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Abstract 
 

Although data duplications may be able to improve 
the performance of data-intensive applications on data 
grids, a large number of data replicas inevitably 
increase energy dissipation in storage resources on the 
data grids. In order to implement a data grid with high 
energy efficiency, we address in this study the issue of 
energy-efficient scheduling for data grids supporting 
real-time and data-intensive applications. Taking into 
account both data locations and application 
properties, we design a novel Distributed Energy-
Efficient Scheduler (or DEES for short) that aims to 
seamlessly integrate the process of scheduling tasks 
with data placement strategies to provide energy 
savings. DEES is distributed in the essence - it can 
successfully schedule tasks and save energy without 
knowledge of a complete grid state. DEES 
encompasses three main components: energy-aware 
ranking, performance-aware scheduling, and energy-
aware dispatching. By reducing the amount of data 
replications and task transfers, DEES effectively saves 
energy. Simulation results based on a real-world trace 
demonstrate that with respect to energy consumption, 
DEES conserves over 35% more energy than previous 
approaches without degrading the performance.  
 

1. Introduction 
 

Distributed scientific applications in many cases 
require access to massive data sets. In High Energy 
Physics (HEP) applications [8], for example, a handful 
of experiments have started producing petabytes of data 
per year for decades. Data grids [7] have served as a 

technology bridge between the need to access 
extremely large data sets and the goal of achieving high 
data transfer rates by providing geographically 
distributed computing resources and large-scale storage 
systems. When it comes to distributed systems such as 
data grids, it is the responsibility of schedulers to 
decide where to run applications (the terms application 
and task are used interchangeably throughput this 
paper) based on the applications’ specific requirements 
as well as system workload conditions. Data resources 
are of paramount importance for many data-intensive 
applications - from long running simulations to remote 
sensing; from biological sequence analysis to video-on-
demand systems [11]. A key factor in the process of 
scheduling data-intensive tasks is the location of input 
data required by the tasks. A straightforward strategy to 
enhance performance of data-intensive applications on 
data grids is to replicate popular data sets (i.e., 
frequently accessed data sets) to multiple resource sites, 
thereby offering higher data access speeds compared to 
maintaining the data sets in a single site. A wide range 
of data replication strategies, which are practical and 
effective, have been commonly applied in distributed 
data centers [15][12]. However, making too many 
replicas may ultimately lead to a number of drawbacks. 
First, it is challenging to maintain consistency among 
replicas in large scale distributed systems such as grids. 
Second, it is nontrivial to efficiently generate replicas 
of massive data sets on the fly in data grids. Last but 
not least, a large number of data replicas inevitably and 
dramatically increase the energy dissipation in storage 
resources, which in turn often leads to large electricity 
bills. Recent studies show that large-scale clusters may 
require 40TWh per year, costing over $4Billion per 
year at the price of $100 per MWh [6].  
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Clearly, it is a non-trivial task to improve the 
performance of data-intensive applications through data 
replicas while reducing energy dissipation in storage 
systems in data grids. It is necessary to make better 
tradeoffs between energy efficiency and high-
performance for data-intensive applications since they 
are two conflicting design goals. In this paper, we 
investigate an approach to seamlessly integrate data 
placement strategies with task scheduling, in which 
both energy efficiency and real-time requirements (e.g., 
tasks’ deadlines) are fully addressed. In particular, we 
develop a novel Distributed Energy-Efficient Scheduler 
called DEES containing three key components: energy-
aware ranking, performance-aware scheduling, and 
energy-aware dispatching. By leveraging an array of 
data placement strategies, DEES is able to maximize 
the number of tasks completed before their 
corresponding deadlines while replicating data in an 
energy-efficient way. To furnish DEES with an energy-
efficient task dispatching mechanism that dispatches 
real-time tasks to peer computing sites, one has to 
simultaneously consider three factors: computational 
capacities of peer computing sites, energy consumption 
introduced by tasks, and data location. An interesting 
property of DEES is that the scheduling overhead of 
DEES does not necessarily increase when data grids 
scale up. This is quite different from most other grid 
scheduling techniques in which a centralized scheduler 
for a data grid inherently exhibits an undesirable 
performance bottleneck and single point failures may 
occur.  Unlike most existing schedulers deployed in 
data grids, DEES does not require full knowledge of 
workload conditions of all the computing sites in a data 
grid. One must consider that obtaining full knowledge 
of the state of the grid is a difficult task. 

