
1

Scalable and Decentralized Content-Aware
Dispatching in Web Clusters

Zhiyong Xu
Suffolk University

zxu@mcs.suffolk.edu

Jizhong Han
Chinese Academy of Sciences

hjz@ict.ac.cn

Laxmi Bhuyan
University of California, Riverside

bhuyan@cs.ucr.edu

Abstract—
In this paper, we propose a novel and efficient content-aware

dispatching algorithm. Our approach eliminates the potential
bottleneck and the single point of failure problems completely by
using totally decentralized P2P architecture. It is scalable, the
system throughput increases nearly linearly with the increased
number of servers. Meanwhile, it does not introduce heavy com-
munication overhead among back-end servers which appeared
in the previous decentralized mechanisms. Our simulation re-
sults show that our approach is superior to the previous solu-
tions.

I. I NTRODUCTION

Internet experienced fascinating growth in the past
decade. World Wide Web (WWW) becomes one of the
major information sources. Cluster based web server sys-
tem (web cluster) becomes one of the most prevailing
mechanisms to satisfy this need. It has been proved to
be cost-efficient web service architecture which can pro-
vide high performance at low investment costs. In gen-
eral, a web cluster is consisted of a number of commodity
computers which hosted in a single location. It uses a
front-end web switch as the access point for the incoming
client requests. As shown in Figure 1, the web switch ac-
cepts the incoming requests and selects back-end servers
to fulfill these requests according to the dispatching algo-
rithm. Typically, this algorithm should secure the loads on
the back-end servers is balanced and the average service
time per request is minimized. Thus, the policy adapted
in the dispatching algorithm has great influence on the
system overall performance. Depends on which type of
web switch is used in the web cluster, request dispatching
algorithms can be categorized into two models: Content-
blind approach and Content-aware approach.

In content-blind approach, a layer-4 web switch is de-
ployed. The layer-4 switch does not check the content
of the requests. It can only use simple dispatching al-
gorithms such as Round Robin (RR), Weighted Round

��� �������������	
�����
�������������� �������������� ��������������
�������� !"#!$%$

Fig. 1. Typical Web Cluster Architecture

Robin (WRR) etc. It can be viewed as the sole load-based
algorithms. These algorithms are simple, efficient and
fast. However, because of the lack of the content informa-
tion, content-blind algorithms can only dispatch requests
based on the workloads on back-end servers. Normally,
the server which has the lowest workload is chosen. The
web switch is not aware of the contents in the back-end
servers’ main memory buffers. A request which might be
able to be satisfied with the buffer cache on one server is
very likely sent to another server instead.

In contrast, in the content-aware approach, a layer-7
web switch always inspect the layer-7 information for
each request and take this information into consideration
when choosing which back-end server should handle a
given request. The system can take client request infor-
mation as well as server workload status into considera-
tion and try to achieve the balance between the load shar-
ing and the cache affinity property. Locality-Aware re-
quest distribution (LARD) [1] and HACC [2] are the most
popular content-aware approaches.

Compare to the content-blind approach, the content-
aware approach can afford significant performance im-
provement. However, such a promising approach comes
at a cost, it has a serious drawback associated with its ben-
efits: the processing of the layer-7 information generates
much more operational overhead on the front-end switch.

2

Here, each request must pass through the whole TCP/IP
protocol stack. Thus, content-aware approach is not scal-
able. A layer-7 web switch can not support as many back-
end servers as a layer-4 web switch which only need to
process the layer-4 information. Thus, in the web clusters
which contain a small number of back-end servers and
the request traffic intensity do not go beyond the maxi-
mum processing power of the front-end layer-7 switch,
the content-aware approach is superior. While in case
there are a large number of back-end servers or system
have been overwhelmed with a high volume of requests,
a layer-4 web switch with content-blind dispatching al-
gorithms may be more efficient. Another important issue
for both content-blind and content-aware algorithms is:
the usage of the single layer-4/Layer-7 web switch causes
a single point of failure problem. The web switch failure
will lead to the whole system out of service.

