
Proc. 27th IEEE International Performance Computing and Communications Conference (IPCCC), Dec. 2008.

 1

Distributed Energy-Efficient Scheduling for Data-Intensive Applications with
Deadline Constraints on Data Grids*

Cong Liu1, Xiao Qin2, Santosh Kulkarni2, Chengjun Wang2, Shuang Li2, Adam Manzanares2,

and Sanjeev Baskiyar2

University of North Carolina at Chapel Hill1

Auburn University2

* The work reported in this paper was supported by the US National Science Foundation under Grants No. CCF-
0742187, No. CNS-0757778, No. CNS-0831502, No. OCI-0753305, No. DUE-0621307, and No. DUE-0830831,
and Auburn University under a startup grant.

Abstract

Although data duplications may be able to improve
the performance of data-intensive applications on data
grids, a large number of data replicas inevitably
increase energy dissipation in storage resources on the
data grids. In order to implement a data grid with high
energy efficiency, we address in this study the issue of
energy-efficient scheduling for data grids supporting
real-time and data-intensive applications. Taking into
account both data locations and application
properties, we design a novel Distributed Energy-
Efficient Scheduler (or DEES for short) that aims to
seamlessly integrate the process of scheduling tasks
with data placement strategies to provide energy
savings. DEES is distributed in the essence - it can
successfully schedule tasks and save energy without
knowledge of a complete grid state. DEES
encompasses three main components: energy-aware
ranking, performance-aware scheduling, and energy-
aware dispatching. By reducing the amount of data
replications and task transfers, DEES effectively saves
energy. Simulation results based on a real-world trace
demonstrate that with respect to energy consumption,
DEES conserves over 35% more energy than previous
approaches without degrading the performance.

1. Introduction

Distributed scientific applications in many cases
require access to massive data sets. In High Energy
Physics (HEP) applications [8], for example, a handful
of experiments have started producing petabytes of data
per year for decades. Data grids [7] have served as a

technology bridge between the need to access
extremely large data sets and the goal of achieving high
data transfer rates by providing geographically
distributed computing resources and large-scale storage
systems. When it comes to distributed systems such as
data grids, it is the responsibility of schedulers to
decide where to run applications (the terms application
and task are used interchangeably throughput this
paper) based on the applications’ specific requirements
as well as system workload conditions. Data resources
are of paramount importance for many data-intensive
applications - from long running simulations to remote
sensing; from biological sequence analysis to video-on-
demand systems [11]. A key factor in the process of
scheduling data-intensive tasks is the location of input
data required by the tasks. A straightforward strategy to
enhance performance of data-intensive applications on
data grids is to replicate popular data sets (i.e.,
frequently accessed data sets) to multiple resource sites,
thereby offering higher data access speeds compared to
maintaining the data sets in a single site. A wide range
of data replication strategies, which are practical and
effective, have been commonly applied in distributed
data centers [15][12]. However, making too many
replicas may ultimately lead to a number of drawbacks.
First, it is challenging to maintain consistency among
replicas in large scale distributed systems such as grids.
Second, it is nontrivial to efficiently generate replicas
of massive data sets on the fly in data grids. Last but
not least, a large number of data replicas inevitably and
dramatically increase the energy dissipation in storage
resources, which in turn often leads to large electricity
bills. Recent studies show that large-scale clusters may
require 40TWh per year, costing over $4Billion per
year at the price of $100 per MWh [6].

Proc. 27th IEEE International Performance Computing and Communications Conference (IPCCC), Dec. 2008.

 2

Clearly, it is a non-trivial task to improve the
performance of data-intensive applications through data
replicas while reducing energy dissipation in storage
systems in data grids. It is necessary to make better
tradeoffs between energy efficiency and high-
performance for data-intensive applications since they
are two conflicting design goals. In this paper, we
investigate an approach to seamlessly integrate data
placement strategies with task scheduling, in which
both energy efficiency and real-time requirements (e.g.,
tasks’ deadlines) are fully addressed. In particular, we
develop a novel Distributed Energy-Efficient Scheduler
called DEES containing three key components: energy-
aware ranking, performance-aware scheduling, and
energy-aware dispatching. By leveraging an array of
data placement strategies, DEES is able to maximize
the number of tasks completed before their
corresponding deadlines while replicating data in an
energy-efficient way. To furnish DEES with an energy-
efficient task dispatching mechanism that dispatches
real-time tasks to peer computing sites, one has to
simultaneously consider three factors: computational
capacities of peer computing sites, energy consumption
introduced by tasks, and data location. An interesting
property of DEES is that the scheduling overhead of
DEES does not necessarily increase when data grids
scale up. This is quite different from most other grid
scheduling techniques in which a centralized scheduler
for a data grid inherently exhibits an undesirable
performance bottleneck and single point failures may
occur. Unlike most existing schedulers deployed in
data grids, DEES does not require full knowledge of
workload conditions of all the computing sites in a data
grid. One must consider that obtaining full knowledge
of the state of the grid is a difficult task.