The remainder of this paper is organized as follows. 
A review of recent related work is given in Section 2. 
Section 3 describes the system model. Section 4 
presents the detailed design of DEES. Section 5 
presents a comprehensive set of simulations that were 
used to evaluate the performance of DEES. 
Conclusions and future work appear in Section 6. 

 

2. Related work 
 
Unlike traditional parallel and distributed systems, 

in which required data usually resides in sites where 
tasks are allocated, data grids allow data required by 
applications to be distributed across multiple sites. The 
significance of data placement in task scheduling and 
dispatching in data grids has led to several innovative 
strategies having been proposed in recent years. 

Data replications are used to reduce communication 
costs and avoid data access hotspots. Ranganathan and 

Foster [13] considered dynamic task scheduling along 
with data staging requirements. In contrast to this work, 
it is known that computation scheduling and data 
replication phases are partly independent of one 
another. Simulation results have shown that task 
scheduling and data placement can be optimized 
separately [13]. Kosar and Livny [9] proposed a 
scheduler named Stork for data placement in grids. 
Their motivational rationale is to efficiently complete 
computational cycles by placing data close to 
computational resources. Mohamed and Epema [10] 
developed an algorithm named Close-to-File (CF) that 
schedules tasks on sites with enough processing 
capacity that are close to the sites where the required 
data (input files) reside. CF uses an exhaustive 
algorithm to search across all combinations of 
computing and data sites to find a result with the 
minimum computation and transmission cost.  

Chang [4] developed the Hierarchical Cluster 
Scheduling (HCS) algorithm and the Hierarchical 
Replication Strategy (HRS), which maximize the 
required data in a region in order to fetch replicas 
faster. HCS not only considers computational capacity 
and data location, but also takes cluster information as 
an input. The rationale behind HRS is that nearby data 
has a higher priority to access as compared to 
generating new replicas. Chakrabarti [3] proposed the 
Integrated Replication and Scheduling Strategy (IRS) 
that decouples task scheduling from data placement. It 
calculates the popularity of current required files and 
replicates the most popular data for the next set of 
tasks. 

However, none of the aforementioned studies 
consider energy efficiency. QoS requirements, such as 
application deadlines, have also not been taken into 
account. Furthermore, most of the aforementioned 
algorithms require full knowledge of the state of the 
entire grid, which is difficult and/or expensive to obtain 
and maintain. 

 

3. System model 
 
3.1 Data grid model 

 
As shown in Fig. 1, geographically distributed sites 

are interconnected through a WAN. We define a site as 
a location that contains computing resources and large-
scale storage systems. Heterogeneity and dynamicity 
cause resources in grids to be distributed unevenly.  

The internal structure of each site is shown in Fig. 2. 
Each site consists of storage resources, computing 
resources and a ticket server. Storage resources are 
used to store data while computing resources are 
devoted to computations. A ticket server is the server 
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used to run the scheduler, which is in charge of 
sending, receiving, and processing tickets. A ticket is a 
very small file that contains certain attributes of the 
task. Users submit tasks to the ticket server. The 
scheduler tries to schedule, as many tasks as possible, 
on the local site. Unscheduled tasks are sent to the most 
promising neighbors using tickets.  

 
Fig. 1. Data grid model 

 
We consider scheduling Bag-of-Tasks (BoT) 

applications, in which tasks are independent of each 
other. BoT applications are used in a variety of 
scenarios, including parameter sweeps [1] and 
computer imaging [14]. Furthermore, because of the 
independence of their tasks, BoT applications can be 
successfully executed over geographically distributed 
grids. This feature has been demonstrated by 
SETI@home [2]. It is arguably true that BoT 
applications are most suited for grids [5], where 
communication costs can easily become a bottleneck 
for highly-coupled parallel applications.  