To address these problems, in this paper, we investi-
gate scalable software architecture for content-aware ap-
proach. We propose a new request dispatching algorithm
for web clusters. Similar to the current content-aware
mechanisms, our approach aims to achieve the accurate
dispatching decision by tracking the layer-7 information.
Our approach is intended to improve the system scalabil-
ity by distributing the dispatching workloads across all the
servers. The single incoming web switch is eliminated.
Every server is used as the combination of a web switch,
a request dispatcher and the requested file provider. The
system workload is evenly distributed on all the servers.
For N servers, a server only takes 1/N portion of all sys-
tem workloads. It is simple, efficient and totally decen-
tralized. The main contributions of our algorithm are:

1) It eliminates the potential bottleneck and the single
point of failure problem on the web switch by us-
ing totally decentralized service architecture. Every
server can receive the incoming request;

2) It solves the heavy maintenance overhead problem
in the previous decentralized solutions such as L2S.
We use a distributed hash table (DHT) based dis-
patching algorithm, no inter-server communication
overhead is introduced;

3) It is a highly scalable mechanism in which the sys-
tem throughput increases nearly linearly with the
addition of more servers.

The rest of the paper is organized as follows. In Sec-
tion II, we give the brief description of the content-aware
dispatching algorithms and the existing problems. In Sec-
tion III, we present the detailed system design of our al-
gorithm. In Section IV and V, we introduce the experi-
mental environment used in our simulations, and compare
the performance of our approach, with other solutions. In
Section VI, we describe some related works. Finally, in
Section VII, we conclude the paper.

II. PROBLEMS IN CONTENT-AWARE SWITCH

A. Scalability Problem

The current web cluster architecture has the scalability
problem. As we mentioned previously, in content-aware
dispatching algorithms, the layer-7 front-end web switch
must inspect the entire HTTP request and then make the
distribution decision based on this client side information.
Since the processing for each request must go through the
whole TCP/IP protocol stack, it introduces heavy process-
ing overhead and limits the system throughput. To reduce
the overhead on the web switch, TCP splicing [3] [4] and
TCP handoff [5] [6] techniques have been proposed. In
TCP splicing, the response of the request does not go
through the whole TCP/IP stack. While in TCP handoff,
the response messages are sent back to the clients directly
and avoid the web switch completely. However, even with
these techniques, system throughput is still limited by the
single front-end because it has to deal with every incom-
ing request. In [6], M. Aron et. al. conducted experiments
to prove this.

B. Scalable Content-aware Approach

In [6], Aron et. al. presented a scalable content-aware
approach to address the above problem. The functionality
of the request dispatching is divided intodistributor and
dispatcher. The dispatcher is the component that imple-
ments the request distribution strategy. The distributor in-
terfaces with the clients and implements the mechanism
that distributes the client requests to back-end servers.
The distributor is co-located with the back-end servers,
only the dispatcher is a centralized facility. The exper-
iments result showed this approach can greatly improve
the system scalability.

The above solution reduces the overhead on the front-
end switch, and system can achieve better scalability.
However, the single dispatcher can still be the potential
bottleneck with a large number of back-end servers. For
example, in a web server systems with tens or hundreds
of thousands back-end servers, a single dispatcher is not
able to support such a huge number of servers. Another
serious problem of such centralized architecture is the re-
liability. In case the central dispatcher is dead, the whole
system is out of service.

C. Locality and Load Balancing (L2S) Approach

The best way to address both the scalability and relia-
bility problems in web clusters is to deploy a totally de-
centralized architecture. L2S [7] used such architecture.
In L2S, there’s no front-end or central facility any more.
Each back-end server in the cluster can accept the request,
and make the decision to deal with the request by its own
or forward to another server. The experimental results
shown L2S has very good scalability. The whole system

3

throughput increases nearly linearly as more servers are
added in the system. It also has better reliability than per-
vious solutions. A back-end server failure does not affect
the web cluster very much since some other servers can
take its responsibility. The system performance just de-
grades gracefully.

However, this approach also has its drawback. In L2S,
each server must communicate with other servers periodi-
cally and notify the peer servers the current contents in the
main memory buffer cache. Based on this information,
each server can make the optimal dispatching decision.
This introduces high communication overhead and limits
its efficiency with a large number of servers in the cluster.
Thus, just like LARD, it can not support too many back-
end servers in reality. More sophisticated algorithms are
needed to solve this problem.

III. SYSTEM DESIGN

We propose a new content-aware dispatching algorithm
to address the drawbacks in the previous solutions.

