by requiring per-flow
state information only at DiffServ [4]-like edge routers.

Other preferential-based dropping techniques do not re-
quire an edge-core architecture for scalability. Random
Early Detection with Preferential Dropping (RED-PD) [23],
Stochastic Fair Blue (SFB) [12] and CHOKe [26] use sta-
tistical flow management to address scalability. RED-PD
and SFB employ statistical flow monitoring to identify and
regulate misbehaving flows. RED-PD uses RED congestion
notification history and SFB employs a Bloom filter [5] to
identify potentially misbehaving flows. Although statisti-
cal flow monitoring can significantly reduce the flow state
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information needed to be maintained when a small num-
ber of flows account for the majority of the Internet traf-
fic [27], the mechanisms used to identify misbehaving flows
are complex and may induce significant processing over-
head. While CHOKe does not require any flow state in-
formation, the stateless design makes it difficult to achieve
target per-flow bitrates and well-behaved flows may be un-
luckily punished under light traffic loads.

This paper introduces a novel statistical traffic filtering
technique, the Stochastic Fairness Guardian (SFG), that reg-
ulates misbehaving flows with minimal traffic state informa-
tion. SFG uses a multi-level hash scheme to place incoming
flows into different flow groups at each level and approxi-
mates a proper packet drop rate for each flow by monitor-
ing the incoming traffic rates for the groups to which the
flow belongs. SFG used in combination with an AQM con-
gestion feedback controller improves both network protec-
tion and efficiency. SFG is evaluated in conjunction with
the proportional-integral (PI) controller [18]. The combi-
nation of SFG and PI (SFG-PI) is compared against RED-
PD, SFB and CHOKe, and Drop-Tail queue management
through simulations. The results show that SFG-PI outper-
forms other mechanisms in terms of protection, stability,
queuing delay and overall TCP performance under a wide
range of traffic mixes. The simulations also demonstrate
that SFG with Drop-Tail queuing provides simple and ef-
fective fairness protection that complements the weakness
of Drop-Tail alone.

The paper is organized as follows: Section 2 describes
the design of SFG; Section 3 provides SFG configuration
guidelines; Section 4 evaluates the performance of SFG and
SFG-PI using simulations; and Section 5 presents conclu-
sions and possible future work.

2 Stochastic Fairness Guardian

Stochastic Fairness Guardian (SFG), a highly scalable
statistical traffic filter, uses a small amount of state infor-
mation to provide stochastically fair network resource allo-
cation and network protection. Using a pre-queue manage-
ment mechanism, SFG preferentially drops incoming pack-
ets in proportion to a flow’s approximated unfair resource
usage. In SFG, a flow is an abstract entity identified by
a combination of source/destination address, protocol and
port numbers. While flow monitoring and accounting is
challenging for RED-PD [23] and SFB [12] due to deter-
mining the lifetime of a flow, SFG does not need to monitor
nor account for individual flows to filter traffic. Thus, in the
rest of the paper the terms “incoming packet” and “incom-
ing flow” are used interchangeably.

To approximate and regulate unfair network usage, SFG
uses a multi-level traffic group management technique.
SFG, shown in Algorithm 1, clusters incoming flows into

Algorithm 1 Stochastic Fairness Guardian (SFG)
Everyds seconds:
1: for i = 0 to L− 1 do
2: for j = 0 to N − 1 do
3: prob[i][j]← (bytes[i][j]− dsC/N)/bytes[i][j];
4: bytes[i][j]← 0; /* update dropp for all bins */
5: end for
6: end for

Everypacket arrival:
7: p = 1;
8: for i = 0 to L− 1 do
9: j = hash(i, packet);

10: p = min(p, prob[i][j]); /* take min dropp seen so far */
11: bytes[i][j]← bytes[i][j] + sizeof(packet);
12: end for
13: if (uniform(0, 1) ≤ p) then
14: drop(packet);
15: return;
16: end if
17: queue(packet);

Functions:
hash(key, packet) Returns hash (<N ) for given key and packet.
drop(packet): Drops the packet.
queue(packet): Passes the packet to the queue manager.

