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Abstract—Cloud computing nowadays becomes quite popular
among a community of cloud users by offering a variety of
resources. However, burstiness in user demands often dramat-
ically degrades the application performance. In order to satisfy
peak user demands and meet Service Level Agreement (SLA),
efficient resource allocation schemes are highly demanded in
the cloud. However, we find that conventional load balancers
unfortunately neglect cases of bursty arrivals and thus experience
significant performance degradation. Motivated by this problem,
we propose new burstiness-aware algorithms to balance bursty
workloads across all computing sites, and thus to improve overall
system performance. We present a smart load balancer, which
leverages the knowledge of burstiness to predict the changes in
user demands and on-the-fly shifts between the schemes that are
“greedy” (i.e., always select the best site) and “random” (i.e.,
randomly select one) based on the predicted information. Both
simulation and real experimental results show that this new load
balancer can adapt quickly to the changes in user demands and
thus improve performance by making a smart site selection for
cloud users under both bursty and non-bursty workloads.

I. INTRODUCTION

Cloud computing nowadays becomes quite popular among
a community of cloud users by offering a variety of re-
sources. Cloud computing platforms, such as those provided
by Microsoft, Amazon, Google, IBM, and Hewlett-Packard,
let developers deploy applications across computers hosted
by a central organization. These applications can access a
large network of computing resources that are deployed and
managed by a cloud computing provider. Developers obtain the
advantages of a managed computing platform, without having
to commit resources to design, build and maintain the network.
Yet, an important problem that must be addressed effectively
in the cloud is how to manage QoS and maintain SLA for
cloud users that share cloud resources.

In cloud platforms, resource allocation (or load balancing)
takes place at two levels. First, when an application is uploaded
to the cloud, the load balancer assigns the requested instances
to physical computers, attempting to balance the computational
load of multiple applications across physical computers. Sec-
ond, when an application receives multiple incoming requests,
these requests should be each assigned to a specific application
instance to balance the computational load across a set of
instances of the same application. For example, Amazon EC2
uses elastic load balancing (ELB) to control how incoming
requests are handled. Application designers can direct requests
to instances in specific availability zones, to specific instances,
or to instances demonstrating the shortest response times.

Bursty workloads are often found in multi-tier architectures,
large storage systems, and grid services [1], [2], [3]. Internet
flash-crowds and traffic surges are familiar examples of bursty
traffic, where bursts of requests are aggressively clustered
together during short periods and thus create spikes with
extremely high arrival rate. We argue that the presence of
burstiness can cause load unbalancing in clouds and con-
sequently degrade the overall system performance. In cloud
systems, many applications are no longer single-program-
single-execution applications. These applications involve a
large number of concurrent and dependent jobs, which can
be executed either in parallel or sequentially. Simultaneously
launching jobs from different applications during a short
time period can immediately cause a significant arrival peak,
which further aggravates resource competitions and load un-
balancing among computing sites. Also, as the number of
these applications significantly increases in recent years, the
present of Internet flash-crowds and traffic surges becomes
more frequent. As a result, how to counteract burstiness
and maintain high quality of service and system availability
becomes imminently important but challenging as well in
clouds. However, conventional methods unfortunately neglect
cases of bursty arrivals and cannot capture the impacts of
burstiness on system performance.

Motivated by this problem, we propose a new load balanc-
ing algorithm, called ARA, for adaptive resource allocation
in cloud systems, which attempts to counteract the effect
of burstiness and improve overall system performance and
availability. The main contributions of this paper are (1) to
present an on-off prediction approach which accurately fore-
casts changes in user demands by leveraging the knowledge
of burstiness in workloads; and (2) to develop a smart load
balancer, which on-the-fly shifts between the schemes that are
“greedy” (i.e., always select the best site) and “random” (i.e.,
randomly select one among all sites) based on the predicted
information.

Our simulation results show that ARA reduces the response
times by optimizing the dispatch of loads across computing
sites and adapts quickly to the changes in user demands by
making a smart site selection for cloud users under both bursty
and non-bursty workloads. Sensitivity analysis with respect to
various system parameters validates that ARA is effective and
robust in many different environments. The real experiments
conducted in Amazons EC2 further reveal the effectiveness of
our ARA in a real cloud environment.



We expect that our new burstiness-aware load balancing
allows cloud users to experience higher quality of service (e.g.,
shorter response times) without purchasing additional comput-
ing resources. We also expect that our new burstiness-aware
load balancing enables cloud computing systems to make
better use of their infrastructure without over-provisioning
during bursty periods yet keep the simplicity in resource man-
agement, allowing applications to consume fewer resources
and gaining maximum economic profit. The remainder of the
paper presents our results in detail.