 
Fig. 2. The internal structure of a site 

 
3.2 Energy consumption model 
 

We model the energy consumption of task execution 
and data replica transfers. It is assumed that the storage 

center at each site has enough storage space to 
accommodate every data request. The parameters used 
in this section are shown in Table 1. 

Table 1. Important notation 
Notations Description 

N total number of tasks 
W total number of machines within the grid  
Q total number of sites within the grid 
sv site v 
mk machine k 
ti task i 
di deadline of task i 
α read energy consumption rate (watt) 
β write energy consumption rate (watt) 
λ network energy consumption rate (watt) 
εk,v computation power of mk at sv (watt) 
bu,v bandwidth between su and sv 
s(ti) size of ti’s execution code 
s(dj) size of data dj  

ei number of instructions of ti , in terms of MI 
(Million Instruction) 

cck,v computing capacity of mk at sv, in terms of 
MIPS (Million Instruction Per Second) 

rj,u time to read dj from su 

wj,v time to write dj to sv 

pk,v idle time period of mk at sv 

ηk,v idle power of mk at sv (watt) 

If the energy consumed by cooling systems is not 
considered, the total energy consumption of a data grid, 
Etotal, can be expressed as: 
                      

repcommcomptotal EEEE ++= ,             (1) 

where Ecomp is the total energy consumption of 
computing resources, Ecomm is the total energy 
consumption of communication, and Erep is the total 
energy consumption of replicating data. 

Ecomp contains two parts: (i) Ec is the energy 
consumed to execute all tasks, and (ii) Ei is the energy 
consumed when machines are idle. Ec can be written as: 
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where c
vkiE ,,
 is the energy consumption for executing a 

task ti on machine mk at site sv, N is the total number of 
tasks, W is the total number of machines within the grid, 
and Q is the total number of sites within the grid. c
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where ei is the number of instructions of ti, cck,v is the 
computing capacity of mk at sv, and εk,v is the 
computation power of mk at sv.  

The idle energy consumption, Ei, can be defined as: 
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where pk,v is the idle time period of mk, and ηk,v is the 
idle power of mk.  

Thus, according to Eq. (2), (3), and (4), the total 
computation energy consumption, Ecomp, can be written 
as the aggregate of Ec and Ei for all tasks: 
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The total communication energy consumption, Ecomm, 
is composed of two parts: (i) td

vojiE ,,,
 is the energy 

consumed to transfer ti’s required dataset, the jth data dj, 
from so to sv, where so is the site at which dj is located, 
and (ii) tt

vuiE ,,
 is the energy consumed to transfer the 

execution code of ti from su to sv, where su is ti’s local 
site. td

vojiE ,,,
 can be expressed as: 
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where s(dj) is the size of dj, bo,v is the bandwidth 
between so and sv, and λ is the network energy 
consumption rate. If sv already has the data (i.e. o=v), 
no data transfer cost will be incurred. tt

vuiE ,,
 can be 

expressed as: 
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Note that if ti is executed on the local site (i.e. u=v), no 
task transfer cost will be incurred. 

Therefore, Ecomm, which is composed of the 
aggregate of td

vojiE ,,,
 and tt

vuiE ,,
 for all tasks, becomes: 
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where xi,v can be defined as: 
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The third part of the total energy consumption is the 
data replication energy consumption. The energy 
consumed to replicate ti’s required dataset dj from so to 
sv, denoted as wr

vojiE ,
,,,

, contains two components: (i) 
r

ojiE ,,
 is the energy consumed to read dj from so, and (ii) 

w
vjiE ,,
 is the energy consumed to write dj to sv. r

ojiE ,,
 can 

be expressed as: 