The remainder of this paper is organized as follows.
A review of recent related work is given in Section 2.
Section 3 describes the system model. Section 4
presents the detailed design of DEES. Section 5
presents a comprehensive set of simulations that were
used to evaluate the performance of DEES.
Conclusions and future work appear in Section 6.

2. Related work

Unlike traditional parallel and distributed systems,

in which required data usually resides in sites where
tasks are allocated, data grids allow data required by
applications to be distributed across multiple sites. The
significance of data placement in task scheduling and
dispatching in data grids has led to several innovative
strategies having been proposed in recent years.

Data replications are used to reduce communication
costs and avoid data access hotspots. Ranganathan and

Foster [13] considered dynamic task scheduling along
with data staging requirements. In contrast to this work,
it is known that computation scheduling and data
replication phases are partly independent of one
another. Simulation results have shown that task
scheduling and data placement can be optimized
separately [13]. Kosar and Livny [9] proposed a
scheduler named Stork for data placement in grids.
Their motivational rationale is to efficiently complete
computational cycles by placing data close to
computational resources. Mohamed and Epema [10]
developed an algorithm named Close-to-File (CF) that
schedules tasks on sites with enough processing
capacity that are close to the sites where the required
data (input files) reside. CF uses an exhaustive
algorithm to search across all combinations of
computing and data sites to find a result with the
minimum computation and transmission cost.

Chang [4] developed the Hierarchical Cluster
Scheduling (HCS) algorithm and the Hierarchical
Replication Strategy (HRS), which maximize the
required data in a region in order to fetch replicas
faster. HCS not only considers computational capacity
and data location, but also takes cluster information as
an input. The rationale behind HRS is that nearby data
has a higher priority to access as compared to
generating new replicas. Chakrabarti [3] proposed the
Integrated Replication and Scheduling Strategy (IRS)
that decouples task scheduling from data placement. It
calculates the popularity of current required files and
replicates the most popular data for the next set of
tasks.

However, none of the aforementioned studies
consider energy efficiency. QoS requirements, such as
application deadlines, have also not been taken into
account. Furthermore, most of the aforementioned
algorithms require full knowledge of the state of the
entire grid, which is difficult and/or expensive to obtain
and maintain.

3. System model

3.1 Data grid model

As shown in Fig. 1, geographically distributed sites

are interconnected through a WAN. We define a site as
a location that contains computing resources and large-
scale storage systems. Heterogeneity and dynamicity
cause resources in grids to be distributed unevenly.

The internal structure of each site is shown in Fig. 2.
Each site consists of storage resources, computing
resources and a ticket server. Storage resources are
used to store data while computing resources are
devoted to computations. A ticket server is the server

Proc. 27th IEEE International Performance Computing and Communications Conference (IPCCC), Dec. 2008.

 3

used to run the scheduler, which is in charge of
sending, receiving, and processing tickets. A ticket is a
very small file that contains certain attributes of the
task. Users submit tasks to the ticket server. The
scheduler tries to schedule, as many tasks as possible,
on the local site. Unscheduled tasks are sent to the most
promising neighbors using tickets.

Fig. 1. Data grid model

We consider scheduling Bag-of-Tasks (BoT)

applications, in which tasks are independent of each
other. BoT applications are used in a variety of
scenarios, including parameter sweeps [1] and
computer imaging [14]. Furthermore, because of the
independence of their tasks, BoT applications can be
successfully executed over geographically distributed
grids. This feature has been demonstrated by
SETI@home [2]. It is arguably true that BoT
applications are most suited for grids [5], where
communication costs can easily become a bottleneck
for highly-coupled parallel applications.

Fig. 2. The internal structure of a site

3.2 Energy consumption model

We model the energy consumption of task execution
and data replica transfers. It is assumed that the storage

center at each site has enough storage space to
accommodate every data request. The parameters used
in this section are shown in Table 1.