A. System Architecture

In our approach, the request dispatching is done in two
steps. As shown in Figure 2, in the first step, each server is
accepting client requests from an outside router or switch
(a network devices, not the web switch used in previous
solutions). In general, this router or switch can use simple
load-balancing algorithm such as Round Robin, Weighted
Round Robin, etc (The similar strategy as L2S) to forward
the requests. Thus, it functions to achieve the coarse-grain
load balancing performance.

The dispatching is not finished after the first step. In
our approach, the server who receives the request is not
always the server who handles it. The second step is used
to implement the load-balancing and content-sensitive
strategies. In this step, after a server receives the request,
it will decide to serve this request by itself or forward it
to another server based on the application layer content
of the request. Actually, it will perform the content-aware
dispatching. Unlike in L2S, here, a distributed hash ta-
ble is consulted to determine which server has the highest
probability to cache the requested object. Thus, no server
needs to be aware of the contents on other server’s buffer
caches to make the dispatching decision.

Due to the heavy-tailed distribution of web requests,
on each server, we divide the buffer cache space into two
parts: 1) Local Cache, this portion is used to cache the
files (or objects) with the highest access frequencies; 2)
Global Cache, this piece of cache is used to cache other
files based on LRU or GreedyDual algorithm [8]. To cal-
culate the access frequencies of files, aHistory Tableis
created in the main memory. This table records the access
frequencies of the files for the requests which are initially

�����������	
���
����� ����������������������	
���
����� ����������������������	
���
����� ���������������������� ��!
"#$���%$�$% �&'�!�� ��()�#$��(�*%$��

��+��+�,��	+-.	
/����	+0 ��+��+�,�1���.	
/����	+0

Fig. 2. The System Architecture

send to the server. There are some other data structures
which will be introduced later.

B. Global Cache

By using the content-aware request dispatching, LARD
and L2S algorithms could distribute the coming requests
to the servers which has the highest probability to cache
the requested files. They are able to improve the hit rates
in the servers’ main memory buffer cache, and reduce the
number of slow disk accesses. Thus, a lower average ser-
vice time per request is obtained. From the point of the
view of the outside world, the main memory caches on all
the servers are working together as a big virtual cache. In
our approach, this is true for global cache only.

In LARD, to better distribute the new coming requests,
the front-end switch must keep tracks of the file access
history information to aware of the current contents in
servers’ main memory cache. This imposes significant
processing overhead on the front-end and restricts its scal-
ability. L2S uses decentralized control to maintain this in-
formation. In L2S, since there’s no central facility which
has the global view of the memory caches on all the
servers, to make the optimal dispatching decision, each
back-end server must maintains the up-to-date informa-
tion on other servers’ caches. Thus, each server must
broadcast this information to all the other servers peri-
odically or do it in case of the cache contents changing.
This message broadcasting requirement introduces signif-
icant amount of inter-server messages and consumes high
network bandwidth. Although the back-end servers are
connected with the high speed local network connections,
this problem still could become severe as more and more
servers are used. The web cluster could reach its satu-
ration status and could not improve the throughput any-
more. Clearly, LARD and L2S can not achieve the opti-
mal performance.

To relieve this problem, we propose a new distributed
hash based dispatching algorithm. It is decentralized but
does not introduce as much communication overhead as
in L2S. In our approach, a collision free hash function

4

Fileid2

Fileid1 status1
Http link of File1

Fileidk

Http link of File2

Http link of File3

Http link of Filek

status2

status3

statusk

Fileid3

Fig. 3. The Structure of MappingTable

Zone Table

 [0, 64)

 [64, 128)
64) [128, 192)

 [192, 256)

1

 Zone Server

2

3

4

Fig. 4. A Sample system with 4 servers, name space 256

(such as SHA-1 [9]) is used to generate a hash value
(fileid) for each file in a given name space (for example,
2

n, n is 64,96 or 128). For each file, the full http link
could be used as the seed to generate this id. The genera-
tion of these fileids can be done in advance. A file to fileid
mapping table (MT), can be created. The structure of this
table is shown in Figure 3. The fieldstatusis used for
the status of a file, if this file is not in the current server’s
cache, status is 0. If it is in the local cache, status is 1, and
if it is in the global cache, status is 2. This table is kept in
each server’s main memory for quick reference. When a
new request comes, this table will be searched.