Variables:
prob[L][N ], bytes[L][N ], i, j, p

Parameters:
C: link capacity (bytes per second)
L: number of levels
N : number of bins in a level
ds: measurement interval

N different traffic groups in each ofL levels using an inde-
pendent hash function for each level. SFG maintainsN x L
bins, with each bin in a level assigned an equal share (1/N )
of the outbound link capacity (C). Everyds second epoch,
SFG computes and updates the packet drop probability for
each bin (prob[i][j]) by taking the incoming traffic rate of
the last measurment epoch (bytes[i][j]/ds) as an estimate of
this epoch’s packet arrival rate for the flows in the bin, and
setting the drop probability such that no more thanC/N
capacity is used by a bin.

Upon packet arrival, SFG looks up the packet drop prob-
abilities for theL bins to which the packet belongs and ap-
plies the minimum drop probability to the packet. Choosing
the minimum drop probability protects TCP flows that share
one or more accounting bins with other high bitrate flows.
Figure 2 shows an example of SFG selecting drop probabil-
ities for three different flows, where rounded-corner boxes
represent the accounting bins and shaded boxes represent
the bitrate of each flow. In this example, packets offlow1
are dropped with a probabilityp = 0.03, the minimum drop
probability of all the bins to whichflow1 belongs. Simi-
larly, flow2 getsp = 0.02 andflow3 getsp = 0.00.

A drawback of using static hash filters for flow group as-
signments is that a well-behaved flow that unluckily shares
all its bins with misbehaving flows can be unfairly treated
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Figure 1. An Example SFG showing three
flows. The size of the shaded blocks indi-
cate the flow bitrates. The drop probability
applied to each flow is indicated on the right.

for the lifetime of the flow. SFG eases this concern by a
simple modification to Algorithm 1 such that two hashes
in each level are used, one for the drop probability access
for the current epoch and the other for the control data col-
lection for the next epoch. Thus, a flow assigned to pol-
luted bins in all levels in the current epoch can be re-hashed
into different bins in the next epoch. This fairness enhance-
ment comes at little additonal cost, since SFG flow group
managment for the current epoch is independent of previ-
ous epochs.

SFG shares structural similarities with the Bloom filter
technique used in SFB [12] in that both mechanisms use
multi-level hashing to group flows. However, the major dif-
ference is that the Bloom filter in SFB is used as an unre-
sponisve flow identification tool, while SFG uses Bloom-
like stochastic fair resouce management to prevent a few
misbehaving flows from dominating the outbound link uti-
lization. By periodically updating packet drop probabilities
for the bins, SFG inherently has less overhead than SFB
with Blue [11] inside each bin where the congestion noti-
fication probabilities of the relevent Blue bins are updated
for every arriving packet.

Combining SFG with an AQM enhances TCP perfor-
mance by avoiding packet drops through the AQM while
still providing network protection through SFG. The next
section provides SFG configuration guidlines for settingL,
N andds, and addresses issues associated with combining
SFG with a queue manager to improve performance.

3 Configuration

This section develops a false positive model to esti-
mate the probability of well-behaved flows being incor-
rectly identified by SFG as a misbehaving flows. SFG con-
figuration guidelines are provided with a practical SFG in-
tegration mechanism that can be applied to both a Drop-Tail
queue and an AQM to maximize the benefit of SFG.

An analytic model is developed to determine the false
positive flow punishment ratio for SFG, i.e. how often a
well-behaving flow is unfairly handled because it shares all
of its bins with misbehaving flows. Model parameters in-
clude: L - the number of levels supported by SFG ,N -
the number of bins in each level, andB - the number of
misbehaving flows in the system. The first step is to deter-
mine the expected number of bins occupied by one or more
misbehaving flows (referred to as polluted bins) in a level.