Table 1. Important notation
Notations Description

N total number of tasks
W total number of machines within the grid
Q total number of sites within the grid
sv site v
mk machine k
ti task i
di deadline of task i
α read energy consumption rate (watt)
β write energy consumption rate (watt)
λ network energy consumption rate (watt)
εk,v computation power of mk at sv (watt)
bu,v bandwidth between su and sv
s(ti) size of ti’s execution code
s(dj) size of data dj

ei number of instructions of ti , in terms of MI
(Million Instruction)

cck,v computing capacity of mk at sv, in terms of
MIPS (Million Instruction Per Second)

rj,u time to read dj from su

wj,v time to write dj to sv

pk,v idle time period of mk at sv

ηk,v idle power of mk at sv (watt)

If the energy consumed by cooling systems is not
considered, the total energy consumption of a data grid,
Etotal, can be expressed as:

repcommcomptotal EEEE ++= , (1)

where Ecomp is the total energy consumption of
computing resources, Ecomm is the total energy
consumption of communication, and Erep is the total
energy consumption of replicating data.

Ecomp contains two parts: (i) Ec is the energy
consumed to execute all tasks, and (ii) Ei is the energy
consumed when machines are idle. Ec can be written as:

 ∑∑∑
= = =

=
N

i

W

k

Q

v

c
vki

c EE
1 1 1

,,
, (2)

where c
vkiE ,,
 is the energy consumption for executing a

task ti on machine mk at site sv, N is the total number of
tasks, W is the total number of machines within the grid,
and Q is the total number of sites within the grid. c

vkiE ,,

can be expressed as:

⎪
⎩

⎪
⎨

⎧ ×
=

otherwise

satmonscheduledistif
cc

e

E
vki

vk

i
vkc

vki

0
,

,

,,

ε , (3)

where ei is the number of instructions of ti, cck,v is the
computing capacity of mk at sv, and εk,v is the
computation power of mk at sv.

The idle energy consumption, Ei, can be defined as:

Proc. 27th IEEE International Performance Computing and Communications Conference (IPCCC), Dec. 2008.

 4

 ∑
=

×=
W

k
vkvk

i pE
1

,,)(η , (4)

where pk,v is the idle time period of mk, and ηk,v is the
idle power of mk.

Thus, according to Eq. (2), (3), and (4), the total
computation energy consumption, Ecomp, can be written
as the aggregate of Ec and Ei for all tasks:

 ∑∑∑∑
== = =

×+=
W

k
vkvk

N

i

W

k

Q

v

c
vkicomp pEE

1
,,

1 1 1
,,)(η . (5)

The total communication energy consumption, Ecomm,
is composed of two parts: (i) td

vojiE ,,,
 is the energy

consumed to transfer ti’s required dataset, the jth data dj,
from so to sv, where so is the site at which dj is located,
and (ii) tt

vuiE ,,
 is the energy consumed to transfer the

execution code of ti from su to sv, where su is ti’s local
site. td

vojiE ,,,
 can be expressed as:

⎪
⎩

⎪
⎨

⎧

≠×

=
=

voif
b

ds

voif

E

vo

j
td

voji

,

,,,)(

0

λ
 , (6)

where s(dj) is the size of dj, bo,v is the bandwidth
between so and sv, and λ is the network energy
consumption rate. If sv already has the data (i.e. o=v),
no data transfer cost will be incurred. tt

vuiE ,,
 can be

expressed as:

⎪
⎩

⎪
⎨

⎧

≠×

=
=

vuif
b

ts

vuif

E

vu

i
tt

vui

,

,,)(

0

λ
 . (7)

Note that if ti is executed on the local site (i.e. u=v), no
task transfer cost will be incurred.

Therefore, Ecomm, which is composed of the
aggregate of td

vojiE ,,,
 and tt

vuiE ,,
 for all tasks, becomes:

 () vi

N

i

Q

v

tt
vui

td
vojicomm xEEE ,

1 1
,,,,, ×+=∑∑

= =

, (8)

where xi,v can be defined as:

∑
=

=∀

⎩
⎨
⎧

=

Q

v
vi

vi
vi

xitosubject

otherwise

satscheduledistif
x

1
,

,

1,:

0

1

. (9)

The third part of the total energy consumption is the
data replication energy consumption. The energy
consumed to replicate ti’s required dataset dj from so to
sv, denoted as wr

vojiE ,
,,,

, contains two components: (i)
r

ojiE ,,
 is the energy consumed to read dj from so, and (ii)

w
vjiE ,,
 is the energy consumed to write dj to sv. r

ojiE ,,
 can

be expressed as:

oj

r
oji rE ,,, ×= α , (10)

where rj,o is the time to read dj from site so, and α is the
read energy consumption rate. Similarly, w

vjiE ,,
 can be

expressed as:

vj
w

vji wE ,,, ×= β , (11)

where wj,v is the time to write dj to site sv, and β is the
write energy consumption rate. So the total energy
consumed to replicate dj from so to sv, wr

vojiE ,
,,,

, is:

⎩
⎨
⎧

≠×+×
=

=
voifwr

voif
E

vjoj

wr
voji

,,

,
,,,

0

βα
 . (12)

Therefore, Erep, which is composed of the aggregate
of wr

vojiE ,
,,,

 for all tasks, can be written as:

)(
1 1

,
,

,,,∑∑
= =

×=
N

i

Q

v
vi

wr
vojirep xEE . (13)

By substituting Eq. (5),(8), and (13) into Equation
(1), the total energy consumption of a data grid, Etotal,
can be derived as:

() vi

N

i

Q

v

wr
voji

tt
vui

td
voji

W

k
vkvk

N

i

W

k

Q

v

c
vkitotal

xEEE

pEE

,
1 1

,
,,,,,,,,

1
,,

1 1 1
,,)(

×+++

×+=

∑∑

∑∑∑∑

= =

== = =
η

. (14)

3.3 Energy consumption analysis

We describe four scenarios that may occur when a
task request is scheduled. Let us analyze the energy
consumption in each scenario.

S1. Local execution and local data: The task
execution is performed at its local site su where
the required input data is located.

S2. Local execution and remote data: The task
execution is performed at its local site su and the
input data is replicated from a remote site so.

S3. Remote execution and same remote data: The
task, whose local site is su, is executed at a remote
site sv and the input data is already located at the
same remote site

S4. Remote execution and different remote data:
The task, whose local site is su, is executed at a
remote site sv and the input data is replicated from
another remote site so.

Hence, Ei,k,v, which is the energy consumed to
schedule ti on mk at sv, can be expressed as:

Proc. 27th IEEE International Performance Computing and Communications Conference (IPCCC), Dec. 2008.

 5

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+++

+++

+++

+++

=

+++=

.4

300

20

1000

,
,,,,,,,,,,

,,,,

,
,,,,,,,,

,,

,
,,,,,,,,,,,,

SifEEEE

SifEE

SifEEE

SifE

EEEEE

wr
voji

tt
vui

td
voji

c
vki

tt
vui

c
vki

wr
voji

td
voji

c
vki

c
vki

wr
voji

tt
vui

td
voji

c
vkivki

(15)

From Eq. (15), it is observed that executing a task at
a site where its data is located is the most energy
efficient, because no data transfer and replication cost
is incurred. Compared to the local execution and
remote data scenario, executing the task at a remote
site where data is located is still more energy efficient
because of the fact that the size of a task’s input data is
usually much larger than the size of its execution code.

3.4 Motivational example

We observe that reducing the amount of data
replication and task transfers can effectively save
energy. This is in contrast to making as many data
replications as possible, which improves performance
at the cost of energy. We give a simple case study that
demonstrates our ideas. An environment with different
types of processors is simulated as follows:

 P1: AMD Athlon 64 X2 6400+ with 85W TDP
Energy Consumption Rate: Busy: 104w idle:15w

 P2: AMD Athlon 64 X2 3800+ with 35W TDP
Energy Consumption Rate: Busy: 47w idle: 11w

 A network with energy consumption rate of (60w)

As shown in Fig. 3, three sites A, B, and C are
connected by two links that have the same bandwidth.
For simplicity, all the attributes are assigned as
standard unit values. The performance-driven
scheduling algorithm tends to assign a task to a
machine that provides the minimum completion time.
Using this algorithm, t1 will be scheduled on B, t2
scheduled on C, t3 scheduled on B, and t4 scheduled on
C. This is the combination that will produce minimum
completion times, so that the total units of data
transferred, denoted as DT1, become:

() () () () ()
() () () 16242

312111

=+++
++++=

dstsds

tsdstsdstsDT

According to our energy consumption model, the total
energy consumption (considering the energy
consumption when machines are idle and busy) is:

joulesEtotal 8.9541 =

If the scheduling algorithm considers energy
efficiency, tasks will be scheduled on resources that not
only consume the least amount of energy, but also are
capable of meeting the task deadlines. Using this

energy aware scheduler, t1 and t2 will be scheduled on
A, and t3 and t4 scheduled on B. In this case, the total
units of data transferred, denoted as DT2, become:

() () () 64232 =++= tsdstsDT

According to our energy consumption model, the total
energy consumption is:

joulesEtotal 5962 =

B C

A ba,c=2 ba,b=2

Data Property Machine Property

Site
ID Size ID

Computing
Capacity

d1 4
A

d2 4
P2 1

B - - P1 5
C - - P1 5

Task
Local
site

e s(e) Deadline Data

t1 A 3 1 6 d1
t2 A 3 1 6 d1
t3 A 5 1 4 d2
t4 A 5 1 4 d2

Fig. 3. A motivation example

Compared with the performance-driven scheduling
algorithm, the energy-efficient scheduling algorithm
schedules the same number of tasks that meet their
deadlines. However, the energy-efficient algorithm
saves more energy by executing tasks with local data on
local resources, which reduces task transfers and data
replications. Moreover, when making a data replication
to a remote site, maximizing the utilization of this
replica also saves energy. The energy saving is
achieved by assigning as many tasks as possible to the
remote site.