We divide the whole fileid name space intoN disjointed
zones (N is the total number of servers). Each server is
assigned a particular zone, and it is only responsible for
serving the client requests for the files whose fielids are
mapped within its corresponding zone. Here, only global
cache is used. AZone Table(ZT) is created on each server
maintaining the information of servers and their corre-
sponding zones. Figure 4 shows a simple example. A
web cluster contains 4 servers, and the size of the name
space is 256. The global cache on server 1 is responsible
for caching files whose fileids are between 0 and 64. Con-
sequently, server 2, 3 and 4 are responsible for files with
the fileids in zones [64, 128), [128, 192) and [192, 256),
respectively.

Under such circumstances, when a server receives a re-
quest, it checks the mapping table to see if it has a copy
in the buffer cache. If yes, the request will be handled.
If not, it checks the ZT table to find out the server who
is responsible for this fileid and forwards the request to
that server. This approach can be viewed as a variance of
the simple static hash mechanism used in parallel process-
ing systems. The difference is that, here, the dispatching
decision is made on each individual server only instead

of a central control facility. Since there’s no namespace
overlaps among global caches in different servers, we cre-
ate a virtual cache which has the maximum size to cache
files in the memory and reduce the associated overhead of
fetching the files from the slow speed disk storage system.

Our approach differs from L2S significantly in the way
of server choosing strategy. We use the hash based func-
tion to determine the server that the request to be for-
warded while in L2S, each server maintains the main
memory information of other servers and make decisions
according to that information. Our approach has less
overhead since no inter-server communications is neces-
sary.

For the global cache space management, LRU algo-
rithm can be used for content eviction and replacement.
Thus, the files with the highest access frequencies will
be always kept in the cache. Other mechanisms such as
Greedy algorithms can also be used to further improve the
caching efficiency. [8], [10].

C. Local Cache

In our system, we take a portion of the buffer cache as
the local cache on each server. The local cache is used to
keep the copies of the highly accessed files locally. The
benefits of using the local caches are based on the access
patterns of web server documents. As mentioned in sev-
eral research papers [11], the accesses of the WWW files
are heavy-tailed. This represents a high degree of tempo-
ral locality. If we can keep copies of these files on each
server, we can satisfy the client request immediately. The
system throughput can be further improved. To identify
those files, we create a History Table (HT) on each server.
Each time, as a server receives a request, it checks the ta-
ble and modifies the access frequencies of that file. If it
is a new file which does not accessed before, a new en-
try is created. If this file is cached in the local cache,
the current server can fulfill the request immediately and
does not have to forward the request to another server.
By using this strategy, the number of request forwarding
operations can be reduced significantly.

With the usage of the local cache, the methods a request
to be handled can be categorized into three types: First,
fetching a file from the local cache or the global cache
on the server which receives the request initially; Second,
fetching a file from the global cache on a server which
receives this request from another server; Third, in case
of a global cache miss, the file has to be loaded from the
disk system. The first one has the smallest access delay.
The last one has the highest delay.

Although, by taking part of the main memory buffer as
the local cache, the aggregated size of the global caches is
smaller than the virtual cache in LARD and L2S, it does
not affect the overall cache hit rates too much. With a rel-
atively big number of servers, the aggregated cache size is

5

r: the incoming new request
status: 0, new request 1, forwarding request
FET VALVE: the valve to send the file to the original server
acsnum: statistic information for a certain file

RequestDispatching(r,status)
{

if (!status) /* a new request */
{

rid = SHA-1(r)
Modify History Table
acsnum(rid)++
if (r in local cache or globalcache)

/* check mapping table */
{

handle request r
return

}
else
{

forwarding server = checkzonetable(rid)
RequestDispatching(r,1) /* forward the request */

}
else /* the request is forwarded from another server */
{

if (r in local cache or globalcache)
handle request r directly

}
else
{

fetch it from the disk or get it from a database server
add it to the global cache
if (cache is full)

modify global cache using LRU or Greedy
algorithm

}
if (acs num> FET VALVE)
{

send a copy of the file to original server
add it to the server’s local cache

}
}

}

Fig. 5. Pseudo Code of The Request Dispatching Algorithm

big enough to hold most frequently accessed files. Only
a small number of less accessed files can not be cached
in the global cache and evicted to the disk due to the
size limitation. Furthermore, due the creation of multiple
copies of frequently accessed files on different servers,
we can achieve higher hit rates (including both local and
global caches) for those files. The average access time per
request could be improved.