Let T (B, i) be the number of ways to distributeB flows
into i bins such that no bin is empty, whereB > i. This
well-understood probability problem is computed as fol-
lows:

T (B, i) =

i
∑

k=0

(−1)k

(

i

k

)

(i − k)B (1)

Define Pw(N, B, i) as the probability that exactlyi bins
from the N total bins are polluted withB misbehaving
flows. ComputingPw, requires determining the total num-
ber of possible instances of the event. LetW (N, B, i) be
the number of ways to pollute exactlyi bins fromN total
bins withB misbehaving flows. This is equal to the number
of ways to choosei bins fromN total bins and distributeB
flows into the choseni bins such that no bin is empty. Thus,
Pw(N, B, i) is determined by dividingW (N, B, i) by the
number of ways to putB flows intoN bins:

Pw(N, B, i) =
W (N, B, i)

NB
=

(

N

i

)

T (B, i)

NB

Let Ew(N, B) be the expected number of polluted bins in
a level, givenN total bins andB misbehaving flows.Ew is
then the sum over all possible number of polluted bins times
its occurrence probabilityPw(N, B, i):

Ew(N, B) =

B
∑

i=0

(i Pw(N, B, i))

Knowing Ew(N, B), the false positive probability,
Pfp(L, N, B), that a well-behaved flow shares its bins in
all levels with misbehaving flows can be computed as:

Pfp(L, N, B) =

(

Ew(N, B)

N

)L

=

(

1

NB+1

B
∑

i=0

i

(

N

i

)

T (B, i)

)L

(2)
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Equation 2 can be used as a secondary SFG configuration
tool to find an appropriate number of levels (L) that lowers
the false positive error rate after configuring the number of
bins per level (N ) based on an expected maximum number
of misbehaving flows (̂B). A misbehaving flow in this con-
text is a flow that is not TCP-friendly [13], where a TCP-
friendly flow’s data rate does not exceed the maximum rate
of a conformant TCP connection under the same network
conditions. OnceN is determined, the rate limit for misbe-
having flow classification becomes apparent, i.e.C/N and
B̂ can be estimated.

A primary factor in choosingN , the number of bins in
a level, is the maximum per-flow bitrate that SFG will per-
mit during congestion. ChoosingN directly determines the
maximum allowed per-flow bitrate (C/N ) for a fixed ca-
pacityC. If N is too small, SFG will not filter misbehaving
flows that have a low flowrate and will also have a high false
positive flow punishment ratio. IfN is too large, the small
maximum flow rate allowed can affect link utilization at low
traffic loads dominated by a few greedy flows and prevent
applications with bandwidth requirements larger thanC/N
from utilizing unused capacity.

One way to address this SFG configuration issue is to
only enable SFG when the outbound link is congested,
while carefully settingN such that the maximum allowed
per-flow rate is small enough to effectively filter misbe-
having flows and greater than or equal to a TCP-friendly
rate [13] at the SFG enabling/disabling thresholds. This
approach offers a static, maximum flow rate during con-
gestion regardless of the actual load level. A more so-
phisticated approach is to dynamically adjustN every con-
trol/measurement epoch using a TCP-friendly rate estima-
tor. The TCP-friendly rate can be estimated using the con-
gestion notification rate (CNR) measured at the router and
with the average system round-trip time included as an extra
SFG configuration parameter. This dynamic configuration
approach is elegant but has increased complexity because
the SFG hash functions will have to be adjusted frequently
as N changes. This paper explores the feasibility of the
simple static on/off approach and leaves the dynamic bin
adjustment idea as future work.

To provide an on/off mechanism for SFG, a high/low wa-
termark mechanism (mh, ml) for the average CNR estimate
is used. To estimate the average CNR, SFG takes a weighted
average of the CNR every epoch, where CNR (pn) is com-
puted as the relational sum of the packet drop rate of SFG
(pd) and the congestion notification probability of the queue
manager (pe):

pn = pd + (1 − pd) pe (3)

where,pe is measured in terms of the queue overflow packet
loss rate for a Drop-Tail queue, or explicitly reported by
the AQM queue manager. For evaluation, SFG is combined

with a PI controller [18] (SFG-PI) by taking the CNR com-
puted by PI aspe.