4. Scheduling Algorithm

The design goal of DESS is three fold: (i) Maximize

the number of tasks meeting their deadlines, (ii)
Minimize energy consumption, and (iii) Provide
scalability.

DEES consists of three phases: Ranking,
Scheduling, and Dispatching, as shown in Fig. 4. First
incoming tasks at each site are ranked in a task queue.
Tasks are grouped together according to the data
location. Second, the scheduler at each site assigns each
task to a specific local resource. Finally unscheduled
tasks are dispatched to remote sites, where the same

Proc. 27th IEEE International Performance Computing and Communications Conference (IPCCC), Dec. 2008.

 6

algorithm is used to make scheduling decisions. The
pseudo code of DEES is shown in Fig. 5.

Run on

local

site

Y

Input: Tasks

Ranking:
Rank the task queue

Scheduling:

Schedule tasks on local site

Scheduled?

Dispatching:

Dispatch tasks to remote sites

N

Fig. 4. Diagram for the Scheduler

 DEES

1. Group tasks according to the data location
2. Rank the local task group first, and then sort other

task groups by number of tasks in descending order
3. Within each group, rank tasks by decreasing

deadline
4. for each task group gi in order
5. Schedule every unscheduled t∈gi on the machine

that gives the minimum completion time while
meeting the deadline

6. if unscheduled tasks left
7. Dispatch

end DEES
Fig. 5. DEES

4.1 Ranking

Tasks are sorted into a task queue. Tasks requiring
the same data are grouped together. The task group
whose data resides in the local site, called local task
group, is ranked first. Then other task groups are
ranked in descending order, according to the number of
tasks in the task group. Within each group, tasks are
ordered by increasing deadline. Thus, tasks with shorter
deadlines are scheduled sooner.

4.2 Scheduling

The task grouping policy always schedules the local
task group onto local resources first. According to the
energy consumption analysis, it minimizes data
replication so that energy can be saved. For tasks
whose required data is located at remote sites, by

grouping them according to the data location, DEES is
able to further reduce data replication and data transfer
in the Dispatching phase, which will be described in
detail in Section 4.3.

DEES schedules tasks on a group basis. A local task
group is scheduled first. In order to schedule task ti on
site su, DEES selects machine mk at su that can complete
ti within its deadline and provide the minimum
completion time. After processing all tasks, remaining
unscheduled tasks will be dispatched to remote sites.

4.3 Dispatching

Our dispatching strategy delivers tasks within each
task group to the data site. For task group gj whose data
site is so, scheduling decisions are made by so’s
scheduler based on its local resource status and task
information of gj. If so cannot schedule all tasks in gj,
then unscheduled tasks are dispatched to so’s immediate
neighbors using tickets in a breadth-first manner. A
ticket has several attributes: task ID, deadline, number
of instructions, size of execution code, location of the
required input data, schedulable flag, and route
information.

 In order to make tradeoffs between energy
efficiency and real-time performance, we propose a
ranking system, called Highest Rank First (HRF), to
rank so’s neighbors. The rank of so’s neighbor sv is
defined as:

nEEE
nssgrank

vni
comp

voi
comm

voi
rep

ovi /)(

1
),,(

,,,,,, ++
×+×= µε ,(16)

where n is the number of tasks in gj that can be
scheduled on sv, ε is a coefficient concerning the task
deadline, µ is a coefficient concerning energy saving,

voi
repE ,, is the energy consumed to replicate gi’s data from

so to sv, voi
commE ,, is the energy consumed to transfer gi’s

data and n unscheduled tasks from so to sv, and vni
compE ,, is

the energy consumed to execute these n tasks at sv.
The neighboring site with the top ranking will be

considered first. Neighbors are checked using a
breadth-first search. If there are tasks unscheduled in gi
after visiting all neighbors of so, the nearest neighbor
(which has the fastest link bandwidth) will search its
neighbors using the same algorithm. This process
continues until suitable remote resources have been
found, or all sites have been visited.

Introducing ε and µ, we enable DEES to manage the
two conflicting goals of saving energy and meeting
deadlines. If the incoming tasks are mission-critical, ε is
set to 1 and µ is set to 0, which means the neighbor that
can schedule more tasks is given preference. When
energy consumption becomes more important, ε is set

Proc. 27th IEEE International Performance Computing and Communications Conference (IPCCC), Dec. 2008.