D. Request Dispatching Algorithm

Figure 5 describes the pseudo code of our dispatching
algorithm. A dispatcher process running this algorithm is
created on each server. After a server receives a request,

it checks if this is a request sent by the router (not the
request forwarded from another server). If so, the server
searches its mapping table, if the file is stored in the local
or global cache. In case of a cache hit, the server replies
the client with the requested file immediately. In case of a
cache miss, it checks the zone table and forwards the re-
quest to the server who is responsible for the specific zone
that the fileid fallen in. Here, TCP handoff technique (If
the fileid maps to the zone on itself, no message forward-
ing occurs) can be applied. In both cases, it modifies the
access history table, the number of accesses to that par-
ticular file is increased by 1. If necessary, the file will be
copied to its local cache from the disk or from another
server’s global cache. The status field in the mapping ta-
ble has to be modified accordingly.

If the server detects the coming request is forwarded by
another server, it searches the requested file in its global
and local caches (using the mapping table). If there’s a
hit, it reply to the client directly instead of sending the re-
quest back to the initial server. In case of a cache miss,
it has to load the file from the disk. Then, send it back to
the client. It modifies its history table and keeps a copy
in its own global cache. In case the global cache is full,
another file has to be evicted using LRU or Greedy algo-
rithm. Furthermore, if the number of accesses of this file
exceeds a certain value (FETVALVE), it also sends an
additional copy to the initial server, and the initial server
will keep a copy in its local cache for the future accesses.
Next time, if another request comes for the same file, no
request forwarding is needed. In case of the local cache
full, the least frequently accessed files in the local cache
will be evicted.

Both TCP splicing [3] [4] and TCP handoff [5] [6]
mechanisms can be used for request forwarding purpose.
However, TCP splicing is useful for a centralized content-
aware approach, it also generates considerable overhead
on the central facility. In our case, we use a totally decen-
tralized architecture. Thus, the TCP handoff is the ideal
candidate. In our approach, we apply TCP handoff tech-
nique.

E. Avoiding Load Imbalance

Avoid any server to be overloaded is very important
for the whole web cluster to achieve the optimal perfor-
mance. In our approach, we use a simple load balancing
strategy. We define two valves: T1 and T2. T1 is de-
fined as the reacceptance valve and T2 is define as the
reject valve (T1< t2). During system normal operation
time, if the workload on a server reaches T2, it notifies
all the other servers to stop request forwarding to it. If
another server receives a request which maps to this over-
loaded server’s corresponding zone, it has to fetch the file
from its local disk system. The overloaded server will not
reaccept requests until its workload becomes less than T1.

6

This is a simple strategy but it can achieve relative good
load balancing performance.

F. Server Failure Problem

In LARD, the failure of the web switch will result in
the whole system out of service. While our approach is
totally decentralized, this single point of failure problem
is completely eliminated. In case a server failure occurs,
only the files cached on this server’s main memory are
affected. Other servers can notice the failure of the server
if they can not get any response from the failed server.

Two strategies can be used to handle this problem. In
the first strategy, another server will take the service re-
sponsibility for the files fallen into the zone of the failed
server, no cache redivision is necessary. In the second
strategy, the hash space is re-divided into N-1 zones, and
the global cache on each server is responsible for a zone
with the size 1/(N-1). Then, the workloads previously
taken on the failed server are evenly redistributed on the
remaining servers. The whole system performance re-
duces gracefully.

IV. EXPERIMENTAL ENVIRONMENT

We conduct trace-driven simulation experiments to
evaluate the performance of our algorithm. In our simula-
tions, LARD and L2S algorithms are used as the reference
models. We assume for each coming request, in LARD,
the layer-7 switch has to spend 0.5ms to check the request
head. We omit the transmission delay from the front-end
to back-end servers. If a request is satisfied from a server
cache buffer, the delay is counted as 0.05ms. If it has to
be loaded from the hard disk, the latency is set as 10ms.
If it has to be forwarded to another server, the processing
delay is set as 0.5ms. Any inter-server exchanging mes-
sage will result in a 0.1ms delay. (Different set of values
could be used, if it is reasonable, the conclusion will not
change). We use HBD (hash based Dispatching) to denote
our algorithm. For L2S, a message is always forwarded to
a server which holds the data in the cache (if it has a copy
in any server’s cache). In HBD, a message is forwarded
based on the fileid.