The SFG configuration process is illustrated by exam-
ple. Settingmh = 0.02 and ml = 0.01, SFG assumes
congestion when CNR is over 2% and under 1%, respec-
tively. The maximum allowed per-flow rate enforced by
SFG at congestion can be determined by computing the low
boundary TCP-friendly rate at the low watermark using a
TCP-friendly rate formula from [13]:

Ttcp ≤ 1.5
√

2/3 S

τ
√

pn

(4)

whereTtcp is the upperbound TCP-friendly rate,S is aver-
age packet size andτ is estimated system round-trip time.
By settingS = 1500 bytes, a typical MTU, andτ = 300
ms, a value chosen from a valid range of average round-trip
times [8, 19],Ttcp is 0.5 Mbps. To achieve this maximum
allowed per-flow rate, SFG should setN = 20 (C/Ttcp) for
a 10 Mbps output link.

After settingN , the minimum number of levels (L) to
provide an optimal false positive error rate is determined
using Equation 2 given a range of the expected number of
misbehaving flows (̂B). B̂ can be estimated from exist-
ing Internet measurement studies, such as [24] that reports
about 10% of the traffic is UDP traffic. Based on this statis-
tic, an average of 1 Mbps UDP traffic is expected for a 10
Mbps link. Assuming all the UDP bandwidth is potentially
misbehaving, medium quality video, the typical bitrate will
be about 300 Kbps. Thus,̂B is about 3 to 4 misbehaving
flows for a 10 Mbps link. If the UDP flows are assumed to
be low quality 56 Kbps video streams, a 10 Mbps link may
carry as many as 17 misbehaving flows.

Figure 2 plots the false positive error rates of anN = 20
system, forB̂ = 1, 5, 10, 15, to find the number of levels
that reduce the per-packet processing overhead from hash-
ing and the false positive error rates. Figure 2 shows that
L = 3 provides both a low packet processing overhead and
a low false positive error rate for the selected range ofB̂.
For example,Pfp(3, 20, 5) ≈ 0.01 andPfp(3, 20, 10) ≈
0.06 indicates that the chance that a well-behaving flow is
unfairly treated in an epoch by SFG withL = 3 andN = 20
is about 1% when̂B = 5 and about 6% when̂B = 10. Sim-
ilarly, Pfp(3, 20, 15) ≈ 0.15 shows that the chosen SFG
setting can also offer relatively low false positive error rates
for the higher range of̂B.

Assuming each bin requires a 4-byte integer for count-
ing bytes received and a 8-byte double-precision floating
number for storing the drop probability, the router mem-
ory requirement for a 10 Mbps SFG link withL = 3 and
N = 20 is 720 bytes per output port (3 levels× 20 bins×
12 bytes/bin). Similarly, a 10 Gbps link with an equivalent
SFG setting ofL = 3 andN = 20, 000 requires only 720
Kbytes of router memory per output port.
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Figure 2. False Positive Probability (N = 20)

The last SFG parameter to discuss is the con-
trol/measurement epoch length (ds). Settingds to a cou-
ple of seconds (ds is set to 2 seconds in this investigation),
is recommended as this is approximately twice the upper-
bound average round-trip time seen on the Internet [8, 19].
This avoids control error due to insufficient control data
acquisition and minimizes congestion control interference
with the AQM controller. Considering the long flow life-
times of potentially misbehaving flows such as streaming
media and network games, the large epoch length, and
hence slow response time is acceptable. A more respon-
sive system would pay a high price in terms of fairness,
efficiency and link utilization for packet drops caused by
inaccurate SFG control.