II. MOTIVATION

In this section, we first demonstrate the impact of burstiness
on load balancing in a distributed simulation environment,
which is developed on the CSim library [4]. We refer the
interested readers to [5] for the details on system design and
remark that such a simulation environment can be used to
simulate a cloud computing framework. In our simulation, the
system consists of N computing sites, where each site runs
the First-In-First-Out (FIFO) policy to schedule the assigned
jobs. The specifications of a job, including job inter-arrival
time and job execution time, are created based on the specified
distributions and methods.

To select an effective site for an incoming job, a load
balancer periodically queries the load information (e.g., queue
length and site utilization level) about each site as the ranking
criteria from the host resource management systems. The load
balancer then selects a computing site that has the highest
ranking value (such as the shortest queue length) among all
sites of the targeting application. The higher ranking values,
the more likely we can complete jobs with shorter queuing
times and thus obtain better system performance. Such a load
balancing scheme can be referred to as “greedy” because
it always selects the top-ranked site for service. We also
evaluate another load balancing scheme, dubbed as Rand,
which randomly selects one among all available sites.

To demonstrate the performance impact of bursty arrivals,
we run the simulations under three different arrival processes
with burstiness profiles as shown in Figure 1. Each arrival
process is drawn from a 2-state Markovian-Modulated Poisson
Process (MMPP)1 that can be parameterized to have the same
mean equal to 10s but three different levels of burstiness:
strong, weak, and non-bursty, such that the corresponding
values of index of dispersion I are equal to 313.5, 32.25, and
1, respectively, see the details of I in Section III-B1. Here,
we remark that the index of dispersion has been frequently
used as a measure of burstiness in the analysis of time series
and network traffic [7], [8]. The higher I indicates stronger
burstiness in workloads. We observe that the number of arrivals
are significantly varied under the three different workloads. In
all experiments, the system consists of N = 16 sites and has
an average site utilization equal to 50%.

1Markovian-Modulated Poisson Process (MMPP) is a special case of the
Markovian Arrival Process (MAP) [6], which is used here to generate bursty
flows because it is analytically tractable.

Table I shows the average response times of two load bal-
ancers. We first observe that burstiness in arrivals dramatically
degrades the system performance under both two algorithms.
As the intensity of burstiness increases, such negative impacts
on system performance become more significant. More impor-
tantly, the “greedy” load balancer, Qlen, outperforms when
there is no burstiness in arrivals yet ceases to be effective
due to the imbalance of load among computing sites when
the workload arrival process is bursty. We interpret this effect
by observing that the greedy algorithms cannot detect system
load surges on computing sites during bursty arrivals because
of the delay in updating load information from sites, and thus
make incorrect decisions based on the outdated information.
For example, once a job is assigned to a computing site, the
associated load information (e.g., the present queue length) of
that site cannot be updated immediately at the load balancer.
As a result, the load balancer always submits the bursty arrivals
to that top-ranked site within the delay period2. Consequently,
significant load is incurred on that particular site, resulting in
the performance degradation under bursty workloads.

Response Strong-bursty Weak-bursty Non-bursty
time Fig. 1 (a) Fig. 1 (b) Fig. 1 (c)
Rand 1520.9s 168.5s 80.5s
Qlen 6541.5s 466.5s 7.6s

TABLE I
MEAN RESPONSE TIMES OF TWO LOAD BALANCERS UNDER THE THREE
WORKLOADS. THE NUMBER OF COMPUTING SITES IS N = 16 AND THE

INFORMATION QUERY DELAY IS D = 1S.

We stress that such an information query delay unfortunately
is unavoidable in real systems because when a job is submitted
to a site, it takes non-negligible time for that particular site
to update the information about system load. Similarly, the
communication for querying and broadcasting such load in-
formation between the distributed load balancers and the sites
via network also take a non-negligible amount of time among
clouds. Therefore, we argue that such deleterious effects due
to burstiness and information query delay must be considered
in the performance evaluation and load balancer design for
cloud computing.

III. NEW LOAD BALANCER: ARA
In this section, we present our new ARA algorithm for

adaptive resource allocation in cloud systems, which attempts
to counteract the deleterious effect of burstiness by allowing
some randomness in the decision making process and thus
improve overall system performance and availability.

A. Static Version

To address the load unbalancing problem caused by bursti-
ness, we present a new load balancer which can balance bursty
workloads across available resources and thus improve the
overall system performance. Later, we show how this new load
balancer can be deployed for load balancing across a set of
instances of the same application in a real cloud platform.