                          
oj

r
oji rE ,,, ×= α  ,                        (10) 

where rj,o is the time to read dj from site so, and α is the 
read energy consumption rate. Similarly, w

vjiE ,,
 can be 

expressed as: 
                             

vj
w

vji wE ,,, ×= β  ,                          (11) 

where wj,v is the time to write dj to site sv, and β is the 
write energy consumption rate. So the total energy 
consumed to replicate dj from so to sv, wr

vojiE ,
,,,

, is: 
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Therefore, Erep, which is composed of the aggregate 
of wr

vojiE ,
,,,

 for all tasks, can be written as: 
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By substituting Eq. (5),(8), and (13) into Equation 
(1), the total energy consumption of a data grid, Etotal, 
can be derived as: 
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3.3 Energy consumption analysis 
 

We describe four scenarios that may occur when a 
task request is scheduled. Let us analyze the energy 
consumption in each scenario.  

S1. Local execution and local data: The task 
execution is performed at its local site su where 
the required input data is located. 

S2. Local execution and remote data: The task 
execution is performed at its local site su and the 
input data is replicated from a remote site so. 

S3. Remote execution and same remote data: The 
task, whose local site is su, is executed at a remote 
site sv and the input data is already located at the 
same remote site 

S4. Remote execution and different remote data: 
The task, whose local site is su, is executed at a 
remote site sv and the input data is replicated from 
another remote site so. 

Hence, Ei,k,v, which is the energy consumed to 
schedule ti on mk at sv, can be expressed as:  
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From Eq. (15), it is observed that executing a task at 
a site where its data is located is the most energy 
efficient, because no data transfer and replication cost 
is incurred. Compared to the local execution and 
remote data scenario, executing the task at a remote 
site where data is located is still more energy efficient 
because of the fact that the size of a task’s input data is 
usually much larger than the size of its execution code. 

 
3.4 Motivational example 
 

We observe that reducing the amount of data 
replication and task transfers can effectively save 
energy. This is in contrast to making as many data 
replications as possible, which improves performance 
at the cost of energy. We give a simple case study that 
demonstrates our ideas. An environment with different 
types of processors is simulated as follows: 

 P1: AMD Athlon 64 X2 6400+ with 85W TDP 
Energy Consumption Rate: Busy: 104w idle:15w 

 P2: AMD Athlon 64 X2 3800+ with 35W TDP 
Energy Consumption Rate: Busy: 47w idle: 11w 

 A network with energy consumption rate of (60w) 

As shown in Fig. 3, three sites A, B, and C are 
connected by two links that have the same bandwidth. 
For simplicity, all the attributes are assigned as 
standard unit values. The performance-driven 
scheduling algorithm tends to assign a task to a 
machine that provides the minimum completion time. 
Using this algorithm, t1 will be scheduled on B, t2 
scheduled on C, t3 scheduled on B, and t4 scheduled on 
C. This is the combination that will produce minimum 
completion times, so that the total units of data 
transferred, denoted as DT1, become: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) 16242

312111

=+++
++++=

dstsds

tsdstsdstsDT  

According to our energy consumption model, the total 
energy consumption (considering the energy 
consumption when machines are idle and busy) is: 

joulesEtotal 8.9541 =  

If the scheduling algorithm considers energy 
efficiency, tasks will be scheduled on resources that not 
only consume the least amount of energy, but also are 
capable of meeting the task deadlines. Using this 

energy aware scheduler, t1 and t2 will be scheduled on 
A, and t3 and t4 scheduled on B. In this case, the total 
units of data transferred, denoted as DT2, become: 

( ) ( ) ( ) 64232 =++= tsdstsDT  

According to our energy consumption model, the total 
energy consumption is: 

joulesEtotal 5962 =  

B C 

A ba,c=2 ba,b=2 

 
Data Property Machine Property 

Site 
ID Size ID 

Computing 
Capacity 

d1 4 
A 

d2 4 
P2 1 

B - - P1 5 
C - - P1 5 

 

Task 
Local 
site 

e s(e) Deadline Data 

t1 A 3 1 6 d1 
t2 A 3 1 6 d1 
t3 A 5 1 4 d2 
t4 A 5 1 4 d2    

Fig. 3. A motivation example 

Compared with the performance-driven scheduling 
algorithm, the energy-efficient scheduling algorithm 
schedules the same number of tasks that meet their 
deadlines. However, the energy-efficient algorithm 
saves more energy by executing tasks with local data on 
local resources, which reduces task transfers and data 
replications. Moreover, when making a data replication 
to a remote site, maximizing the utilization of this 
replica also saves energy.  The energy saving is 
achieved by assigning as many tasks as possible to the 
remote site. 
 