4 Evaluation

This section compares the performance of SFG (with
Drop-Tail queuing) and SFG-PI (with PI queuing AQM
management), with RED-PD [23], SFB [12], CHOKe [26]
and Drop-Tail through detailed simulations. The NS simu-
lator is used to model realistic traffic conditions by includ-
ing long-lived FTP flows (varying in number over time to
induce a range of offered loads), background Web traffic,
and reverse flows (which can result in ack compression).
The NS distribution comes with source code for the PI con-
troller and RED-PD, and makes available the source code
for SFB as contributed code. We extended NS to support
CHOKe, SFG and SFG-PI.

The simulations utilize a dumbell network topology with
a bottleneck link capacity of 10 Mbps and a maximum
packet size of 1000 bytes. Based on measurements in [19],
round-trip link delays are randomly uniformly distributed
over the range [60:1000] ms. The physical queue size at
the bottleneck router is fixed at 500 Kbytes, approximately
equal to the bandwidth-delay product, in all cases.

The settings for the parameters of the various statistical
preferential drop and AQM mechanisms are based on the
authors’ recommendations. The RED settings are: mini-
mum and maximum thresholds of 50 and 300 respectively,

maximum drop probability of 0.15,Wq = 0.002, and the
gentle option enabled. The additional RED-PD settings in-
clude: a target system round-trip time of 100 ms that is used
to determine the epoch length for monitoring and for the
TCP-friendly rate, flow monitor history window of 5, mini-
mum time to un-monitor a monitored flow and its drop rate
threshold of 15 seconds and 0.005, respectively, and max-
imum drop probability increment step of 0.05. CHOKe,
which works in conjunction with RED, is set to divide
RED’s minimum and maximum queue threshold range into
5 even subregions and apply2i+1 drop comparisons for an
incoming packet, wherei = {0, 1, 2, 3, 4} is the subregion
ID.

For SFB, the number of levels and bins are set toL = 3
and N = 20, the unresponsive detection CNP threshold
is set to 0.98, and the penalty box time is set to 15 ms.
SFB switches hash functions every 20 seconds. For Blue
inside each SFB bin, the CNP increment step is 0.005 and
the decrement step is 0.001 with a freeze time of 100 ms.

For the PI controller, proportional constantKp = 0.71×
10−5 and integral constantKi = 2.8116× 10−5 were cho-
sen to meet TCP system stability criteria in [18] with target
queue length ofq0 = 0. Refer to [9] for the detailed PI
congestion controller configuration. For SFG, based on the
analysis in the previous section, the on/off thresholds are
mh = 0.02 andml = 0.01, the control/measurement inter-
val ds = 2 seconds, the number of levelsL = 3 and the
number of binsN = 20.

All simulations use ECN enabled NewReno TCP for
both the long-lived FTP flows and the Web sessions. Each
simulation has 50 reverse direction bulk transfer FTP flows
and 300 forward direction background Web sessions (using
the Webtraf code built into NS) that start evenly distributed
during the first 30 seconds. Based on settings from [2, 16],
each Web session requests pages with 2 objects drawn from
a Pareto distribution with a shape parameter of 1.2 and an
average size 5 Kbytes. The Web sessions have an expo-
nentially distributed think time with a mean of 7 seconds,
which results in an average utilization of about 2.5 Mbps
of the 10 Mbps capacity, a fraction typical of some Inter-
net links [29]. Each simulation has forward direction bulk
transfer FTP flows. To test all the mechanisms under dy-
namic traffic loads, the number of forward direction FTP
flows varies every 200 simulation seconds from 10-50-100-
200-400 flows and then back down from 400-200-100-50-
10 flows.

To more intuitively characterize the degree of conges-
tion experienced by the link beyond simply the number of
flows, the Drop-Tail queue simulation with the above net-
work settings was run with only the Web traffic, varying the
number of Web session from 1200 to 1800, and recording
the packet drop rate for each load. Subsequently, the con-
gested link bandwidth was changed from 10 to 100 Mbps
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and the simulation re-run to measure the offered traffic rate
for each number of Web sessions under a capacity uncon-
strained condition. The offered traffic rates were then con-
verted to offered loads in relation to the 10 Mbps link ca-
pacity, and plotted in relation to the packet drop rates mea-
sured for the same number of Web sessions under the 10
Mbps link. Figure 3 shows the linear relationship between
the Drop-Tail packet drop rate and offered load.