 7

to 0 and µ is set to 1. Thus, the neighbor that consumes
the least amount of energy will be considered first. In
addition, we studied the impact of different ε and µ
values in the simulation. Our goal is to find a balanced
pair of these values that enables DEES to save energy
while giving the best performance. The pseudo code of
the dispatching phase is shown in Fig. 6.

 Dispatch

1. while unscheduled task group gi at site su,
requiring data dj located at so

2. Send tasks within gi to so

3. Sort so’s neighbors by HRF
4. for each neighbor that has not been visited by gi

5. Replicate di from so to sv which is ranked first
6. Send schedulable portion of gi from so to sv

7. Update the task queue in so
8. Mark sv as visited by gi

end Dispatch

Fig. 6. Dispatch

4.4 Complexity

Let n be the number of incoming tasks at each site,
m the number of machines within each site, and s the
number of sites. Then, the complexity of the ranking
phase is O(nlogn), of Schedule is O(nm) and of
Dispatch is O(ns). Therefore, the complexity of GDS is
O(nlogn), assuming s < logn and m < logn. We note
that the complexity of Close-to-Files is O(Nms), where
N is the total number of incoming tasks.

Table 2. Characteristics of system parameters

Parameter Value(fixed)-(varied)

Number of jobs
(9600)-(1600,3200,6400,9600
12800,16000,19200, 22400)

Number of sites (32)-
Site processing speed 8*8 nodes
Number of datasets (200)-(100,200,400)
Task execution time
range (Uniform
distribution)

(1,500) second

Size of datasets
(500-800MB short jobs,
800MB-1GB medium jobs, 1-
2GB long jobs)-(500MB-2GB)

Dataset popularity
distribution

(Uniform)-(Uniform, Normal,
Geometric)

Dataset popularity
threshold

(2)-(2,4,6,8,10)

5. Simulation

We conducted extensive simulations based on the
San Diego Supercomputer Center (SDSC) SP2 log to

evaluate DEES. The real trace was sampled on a 128-
node IBM SP2 (67,665 jobs from April 1998 to April
2000) [16]. The system parameters in a simulated grid
system are chosen to resemble real-world workstations
such as IBM SP2 nodes. Error! Reference source not
found. summarizes the key parameters of the simulated
grid system used in our experiments. Each data point is
an average of 30 runs.

 To reveal the strengths of DEES, we compared it
with an effective scheduling algorithm, namely, Close-
to-Files [10]. The Close-to-Files algorithm gives good
performance since it takes data locality into account. It
always schedules a task to its data site. Doing so helps
decrease the amount of data transfer. Moreover, it is an
exhaustive algorithm that searches across all
combinations of computing and data sites to find a
result with the minimum computation and transmission
cost, which gives good performance but incurs
considerable amount of overhead. The CF algorithm is
summarized as follows:

1. First tasks are ranked by decreasing size.
2. For each task, if there exist data sites that can

successfully execute the task; schedule it on a data
site which is the first according to the alphabetical
order of names.

3. If there is no data site that can schedule the task,
first find all pairs of execution sites with sufficient
idle processors and data sites of the task; then try to
find the pair with the minimal data transfer time.

4. If no site can be found to execute this task, it is
marked as un-schedulable.

5. Repeat steps 2-4 till all tasks have been processed.

Moreover, in order to demonstrate that DEES is able

to reduce energy consumption without sacrificing the
system performance, we proposed the Performance-
driven scheduling algorithm and compare it with
DEES. The Performance-driven scheduling algorithm
can be summarized as follows:

1. First tasks are ranked by increasing deadline.
2. Then each task is scheduled onto the resource that

gives the minimum completion time, regardless of
the data locality.

3. If no resource can be found to execute a task, this
task is marked as un-schedulable.

4. Repeat steps 2-3 till all tasks have been processed.

Note that both Close-to-Files and Performance-driven
algorithms are centralized algorithms that need the
knowledge of a complete state of the grid.
 The Guarantee Ratio, Normalized Average Energy
Consumption and Total Energy Consumption are used
as the performance metrics in the evaluation. The
algorithm that produces the highest Guarantee Ratio
with the lowest Normalized Average Energy

Proc. 27th IEEE International Performance Computing and Communications Conference (IPCCC), Dec. 2008.

 8

Consumption and the lowest Total Energy
Consumption is considered the best algorithm. The
Guarantee Ratio and Normalized Average Energy
Consumption are defined as:

total

s

N

N
RatioGuarantee = , (17)

where Ns is the number of scheduled tasks meeting
deadlines, and Ntotal is the total number of tasks.

s

total

N

E
nConsumptioEnergyAverageNormalized = , (18)

where Etotal is the total energy consumption.