4. Scheduling Algorithm 
 
The design goal of DESS is three fold: (i) Maximize 

the number of tasks meeting their deadlines, (ii) 
Minimize energy consumption, and (iii) Provide 
scalability. 

DEES consists of three phases: Ranking, 
Scheduling, and Dispatching, as shown in Fig. 4. First 
incoming tasks at each site are ranked in a task queue. 
Tasks are grouped together according to the data 
location. Second, the scheduler at each site assigns each 
task to a specific local resource. Finally unscheduled 
tasks are dispatched to remote sites, where the same 
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algorithm is used to make scheduling decisions. The 
pseudo code of DEES is shown in Fig. 5. 

 

Run on 

local 

site 

Y 

Input: Tasks 

Ranking:  
Rank the task queue 

Scheduling:  

Schedule tasks on local site 

Scheduled? 

Dispatching:  

Dispatch tasks to remote sites 

N 

  
Fig. 4. Diagram for the Scheduler 

 

 DEES 

1. Group tasks according to the data location 
2. Rank the local task group first, and then sort other 

task groups by number of tasks in descending order 
3. Within each group, rank tasks by decreasing 

deadline 
4. for each task group gi in order 
5. Schedule every unscheduled t∈gi on the machine 

that gives the minimum completion time while 
meeting the deadline 

6. if unscheduled tasks left 
7.   Dispatch 

end DEES  
Fig. 5. DEES 

 
4.1 Ranking 
 

Tasks are sorted into a task queue. Tasks requiring 
the same data are grouped together. The task group 
whose data resides in the local site, called local task 
group, is ranked first. Then other task groups are 
ranked in descending order, according to the number of 
tasks in the task group. Within each group, tasks are 
ordered by increasing deadline. Thus, tasks with shorter 
deadlines are scheduled sooner.  

 
4.2 Scheduling 
 

The task grouping policy always schedules the local 
task group onto local resources first. According to the 
energy consumption analysis, it minimizes data 
replication so that energy can be saved. For tasks 
whose required data is located at remote sites, by 

grouping them according to the data location, DEES is 
able to further reduce data replication and data transfer 
in the Dispatching phase, which will be described in 
detail in Section 4.3. 

DEES schedules tasks on a group basis. A local task 
group is scheduled first. In order to schedule task ti on 
site su, DEES selects machine mk at su that can complete 
ti within its deadline and provide the minimum 
completion time. After processing all tasks, remaining 
unscheduled tasks will be dispatched to remote sites. 

 
4.3 Dispatching 
 

Our dispatching strategy delivers tasks within each 
task group to the data site. For task group gj whose data 
site is so, scheduling decisions are made by so’s 
scheduler based on its local resource status and task 
information of gj. If so cannot schedule all tasks in gj, 
then unscheduled tasks are dispatched to so’s immediate 
neighbors using tickets in a breadth-first manner. A 
ticket has several attributes: task ID, deadline, number 
of instructions, size of execution code, location of the 
required input data, schedulable flag, and route 
information.  

 In order to make tradeoffs between energy 
efficiency and real-time performance, we propose a 
ranking system, called Highest Rank First (HRF), to 
rank so’s neighbors. The rank of so’s neighbor sv is 
defined as: 

nEEE
nssgrank

vni
comp

voi
comm

voi
rep

ovi /)(

1
),,(

,,,,,, ++
×+×= µε ,(16) 

where n is the number of tasks in gj that can be 
scheduled on sv, ε is a coefficient concerning the task 
deadline, µ is a coefficient concerning energy saving, 

voi
repE ,,  is the energy consumed to replicate gi’s data from 

so to sv, voi
commE ,,  is the energy consumed to transfer gi’s 

data and n unscheduled tasks from so to sv, and vni
compE ,,  is 

the energy consumed to execute these n tasks at sv. 
The neighboring site with the top ranking will be 

considered first. Neighbors are checked using a 
breadth-first search. If there are tasks unscheduled in gi 
after visiting all neighbors of so, the nearest neighbor 
(which has the fastest link bandwidth) will search its 
neighbors using the same algorithm. This process 
continues until suitable remote resources have been 
found, or all sites have been visited. 