The offered loads given as a function of the Drop-Tail
packet drop rates are useful for characterizing the load cre-
ated by the TCP traffic mix (i.e. forward direction FTP,
backward direction FTP, and background Web traffic), by
converting the load of the mixed TCP traffic expressed in
terms of the number of FTP flows into the equivalent Web
offered traffic load expressed in terms of the packet drop
rates of a Drop-Tail queue. Thus, the equivalent offered
loads for the TCP traffic mix when the number of forward
direction FTP flows is 10, 50, 100, 200 and 400 are about
1.0, 1.1, 1.2, 1.4 and 1.7 respectively. This means, for ex-
ample, that when the number of FTP flows is 400, the con-
gested link is experiencing about 1.7 times the offered load
it can handle without having to drop any packets.

While an offered load of 1.7 is probably beyond any re-
alistic load for most routers on today’s Internet, this high
load serves as a stress test of the various preferential drop-
ping and AQM mechanisms, showing insight into how they
handle the traffic in terms of fairness, throughput, stabil-
ity, queuing delay, packet and byte loss rate, and Web per-
formance. RED-PD, CHOKe, SFB, SFG and SFG-PI are
evaluated using the TCP traffic mix, in comparison with
Drop-Tail and PI controlled queue management mecha-
nisms without a preferential dropping mechanism.

4.1 TCP Traffic Mix

This section compares the performance of the various
statistical preferential drop mechanisms with that of a Drop-
Tail (DT) and PI controller over the range of loads with the

TCP traffic mix (ie - no unresponsive flows). Figure 4 shows
the queue dynamics (top) and system throughput (bottom)
of DT, PI, SFB, CHOKe, RED-PD, SFG and SFG-PI. The
byte loss rate, packet drop rate, and average Web object ser-
vice time for each system is shown in Figure 5

First, comparing the queue dynamics, throughput and
byte loss rate of Drop-Tail with the PI controller shows the
potential benefits of using AQM: control over link quality
of service (QoS) (low queue length) and efficient link uti-
lization. The PI controller is able to stably control traffic
over the entire load range, keeping the queue length low at
around 100 Kbytes, and maintaining a high link utilization.
The PI controller loss rates are low (less than 2%), even at
the offered load of 1.7, resulting in a higher goodput than
the Drop-Tail system. The low queue length is desirable for
interactive Internet applications and the stable queue size
can also greatly reduce the buffer size required to achieve a
high link utilization [1].

The packet loss rate and the average Web object service
time of Drop-Tail and the PI controller show some less well-
known performance aspects of ECN when viewed over the
range of traffic loads. Although the network efficiency mea-
sured in byte loss rate is consistently better for PI, the packet
losses for PI, a combination of ECN-incapable SYN pack-
ets for the Web traffic and the backward direction TCP ACK
packets, are about twice as high as that of Drop-Tail as the
traffic load increases beyond an offered load of 1.2. To con-
trol traffic at congestion, the PI controller, and more gen-
erally any AQM using ECN, must maintain a higher con-
gestion notification probability (CNP) than the packet-drop
congestion notification rate of a Drop-Tail queue. As a re-
sult, PI, by dropping non-ECN packets with the CNP, favors
ECN-capable packets over non-ECN packets especially at
high traffic loads, yielding a significantly higher packet drop
rate than Drop-Tail for conditions in which small, non-ECN
enabled packets dominate.