2In our simulation, we set the information query delay D as 1 second. The
sensitivity analysis to D will be given in the next subsections.
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Fig. 1. Illustrate the number of arrives per second under the three workloads with mean inter-arrival times equal to 10s.

We observed in Section II that under non-bursty conditions
the “greedy” methods that always select the best site, obtain
better performance than the “random” ones. But we also
observed the advantage of distributing jobs randomly among
all computing sites under bursty conditions. This observation
inspires us to design a new ARA algorithm which adjusts the
randomness and the greediness in the decision making process.

Algorithm: static version of ARA
1. initialize

a. number of candidates: K = k;
b. information query delay: D = d;

/* load information updating*/
2. for each window of D time

a. send queries to all computing sites for load information;
b. update load information received from all computing sites;
end

/* site selection process */
3. upon each job arriving

a. sort all sites Si, 1 ≤ i ≤ N , by current load information;
b. set S = {S1, S2, ..., SK}; /* get K sites with least load */
c. set s = uniform(1,K); /* randomly select one site from

the candidate set S */
d. submit the job to site Ss;
end

Fig. 2. The high level idea of the static ARA.

Given an incoming job and N available computing sites,
ARA finds K sites, where K ≤ N , as the best candidates
for serving that job, using queue length as the ranking crite-
rion. Then, that particular job will be randomly submitted or
enqueued to one site among the selected K candidates. The
value of K in ARA is critical for system performance, which
in turn should be set appropriately based on the intensity of
burstiness in workloads. For example,

• under the case of no burstiness in arrivals, K is set to
small values (i.e., close to 1). It turns out that ARA
performs exactly the same as the “greedy” load balancer,
always selecting the best site with shortest queue length;

• under the case of extremely strong burstiness in arrivals,
the number of best candidates is set equal (or close)
to the total number of available sites, i.e., K = N .
Consequently, ARA has behavior similar to the “random”
method, which allows the bursty workload to be shared
among all sites, therefore alleviating the imbalance of
load;

• otherwise, K is set to the value between 1 and N .

As a result, ARA dispatches the load among sites by combin-
ing the features of both Qlen and Rand. Figure 2 presents the
high level idea of this static version of ARA.

In order to evaluate the performance of ARA, we here
investigate the sensitivity analysis over a range of bursty
conditions and statically set the value of K from 1 to N .
Figure 3 shows the average response times under ARA as a
function of the number of candidates K, as well as ones under
both Qlen (see the left most bar in the figure) and Rand (see
the right most bar in the figure) policies. These results give
us a first proof of concept that ARA with an appropriate K
value can be beneficial for performance of cloud applications
with bursty arrivals. For example, in the case of non-bursty
condition, a small K (e.g., K = 3 in Figure 3 (c)) allows
ARA to achieve performance similar to Qlen, which greedily
chooses the best candidate for the incoming jobs and thus
obtains the best performance. As burstiness becomes stronger,
the value of K then keeps increasing which allows ARA
to behave almost the same as Rand counteracting the load
unbalancing problem incurred by burstiness, see Figure 3 (a).
We also notice that our static ARA achieves very similar
performance as the algorithm in [9], which considers the
supermarket model such that customers can randomly choose
a constant number of servers and waits for service at the one
with the fewest customers3.

However, such performance improvements depend on the
degree of randomness that is introduced by the number of top
candidates K. A good choice of K can result in significant
performance improvements, but an unfortunate choice may
also result in poor performance. Furthermore, real traffic
of dynamic cloud environments indeed changes over times:
extremely busy in some periods and quite idle in other periods.
We thus remark that with a fixed K both static ARA and the
algorithm in [9] cannot always achieve the best performance
across different bursty conditions. To quickly adapt to the
changes in user demands, an effective way for online adjusting
K, instead of using a fixed K, becomes imminently important
in cloud systems.

B. Online Version

Here, we design an online version of ARA which can re-
adjust the degree of randomness (i.e., K) on-the-fly according
to the workload changes. We first leverage the knowledge of

3The experimental results obtained under [9] are not reported here due the
limited space.
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Fig. 3. The average response times of the ARA load balancer as a function of the number of candidates K under (a) strong bursty workload, (b) weak
bursty workload, and (c) non-bursty workload. The average response times of the Qlen and Rand load balancers, as well as the best performance of ARA
(see the black bars) are also marked in the plots.

burstiness to develop predictors which can accurately detect
the changes in user demands and then present the online
ARA which dynamically shifts between the “greedy” and the
“random” schemes based on the predicted information.