Introducing ε and µ, we enable DEES to manage the 
two conflicting goals of saving energy and meeting 
deadlines. If the incoming tasks are mission-critical, ε is 
set to 1 and µ is set to 0, which means the neighbor that 
can schedule more tasks is given preference. When 
energy consumption becomes more important, ε is set 
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to 0 and µ is set to 1. Thus, the neighbor that consumes 
the least amount of energy will be considered first. In 
addition, we studied the impact of different ε and µ 
values in the simulation. Our goal is to find a balanced 
pair of these values that enables DEES to save energy 
while giving the best performance. The pseudo code of 
the dispatching phase is shown in Fig. 6. 

 Dispatch 

1.  while unscheduled task group gi at site su, 
requiring data dj located at so 

2.    Send tasks within gi to so 

3.     Sort so’s neighbors by HRF 
4.    for each neighbor that has not been visited by gi 

5.       Replicate di from so to sv which is ranked first 
6.       Send schedulable portion of gi from so to sv 

7.       Update the task queue in so 
8.      Mark sv as visited by gi 

end Dispatch 
 

Fig. 6. Dispatch 
 
4.4 Complexity 
 

Let n be the number of incoming tasks at each site, 
m the number of machines within each site, and s the 
number of sites. Then, the complexity of the ranking 
phase is O(nlogn), of Schedule is O(nm) and of 
Dispatch is O(ns). Therefore, the complexity of GDS is 
O(nlogn), assuming s < logn and m < logn. We note 
that the complexity of Close-to-Files is O(Nms), where 
N is the total number of incoming tasks.  
 

Table 2. Characteristics of system parameters 

Parameter Value(fixed)-(varied) 

Number of jobs 
(9600)-(1600,3200,6400,9600 
12800,16000,19200, 22400) 

Number of sites (32)- 
Site processing speed 8*8 nodes 
Number of datasets (200)-(100,200,400) 
Task execution time 
range (Uniform 
distribution) 

(1,500) second 

Size of datasets 
(500-800MB short jobs, 
800MB-1GB medium jobs, 1-
2GB long jobs)-(500MB-2GB) 

Dataset popularity 
distribution 

(Uniform)-(Uniform, Normal, 
Geometric) 

Dataset popularity 
threshold 

(2)-(2,4,6,8,10) 

 

 
5. Simulation 
 

We conducted extensive simulations based on the 
San Diego Supercomputer Center (SDSC) SP2 log to 

evaluate DEES. The real trace was sampled on a 128-
node IBM SP2 (67,665 jobs from April 1998 to April 
2000) [16]. The system parameters in a simulated grid 
system are chosen to resemble real-world workstations 
such as IBM SP2 nodes. Error! Reference source not 
found. summarizes the key parameters of the simulated 
grid system used in our experiments. Each data point is 
an average of 30 runs. 

 To reveal the strengths of DEES, we compared it 
with an effective scheduling algorithm, namely, Close-
to-Files [10]. The Close-to-Files algorithm gives good 
performance since it takes data locality into account. It 
always schedules a task to its data site. Doing so helps 
decrease the amount of data transfer. Moreover, it is an 
exhaustive algorithm that searches across all 
combinations of computing and data sites to find a 
result with the minimum computation and transmission 
cost, which gives good performance but incurs 
considerable amount of overhead. The CF algorithm is 
summarized as follows: 

1. First tasks are ranked by decreasing size. 
2. For each task, if there exist data sites that can 

successfully execute the task; schedule it on a data 
site which is the first according to the alphabetical 
order of names. 