5.1 Impact of ranking coefficients

The first experiment set was to investigate the impact
of using different (ε, µ) combinations. In dispatching,
neighboring sites are ranked by Eq. (18). We introduce
ε and µ, which are two coefficients related to meeting
task deadlines and saving energy, respectively. Varying
ε and µ, DEES is able to switch between the two
conflicting goals of saving energy and meeting
deadlines.

Fig. 7 shows the performance of DEES using
different (ε, µ) value pairs with respect to Guarantee
Ratio. It is observed that DEES (2, 1) gives the best
performance. This is because DEES (2, 1) takes both
goals of meeting deadline and saving energy into
account, and put more weight onto the deadline
meeting part. Neighbors that can schedule more tasks
are given preference. Another observation is that DEES
(0, 1) gives the worst performance, since it only
considers energy consumption. Our conclusion is that
giving preference to neighbors that can schedule more
tasks while consuming satisfactory amount of energy
yields higher Guarantee Ratio.

With respect to Normalized Average Energy
Consumption, as shown in Fig. 8, we observe that
DEES (2, 1) consumes the least amount of energy while
DEES (0, 1) consumes the most. DEES (2, 1) considers
both energy consumption and deadline constraints
when dispatching tasks to neighbors. Doing so can
reduce the energy cost per task. There are two reasons
why DEES (0, 1) performs the worst. First, fewer tasks
can be scheduled since it only cares about the energy
consumption when dispatching tasks. This in turn leads
to an increase in the energy consumption per task.
Second, given that more tasks miss their deadlines at
each site, additional data replications may be needed.
This is done in order to find remote sites, which may be
more than 1 hop away, to meet tasks’ deadlines.
Therefore it relatively consumes more energy to
replicate data and transfer the tasks.

Fig. 7. Guarantee Ratio by ranking coefficients

Fig. 8. Normalized Average Energy Consumption by

ranking coefficients

5.2 Performance

In this experiment set, we compared the
performance of DEES with Close-to-Files and
Performance-driven algorithms under different task
loads. From Fig. 9, we observe that DEES yields better
performance than Close-to-Files and achieves the same
performance level as the Performance-driven algorithm
does. The Performance-driven algorithm always
schedules a task to a globally best resource that gives
the best performance. Since it only focuses on
performance but not other factors such as data locality,
it yields very good performance with respect to
Guarantee Ratio. But the fact that DEES gives similar
performance as the Performance-driven algorithm is
importance. Thus, DEES not only reduces energy
consumption, but it does so without degrading the
Guarantee Ratio. One reason is because DEES always
schedules tasks with shorter deadlines first. The final
criteria for judging whether a task can be scheduled are
the task deadlines. Scheduling those tasks with shorter

Proc. 27th IEEE International Performance Computing and Communications Conference (IPCCC), Dec. 2008.

 9

deadlines first makes more tasks schedulable. Moreover,
DEES is fully distributed, which is expected to improve
the performance when compared to a centralized
algorithm, such as the Performance-driven algorithm,
especially when the task load is heavy. Given that
DESS is fully distributed, while Close-to-Files and
Performance-driven algorithms are centralized
algorithms that need knowledge of a complete state of
the grid, the results make DEES more favorable.

Fig. 9. Guarantee Ratio by task loads

With respect to Normalized Average Energy
Consumption, as shown in Fig. 10, we see that DEES
consumes much less energy per task than Close-to-Files
does. On average DEES saves over 35% of energy
consumed when compared to the other algorithms. This
is because DEES considers the energy consumed to
transfer both tasks and data during dispatching.
Moreover, DEES groups tasks according to their data
accesses and processes tasks on a group basis. Doing so
limits the number of data replicas. This is because
whenever data is replicated to a remote site, DEES
always maximizes utilization of the data replicated by
scheduling as many tasks as possible to that remote site.
By doing so the energy cost of execution per task is
reduced. On the other hand, Close-to-Files makes
dispatching decisions on a single task basis, which may
result in unnecessary data replications. Furthermore,
since DEES schedules more tasks than Close-to-Files
does, the energy cost per task is expected to be less.
The Performance-driven algorithm consumes the most
amount of energy due to the fact that it is a greedy
algorithm that always schedules a task to a resource
giving the best performance, regardless of how much
data are needed to be replicated and transferred.

Fig. 10. Normalized Average Energy Consumption

by task loads

5.3 Total Energy Consumption under Light
Workload

When the incoming workload is light (i.e. below
2000 tasks), all the algorithms are able to give a 100%
guarantee ratio, as shown in Table 3. This is because
the grid has sufficient computing capacity to handle all
incoming tasks.