This phenomenon creates the Web object delivery per-
formance crossover for the Drop-Tail and PI systems as the
offered load changes from 1.2 to 1.4, at which point the ini-
tial TCP timeout for SYN packet drops becomes the domi-
nating factor for Web object service times. At the peak load
of 1.7, the average Web object service time for PI is about
5 seconds, while the Web object service time for Drop-Tail
is about 2 seconds. For the traffic load ranges below 1.2,
the Web performance results are consistent with the experi-
mental measurement results from [21], showing AQM with
ECN can significantly benefit Web traffic at offered loads
from 0.9 to 1.0. In contrast, for traffic load ranges above 1.2
or 1.3, Web performance can be significantly degraded by
AQM with ECN, although such high loads are uncommon
in practice.

The various performance measures of SFG (with Drop-
Tail queue management) shown in Figure 4 and Figure 5
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closely match those of Drop-Tail, indicating that SFG, acti-
vated from 300 to 1900 seconds, works well with Drop-Tail
queue management for the TCP traffic mix. Similarly, the
performance of SFG-PI closely matches that of the PI con-
troller except for the slightly higher byte loss rates, indicat-
ing SFG interferes little with the ability of PI to control TCP
traffic. As congestion clears with the termination of the Web
flows at about 1850 seconds, SFG and SFG-PI turns off the
fairness enforcement mechanism to maximize the link uti-
lization. The adaptation performance can be improved by
dynamically adjusting the configuration ofN as a replace-
ment for the on/off mechanism, as discussed in Section 3.

Comparing the performance of SFB, CHOKe and RED-
PD with that of SFG-PI in Figure 4 and Figure 5, SFB,
CHOKe and RED-PD have consistently higher packet drop
rates and byte loss rates than SFG-PI, except for RED-PD’s
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Figure 5. TCP Traffic Mix - Packet Drop Rate
(top), Byte Loss Rate (middle) and Average
Web Object Service Time (bottom)

slightly lower byte loss rate caused by RED-PD’s higher
operating queue length. Yet CHOKe, which works in con-
junction with a RED controller, is not able to benefit from
this higher RED queue length due to its rather inefficient
statistical preferential dropping mechanism. CHOKe has a
low average throughput of 8.5 Mbps under the low offered
loads during the first and last 200 seconds. Throughout the
simulation, SFB suffers from low link utilization caused by
the inefficient Blue rate control for the traffic mix.

4.2 Unresponsive, High-Bitrate Flows

To evaluate the performance of the various preferential
dropping mechanisms, this section considers simulations
where five 2 Mbps CBR UDP flows are added to the TCP
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Figure 6. Unresponsive High-Bitrate CBR
Flows - Queue Dynamics

traffic mix used in Section 4.1, at time 100 seconds and
stopped at time 1700 seconds. For comparison, the perfor-
mance of Drop-Tail and the PI controller are examined to
determine the impact of the high-bitrate unresponsive CBR
flows. Figure 6 shows the queue dynamics, Figure 7 shows
the system throughput (top) and the average throughput of
the five unresponsive CBR streams (bottom), and Figure 8
shows the average Web object service times.

Figure 6 shows that the Drop-Tail queue remains full for
the duration of the high-bitrate CBR flows and Figure 7
(bottom) demonstrates the unfairness of Drop-Tail whereby
the CBR flows utilize about 95% of the link capacity with
the average throughput of the CBR flows close to 2 Mbps.
The average Web service time for Drop-Tail ranges from
about 50 to 300 seconds, too high to be seen in Figure 8.

PI controls the aggregated traffic and the unresponsive
flows better than Drop-Tail by applying a high CNP that
drops UDP packets while marking the ECN-enabled TCP
packets. As shown in Figure 6, the PI controller keeps the
queue length consistently low while maintaining a high link
utilization even in the supersaturated conditions. However,
like Drop-Tail, PI is unfair, and the Web traffic experiences
high service times, ranging from about 2 to 14 seconds
throughout the simulation.