3. If there is no data site that can schedule the task, 
first find all pairs of execution sites with sufficient 
idle processors and data sites of the task; then try to 
find the pair with the minimal data transfer time. 

4. If no site can be found to execute this task, it is 
marked as un-schedulable. 

5. Repeat steps 2-4 till all tasks have been processed. 
 
Moreover, in order to demonstrate that DEES is able 

to reduce energy consumption without sacrificing the 
system performance, we proposed the Performance-
driven scheduling algorithm and compare it with 
DEES. The Performance-driven scheduling algorithm 
can be summarized as follows: 

1. First tasks are ranked by increasing deadline. 
2. Then each task is scheduled onto the resource that 

gives the minimum completion time, regardless of 
the data locality. 

3. If no resource can be found to execute a task, this 
task is marked as un-schedulable. 

4. Repeat steps 2-3 till all tasks have been processed. 

Note that both Close-to-Files and Performance-driven 
algorithms are centralized algorithms that need the 
knowledge of a complete state of the grid. 
    The Guarantee Ratio, Normalized Average Energy 
Consumption and Total Energy Consumption are used 
as the performance metrics in the evaluation. The 
algorithm that produces the highest Guarantee Ratio 
with the lowest Normalized Average Energy 
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Consumption and the lowest Total Energy 
Consumption is considered the best algorithm. The 
Guarantee Ratio and Normalized Average Energy 
Consumption are defined as: 

total

s

N

N
RatioGuarantee =  ,        (17) 

where Ns is the number of scheduled tasks meeting 
deadlines, and Ntotal is the total number of tasks. 

s

total

N

E
nConsumptioEnergyAverageNormalized = ,    (18) 

where Etotal is the total energy consumption. 

5.1 Impact of ranking coefficients 
 

The first experiment set was to investigate the impact 
of using different (ε, µ) combinations. In dispatching, 
neighboring sites are ranked by Eq. (18). We introduce 
ε and µ, which are two coefficients related to meeting 
task deadlines and saving energy, respectively. Varying 
ε and µ, DEES is able to switch between the two 
conflicting goals of saving energy and meeting 
deadlines.  

Fig. 7 shows the performance of DEES using 
different (ε, µ) value pairs with respect to Guarantee 
Ratio. It is observed that DEES (2, 1) gives the best 
performance. This is because DEES (2, 1) takes both 
goals of meeting deadline and saving energy into 
account, and put more weight onto the deadline 
meeting part. Neighbors that can schedule more tasks 
are given preference. Another observation is that DEES 
(0, 1) gives the worst performance, since it only 
considers energy consumption. Our conclusion is that 
giving preference to neighbors that can schedule more 
tasks while consuming satisfactory amount of energy 
yields higher Guarantee Ratio. 

With respect to Normalized Average Energy 
Consumption, as shown in Fig. 8, we observe that 
DEES (2, 1) consumes the least amount of energy while 
DEES (0, 1) consumes the most. DEES (2, 1) considers 
both energy consumption and deadline constraints 
when dispatching tasks to neighbors. Doing so can 
reduce the energy cost per task. There are two reasons 
why DEES (0, 1) performs the worst. First, fewer tasks 
can be scheduled since it only cares about the energy 
consumption when dispatching tasks. This in turn leads 
to an increase in the energy consumption per task. 
Second, given that more tasks miss their deadlines at 
each site, additional data replications may be needed. 
This is done in order to find remote sites, which may be 
more than 1 hop away, to meet tasks’ deadlines. 
Therefore it relatively consumes more energy to 
replicate data and transfer the tasks. 