In our simulations, the number of servers in the cluster
varies from 1 to 64. The size of memory buffer on each
server is set as 64MB. The ratio of local cache to global
cache is 1:3. Two metrics are used to evaluate the per-
formance, the cache hit rates and the average access de-
lay per request. Cache hits are further divided into local
cache hits and global cache hits.

We use the real world web logs obtained from
the National Laboratory for Applied Network Research
(NLANR) to evaluate our approach. The trace data are
collected on four different proxy servers between Jul. 8th,
2003 to Jul. 14th, 2003. The detailed information of the

traces is shown in Table I. “# Files” is the total number
of the unique requested files, “% of Requests” is the ratio
between the unique files and the total number of requests
and “Infinite Cache” is the total size of the unique files.

V. PERFORMANCEEVALUATION

In this section, we present our simulation results, the
comparison results and performance analysis.

A. Average Service Delay

In the first set of experiments, we evaluate the average
service delay for a single request. The trace used in this
experiment is uc. The result is shown in Figure 6.

0

2

4

6

8

0 1 2 4 8 16 32 64 128

Number of back-end servers

A
ve

ra
ge

 p
ro

ce
ss

in
g

de
la

y
(m

s)

LARD L2S HBD

Fig. 6. Average Service Delay Comparison

From the result, we can see, as more servers are in-
troduced in the web cluster, all three algorithms can serve
client requests more quickly. When the number of servers
is small (2 or 4), LARD outperforms both L2S and HBD.
It has the lowest service delay. This is because with the
small number of servers, the front-end layer-7 switch used
in LARD can handle all the incoming requests, and it can
select the best server to satisfy each request. There’s no
content-blind problem and no inter-server forwarding is
necessary. L2S also has better performance than HBD,
this is because in L2S, each server tracks the cache con-
tent of other servers, if a requested file has a copy in a
server’s cache, it can always forward the request to that
server. However, this is achieved based on the inter-
server communications. Since the number of servers is
not big, this overhead is affordable. In HBD, we have
to send the files blindly, we only check the fileid before
the forwarding process, and we have no idea if the server
who is responsible for this file has a copy in the cache or
not. Though it may results in a little bit lower cache hit
rates, we avoid the expensive inter-server message trans-
mission, and we also avoid the potential bottleneck layer-
7 switch.

As more servers are added, LARD quickly reach its
saturation, as shown in the results, when the number of
servers increased from 16 to 32, or even 64, no further
improvement we can get in LARD. The reason is the
layer-7 switch can not handle more requests, although the
back-end servers might idle, there’s no way to add more

7

TABLE I
NLANR WORKLOAD TRACES CHARACTERISTICS

Traces # Clients # Requests # Files % of Requests Total Size Infinite Cache
bo1 551 1587478 958152 60.36% 19.23GB 12.61GB

pa 707 1551475 969639 62.50% 19.68GB 9.17GB
sd 810 2790697 1565275 56.09% 31.15GB 17.74GB
uc 1001 4526041 1978905 43.72% 44.53GB 30.07GB

workloads on these servers. For both L2S and HBD, the
server delay per request keep dropping as more servers are
added. Although L2S has the best performance, again, as
we mentioned earlier, it will result in more inter-server
message exchanges. It will cause L2S to reach its satura-
tion very soon. As we can see from the result, when the
server number increased from 64 to 128, no performance
gain we can obtain in L2S. For our HBD algorithm, this
does not happen. Clearly, for large-scale web clusters, our
approach is the best.

B. Cache Hit Rates Comparison

In this experiment, we test the main memory cache hit
rates in HBD. The result is shown in Figure 7, it includes
both local cache and global cache hits.

0

10

20

30

40

50

60

70

bo1 pa sd uc

C
ac

he
 H

it
R

at
es

 (%
)

HBD, 4 servers HBD, 16servers

HBD, 64 servers HBD(local), 4 servers

HBD(local), 16 servers HBD(local), 64 servers

Fig. 7. Cache Hit Rates in HBD, different traces

From the result, we can observe the following phe-
nomenon: First, as more servers are used, the cache hit
rates increases. However, when we increase the number
from 4 to 16, we can obtain a big improvement. This is
because the addition of more cache space make the sys-
tem can hold more frequently accessed files. When the
number increased from 16 to 64, the improvement is not
significant. The reason is with 16 servers, we can hold al-
most all the highly accessed files, add more servers make
the system can hold more files with small access frequen-
cies. It does not help too much on the overall hit rates.