Figure 7 (bottom) shows SFB failing to detect the unre-
sponsive UDP flows until the offered load reaches 1.7. SFB
is even more unfair than PI. Moreover, when SFB finally
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Figure 7. Unresponsive High-Bitrate CBR
Flows - System Throughput (top) and CBR
Throughput (bottom)
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Figure 8. Unresponsive High-Bitrate CBR
Flows - Average Web Object Service Time

detects the five unresponsive streams and restricts their rate
by putting them into a penalty box, there is significant link
underutilization, since SFB fails to lower the congestion no-
tification probability (CNP) accordingly. SFB’s failure to
properly adjust the CNP when there is an increase in the
available capacity is also apparent in the Web object service
time, shown in Figure 8, that is similar to or larger than that
of PI for the second half of the simulation.

Using its statistical filtering mechanism, CHOKe reg-
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ulates the unresponsive, high-bitrate flows. However,
CHOKe’s fairness is coarse because CHOKe heuristically
increases the number of random match drops for each in-
coming packet as the load increases. RED-PD is able to
effectively regulate the high-bitrate CBR flows by monitor-
ing and then restricting the flows to no more than the pe-
riodically adjusted TCP-friendly rate. As observed from
the queue dynamics of both CHOKe and RED-PD, by
frequently adjusting the maximum allowed flow rate for
the CBR flows, RED-PD affects the stability of the RED
and causes the RED-PD queue to oscillate more than the
CHOKe queue.

Both SFG with Drop-Tail and SFG-PI effectively restrict
the rate of the unresponsive high-bitrate CBR flows to the
target maximum of 0.5 Mbps. For some additional com-
plexity, the fairness control of SFG could be enhanced to
the level of RED-PD by dynamically adjusting the target
flow rate, as briefly discussed in Section 3 (and left as future
work). However, even without this adjustment, the main
goal of SFG and SFG-PI has been met, and that is not to
strictly enforce TCP-Friendly fairness but rather to provide
reasonable protection from egregiously unresponsive flows.

Finally, the consistently stable and low queue dynamics
in Figure 4 (top) of and Figure 6 show that the statistical
filtering mechanism of SFG does not noticeably affect the
congestion control of the PI controller. Providing protection
for TCP flows against the unresponsive flows while main-
taining the stability of the queue manager is the key contri-
bution of SFG.

The performance of SFG and SFG-PI was also tested
with more realistic MPEG-like unresponsive variable bit
rate flows. Similarly to the results presented in this section,
SFG-PI outperforms other mechanisms in terms of protec-
tion of TCP flows and stable and low queue length. Due to
space constraint, the results are omitted from this paper, but
presented in [9].

5 Conclusions and Future Work

This paper presents Stochastic Fairness Guardian (SFG),
a statistical filter that precedes a router queue manager
and preferentially drops packets to protect responsive flows
from unresponsive flows. SFG can be used with Drop-Tail
queuing or with an AQM to improve efficiency and provide
protection. This paper also develops an analytic model for
estimating the chance of a flow being incorrectly limited
with SFG and provides practical SFG configuration guide-
lines through performance bottleneck analysis and false
positive rate analysis.

SFG integrated with Drop-Tail and SFG with a PI con-
troller (SFG-PI) are evaluated via simulation and com-
pared against other preferential drop mechanisms includ-
ing SFB [12], CHOKe [26] and RED-PD [23], and also

compared to PI and Drop-Tail queuing with no filtering
mechanisms. Performance metrics include queue dynam-
ics, throughput, fairness, byte loss rate, packet drop rateand
Web object service time. Considering overall performance
and design complexity, SFG-PI outperforms other preferen-
tial dropping mechanisms and Drop-Tail and PI over a wide,
practical range of traffic loads. SFG provides protection for
the responsive flows against the unresponsive flows in all
the tested traffic load and conditions without compromising
the stability of the queue manager.

Future work includes extending SFG to dynamically ad-
just the number of bins per level (N ) each epoch such that
the maximum allowed flow rate imposed by SFG is set to an
estimate of the TCP-friendly rate of the system. Additional
future work is to implement SFG and SFG-PI into the Linux
kernel and measure the filtering overhead.
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