 
Fig. 7. Guarantee Ratio by ranking coefficients 

 

 
Fig. 8. Normalized Average Energy Consumption by 

ranking coefficients 
 
5.2 Performance 
 

In this experiment set, we compared the 
performance of DEES with Close-to-Files and 
Performance-driven algorithms under different task 
loads. From Fig. 9, we observe that DEES yields better 
performance than Close-to-Files and achieves the same 
performance level as the Performance-driven algorithm 
does. The Performance-driven algorithm always 
schedules a task to a globally best resource that gives 
the best performance. Since it only focuses on 
performance but not other factors such as data locality, 
it yields very good performance with respect to 
Guarantee Ratio. But the fact that DEES gives similar 
performance as the Performance-driven algorithm is 
importance. Thus, DEES not only reduces energy 
consumption, but it does so without degrading the 
Guarantee Ratio. One reason is because DEES always 
schedules tasks with shorter deadlines first. The final 
criteria for judging whether a task can be scheduled are 
the task deadlines. Scheduling those tasks with shorter 
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deadlines first makes more tasks schedulable. Moreover, 
DEES is fully distributed, which is expected to improve 
the performance when compared to a centralized 
algorithm, such as the Performance-driven algorithm, 
especially when the task load is heavy. Given that 
DESS is fully distributed, while Close-to-Files and 
Performance-driven algorithms are centralized 
algorithms that need knowledge of a complete state of 
the grid, the results make DEES more favorable.  

 
Fig. 9. Guarantee Ratio by task loads 

With respect to Normalized Average Energy 
Consumption, as shown in Fig. 10, we see that DEES 
consumes much less energy per task than Close-to-Files 
does. On average DEES saves over 35% of energy 
consumed when compared to the other algorithms. This 
is because DEES considers the energy consumed to 
transfer both tasks and data during dispatching. 
Moreover, DEES groups tasks according to their data 
accesses and processes tasks on a group basis. Doing so 
limits the number of data replicas. This is because 
whenever data is replicated to a remote site, DEES 
always maximizes utilization of the data replicated by 
scheduling as many tasks as possible to that remote site. 
By doing so the energy cost of execution per task is 
reduced. On the other hand, Close-to-Files makes 
dispatching decisions on a single task basis, which may 
result in unnecessary data replications. Furthermore, 
since DEES schedules more tasks than Close-to-Files 
does, the energy cost per task is expected to be less. 
The Performance-driven algorithm consumes the most 
amount of energy due to the fact that it is a greedy 
algorithm that always schedules a task to a resource 
giving the best performance, regardless of how much 
data are needed to be replicated and transferred. 

 
Fig. 10. Normalized Average Energy Consumption 

by task loads 

 
5.3 Total Energy Consumption under Light 
Workload 
 

When the incoming workload is light (i.e. below 
2000 tasks), all the algorithms are able to give a 100% 
guarantee ratio, as shown in Table 3. This is because 
the grid has sufficient computing capacity to handle all 
incoming tasks. 

Table 3. Guarantee Ratio under light workload 

Algorithm\Task No. 400 800 1200 1600 
DEES 100% 100% 100% 100% 
Close-to-Files 100% 100% 100% 100% 
Performance-driven 100% 100% 100% 100% 

 
Since the three algorithms can successfully schedule 

all incoming tasks, we are able to conduct a fair 
comparison regarding the total amount of energy 
consumption. As shown in Fig. 11, DEES consumes 
25% less energy on average than the other algorithms. 
An interesting observation is that DEES has a lower 
increasing rate on energy consumption along with the 
increasing number of tasks. This is again because 
DEES maximizes the utilization of the replicated data 
by scheduling as many tasks as possible to the site 
where the data is replicated. Doing so reduces the 
amount of data replication and transfer. On the other 
hand, Close-to-Files and Performance-driven 
algorithms make scheduling and dispatching decisions 
on a single task basis, which may result in unnecessary 
data replications. 
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Fig. 11. Total Energy Consumption by task loads 

   

6. Conclusion 
 
In this paper, we proposed a novel energy efficient 

algorithm to schedule real-time tasks with data access 
requirements on data grids. By reducing the amount of 
data replication and task transfers, the proposed 
algorithm effectively saves energy. Our algorithm is 
distributed since it does not need knowledge of the 
complete state of the grid. Detailed simulations 
demonstrate that DEES significantly reduces the energy 
consumption while increasing the Guarantee Ratio. In 
the future, we will investigate the reliability of DEES as 
well as address temporal fault tolerance.  
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