Second, for local caches, there’s no big improvement
as we increase the number of servers. The reason is as
more servers are used, the requests are distributed more
diverse to more servers. The benefits of using local cache
diminishes, but still we can get almost 10% local cache hit
rates, which proves the local cache is important. Third,

for traces with the different characteristics, the perfor-
mance will be different. For those traces which have more
accesses to the popular files (such as us), HBD performs
better. Since most web services have the heavy-tailed dis-
tribution, we can predict HBD to achieve very good per-
formance.

VI. RELATED WORK

There is no doubt that the web cluster is the dominant
architecture for scalable web-base applications nowadays.
In recent years, many efforts have been devoted on de-
signing a scalable request dispatching algorithm. In [12],
V. Cardellini et. al summarizes the most popular dispatch-
ing algorithms.

The content-blind algorithms have the advantages of
the simplicity and easy implementation, they are widely
used in the early times. The typical dispatching al-
gorithms are Random, Round Robin (RR) and Static
Weighted Round Robin (WRR). Client Partitioning is an-
other algorithm which providing a simple method to stat-
ically partition the server nodes and to assign groups
of clients accordingly. These algorithms only consider
workload status. While other algorithms such as Least
Load First [13], [14], Weighted Round Robin [15] and
Client affinity [16] can achieve better performance by tak-
ing both the client and the server state information for
dispatching decision. Although it is not very efficient,
the low dispatching overhead of content-blind algorithms
make a single layer-4 switch can support a large number
of back-end servers.

Content-aware dispatching algorithms can achieve bet-
ter performance than the content-blind approach since
they can determine which back-end server to be used to
satisfy the current request based on the request content.
Service partitioning [17] employs specialized servers for
certain types of requests. Size Interval Task Assignment
with Equal Load (SITA-E) [18] and Client-Aware Pol-
icy (CAP) [19] aims to improve load sharing among the
servers only. These algorithms do not take server states
into account. While, other popular content-aware dis-
patching algorithms include LARD [1] and HACC [2]
consider both client and server states can achieve better
performance.

A lot of research papers have been published on the
workload characterization of web systems. In [11], the

8

authors found out that the accesses to the web servers
have a heavy-tailed distribution. A small amount of files
have much higher access frequency than other files. Our
approach takes this into account by creating a local cache
on each server to cache the hottest file, the expensive
request forwarding operations among different back-end
servers are significantly reduced.

In recent years, Peer-to-Peer (P2P) file sharing systems
became more and more popular on the Internet. Most P2P
applications take the fully distributed mechanism, there’s
no central server which maintaining the file location in-
formation. Thus, with a huge number of peers, how to
find the location of a certain object is the main design is-
sue. Chord [20], [21], Pastry [22], Tapestry [23] and CAN
[6] useDistributed Hash Table(DHT) based routing al-
gorithm for this purpose. In DHT, each peer and each file
is assigned a nodeid or fileid using a collision free hash
function. The whole namespace is divided into disjointed
zone with each peer is responsible for maintaining the lo-
cation information of the files which fileids are mapped
to the corresponding zones. In [24], we developed an ef-
ficient web caching system on the client side using P2P
technique.

VII. C ONCLUSIONS

In this paper, we introduce a new request dispatching
algorithm for content-aware web clusters. In our system,
distributed hash table is used. We create a fixed mapping
relation between a file and the server which responsible
for serving this file. On each server, a local cache and a
global cache are created to deal with the files with differ-
ent access frequencies. Our algorithm is simple, efficient
and completely decentralized. It solves the existing scal-
able problems in current Layer-7 dispatching algorithms,
and avoids the high inter-server communication overhead
in previous solutions. Furthermore, it has better fault tol-
erant property than both content-blind and content-aware
approaches, a server failure will not cause the shutdown
of the service. Our simulation results show our approach
can significantly improve the system overall performance.

REFERENCES

[1] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum, “Locality-aware request distri-
bution in cluster-based network servers,” inProceedings of the 8th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-VIII), (San
Jose, CA), October 1998.

[2] X. Zhang, M. Barrientos, J. B. Chen, and M. Seltzer, “Hacc: An
architecture for cluster-based web servers,” inProceedings of the
3rd USENIX Windows NT Symposium, (Seattle, WA), July 1999.

[3] M. Aron, P. Druschel, and W. Zwaenepoel, “Efficient support
for P-HTTP in cluster-based web servers,” inProceedings of the
USENIX Annual Technical Conference, (Monterey, CA), pp. 185–
198, June 1999.