Table 3. Guarantee Ratio under light workload

Algorithm\Task No. 400 800 1200 1600
DEES 100% 100% 100% 100%
Close-to-Files 100% 100% 100% 100%
Performance-driven 100% 100% 100% 100%

Since the three algorithms can successfully schedule

all incoming tasks, we are able to conduct a fair
comparison regarding the total amount of energy
consumption. As shown in Fig. 11, DEES consumes
25% less energy on average than the other algorithms.
An interesting observation is that DEES has a lower
increasing rate on energy consumption along with the
increasing number of tasks. This is again because
DEES maximizes the utilization of the replicated data
by scheduling as many tasks as possible to the site
where the data is replicated. Doing so reduces the
amount of data replication and transfer. On the other
hand, Close-to-Files and Performance-driven
algorithms make scheduling and dispatching decisions
on a single task basis, which may result in unnecessary
data replications.

Proc. 27th IEEE International Performance Computing and Communications Conference (IPCCC), Dec. 2008.

 10

Fig. 11. Total Energy Consumption by task loads

6. Conclusion

In this paper, we proposed a novel energy efficient

algorithm to schedule real-time tasks with data access
requirements on data grids. By reducing the amount of
data replication and task transfers, the proposed
algorithm effectively saves energy. Our algorithm is
distributed since it does not need knowledge of the
complete state of the grid. Detailed simulations
demonstrate that DEES significantly reduces the energy
consumption while increasing the Guarantee Ratio. In
the future, we will investigate the reliability of DEES as
well as address temporal fault tolerance.

7. References

[1] D. Abramson, J. Giddy and L. Kotler, “High

performance parametric modeling with Nimrod/G:
Killer Application for the global grid”,
Proceedings of the 14th IPDPS, 2000, pp. 520-528.

[2] D. Anderson, J. Cobb, and E. Korpela,
“SETI@home: An experiment in Public-Resource
Computing”, Communication of the ACM, 2002,
vol. 45, pp 56-61.

[3] A. Chakrabarti, R.A. Dheepak, and S. Sengupta,
“Integration of scheduling and replication in data
grids”, LNCS, 2004, vol. 3296, pp. 375-385.

[4] R. Chang, J. Chang, and S. Lin, “Job scheduling
and data replication on data grids”, Future
Generation Computer Systems, 2007, pp. 846-860.

[5] W. Cirne, et al., “Running Bag-of-Tasks
Applications on Computational Grids: The MyGrid
Approach”, Proceedings of the 2003 ICPP, 2003,
pp. 407-416.

[6] R. Doyle, “Energy Management for Server
Clusters”, Proceedings of the Eighth Workshop on
Hot Topics in Operating Systems, 2001, pp. 165.

[7] I. Foster and C. Kesselman, The Grid2, Morgan
Kauffmann Publishers, 2003.

[8] High Energy Physics experiments [Online]
http://www.cithep.caltech.edu [Accessed Sept. 8,
2007]

[9] T. Kosar and M. Livny, “Stork: Making data
placement a first class citizen in the grid”,
Proceedings of the 24th ICDCS, 2004, pp. 342–
349.

[10] H.H. Mohamed and D.H.J. Epema, “An evaluation
of the close-to-files processor and data co-
allocation policy in multi-clusters”, Proceedings of
the 2004 Cluster, 2004, pp. 287–298.

[11] X. Qin, “Design and Analysis of a Load Balancing
Strategy in Data Grids,” Future Generation
Computer Systems, 2007, vol. 23, no. 1, pp. 132-
137.

[12] M. Rabinovich, I. Rabinovich, and R.
Rajaraman. “Dynamic Replication on the Internet”,
Technical Report HA6177000-980305-01-TM,
AT&T Labs, 1998.

[13] K. Ranganathan and I. Foster, “Decoupling
computation and data scheduling in distributed
data-intensive applications”, Proceedings of the
11th HPDC, 2002, pp. 352-258.

[14] S. Smallen, H. Casanova, and F. Berman,
“Applying scheduling and tuning to On-line
parallel tomography”, Proceedings of
Supercomputing, 2001, pp. 46.

[15] O. Wolfson, S. Jajodia, and Y. Huang, “An
adaptive data replication algorithm”, ACM
Transactions on Database System, 1997, pp. 255–
314.

[16] T. Xie and X. Qin, “A Security-Oriented Task
Scheduler for Heterogeneous Distributed
Systems”, Proceedings of the 13th HiPC, 2006, pp.
35-46.