[4] A. Cohen, S. Rangarajan, and J. H. Slye, “On the performance of
TCP splicing for URL-aware redirection,” inUSENIX Symposium
on Internet Technologies and Systems, 1999.

[5] G. Apostolopoulos, V. Peris, P. Pradhan, and D. Saha, “Secur-
ing electronic commerce: reducing the SSL overhead,”IEEE Net-
work, vol. 14, pp. 8–16, July 2000.

[6] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel, “Scal-
able content-aware request distribution in cluster-basednetwork
servers,” in2000 USENIX Annual Technical Conference: San
Diego, CA, USA, June 18–23, 2000(USENIX, ed.), (Berkeley,
CA, USA), pp. 323–336, USENIX, 2000.

[7] E. V. Carrera and R. Bianchini, “Efficiency vs. portability in
cluster-based network servers,”ACM SIGPLAN Notices, vol. 36,
pp. 113–122, July 2001.

[8] S. Jin and A. Bestavros, “Popularity-aware greedydual-size algo-
rithms for Web access,” inProceedings of the 20th International
Conference on Distributed Computing Systems (ICDCS), (Taipei,
Taiwan, ROC), Apr. 2000.

[9] F. I. P. S. Publication, “Secure hash standard,
http://www.itl.nist.gov/fipspubs/fip180-1.htm,” 1995.

[10] S. Jin and A. Bestavros, “GreedyDual* Web caching algorithms:
Exploiting the two sources of temporal locality in Web request
streams,” inProceedings of the 5th International Web Caching and
Content Delivery Workshop, (Lisbon, Portugal), May 2000.

[11] M. Crovella and A. Bestavros, “Self-Similarity in World Wide
Web Traffic: Evidence and Possible Causes,” inProceedings of
SIGMETRICS’96: The ACM International Conference on Mea-
surement and Modeling of Computer Systems., (Philadelphia,
Pennsylvania), May 1996. Also, in Performance evaluation re-
view, May 1996, 24(1):160-169.

[12] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu, “The
State of the Art in Locally Distributed Web-server Systems,” Tech-
nical Report, IBM T.J. Watson Research Center, 2001.

[13] Cisco Systems, “Local Director, http://www.cisco.com.”
[14] F5 Networks, “BIG/ip, http://www.f5labs.com.”
[15] G. D. Hunt, G. S. Goldszmidt, R. P. King, and R. Mukherjee, “Net-

work dispatcher: A connection router for scalable internetser-
vices,”Computer Networks, vol. 30, no. 1-7, pp. 347–357, 1998.

[16] Linux Virtual Server Project, “http://www.linuxvirtualserver.org.”
[17] C. Yang and M. Luo, “A content placement and management

system for distributed web-server systems,” inProceedings of
20 International Conference on Distributed Computing Systems,
pp. 691–698, 2000.

[18] M. Harchol-Balter, M. E. Crovella, and C. D. Murta, “On choosing
a task assignment policy for a distributed server system,”Journal
of Parallel and Distributed Computing, vol. 59, no. 2, pp. 204–
228, 1999.

[19] E. Casalicchio and M. Colajanni, “A client-aware dispatching al-
gorithm for web clusters providing multiple services,” inWorld
Wide Web, pp. 535–544, 2001.

[20] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for Internet
applications.” Technical Report TR-819, MIT., Mar. 2001.

[21] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris,
I. Stoica, and H. Balakrishnan, “Building Peer-to-Peer Systems
With Chord, a Distributed Lookup Service,” inthe 8th IEEE Work-
shop on Hot Topics in Operating Systems (HotOS), Schoss Elmau,
Germany, pp. 195–206, May 2001.

[22] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer sys-
tems,” in Proceedings of the 18th IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware), (Heidel-
berg, Germany), pp. 329–350, Nov. 2001.

[23] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastruc-
ture for fault-tolerant widearea location and routing.” Technical
Report UCB/CSD-01-1141, U.C.Berkeley, CA, 2001.

[24] Z. Xu, Y. Hu, and L. Bhuyan, “Exploiting client cache: A scalable
and efficient approach to build large web cache,” inProceedings
of International Parallel and Distributed Processing Symposium,
(IPDPS’04), (Santa Fe, NM), Apr 2004.