1) On-Off Predictor: We incorporate the index of disper-
sion [7], [8] I to detect bursts in the incoming traffic. The
advantage of I is that it can qualitatively capture burstiness in
a single number and thus provide a simple yet powerful way
to promptly identify the start and the end of a bursty period.
The mathematical definition of the index of dispersion I of a
stochastic process is given as follows:

I = SCV (1 + 2
∑∞

k=1 ρk) , (1)

where SCV is the squared-coefficient of variation and ρk
is the autocorrelation function (ACF ) at lag k. The joint
presence of SCV and autocorrelations in I is sufficient to
discriminate traces with different burstiness intensities and
thus to capture changes in user demands.

To understand how I performs as a single measure, we
illustrate the arrival rates (i.e., the number of arrivals per 100
seconds) of a bursty workload across the time in Figure 4 (a).
The trace shown in this plot consists of two idle phases and
one single peak phase. We divide the whole trace into five parts
during the following time windows: W1 = [40K, 50K),W2 =
[50K, 55K),W3 = [55K, 64K),W4 = [64K, 70K), and
W5 = [70K, 75K), where only windows W2 and W4 cover
both idle and peak phases while the remaining windows
include only one phase. We also measure the corresponding
index of dispersions for each window, see the values of I
marked in the plot. We notice that the values of I are quite
small when the trends of traffic are stable during both idle
and peak phases, e.g., windows W1,W3, and W5, however,
for the windows with clear changes in traffic, e.g., W2 with
the burst arriving and W4 with the burst ending, the values of I
significantly increase. This observation indicates that dramatic
changes in I can be used as a measure criterion to detect
the start and the end of bursty arrivals and further predict the
changes in user demands.

In [10], an algorithm has been proposed to use I coupled
with information about the current and previous arrival rates to
detect changes in arrival intensities. In this paper, we consider
to exploit this algorithm for identifying changes in cloud user
demands. However, we also find that the algorithm in [10]

cannot accurately detect the start and the end of some bursts.
Especially, the end of a burst is easily missed because of the
deficiency of the algorithm, which results in the unnecessary
delay in the detection of changes from peak to idle. In addition,
the monitoring window size used in [10] is too large, which
although is beneficial to capture the state transition, further
extends the delay of detections in the ending of bursts.

In order to improve the prediction accuracy, we refine the al-
gorithm by dynamically adjusting the monitoring window size
m instead of a fixed value in [10] to trade off the contradiction
of monitoring window size and detection delay. To shorten
the detection delay, a small window size is preferred which
however may miss the detections of state changes, especially
the end of bursts. This is because m now is too short to
provide sufficient samples for readjusting I from small values
to large ones, see W3 and W4 in Figure 4. In our algorithm, we
initially choose a small value of m, but dynamically enlarge
the monitoring window (e.g., 2m requests) to collect enough
samples for updating I , given that the original window size
(i.e., m) is not large enough.

Figure 4 (b) shows the outputs of the algorithm, where state
“on” indicates the start of a burst and state “off” means the
end of a burst. We can see that the changes of states “on”
and “off” correctly follow the actual bursts plotted in solid
lines in the figure. One should notice that the algorithm is
slower in the detection of an idle period. This is the outcome
of our new dynamic window size, which indeed has negligible
impacts on our new load balancer’s performance because of
few arrivals during idle periods. Figure 4 (c) further validates
the effective of this new predictor algorithm, illustrating the
accurate prediction results for the arrival traffic with strong
burstiness, as shown in Figure 1 (a). We expect that this new
refined predictor can accurately forecast the changes in user
demands and thus can provide significant valuable information
to ARA for effectively load balancing in clouds.

2) Online Adjusting of K: Motivated by the fact that
Internet flash-crowds and traffic surges often present in real
systems, we now propose a new load balancing algorithm,
named ARA PRED, that detects the phases of “burst” and
“idle” in user demands and further discriminates these two
phases by introducing different degrees of randomness in an
online fashion. In particular, when the predictor detects the
start of a burst, we increase the degree of randomness by
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Fig. 4. Illustrating (a) the index of dispersions that are measured within five monitoring windows under a bursty workload, (b) prediction results that
accurately capture the start and the end of bursts, where the solid lines are actual traffic (i.e., arrival rates across time) and dashed lines show the detection
of when burstiness starts (state “on”) and when it ends (state “off”), and (c) prediction results for the strong bursty workload, see Fig. 1(a), where the above
plot shows the detections and the bottom plot presents the actual traffic.

setting K to a large value th l close to the total number of
available sites. On the other hand, when the predictor detects
the start of an idle period, the value of K is be decreased
to a small value th s close to 1. The degree of greediness
is then increased and ARA performs closely to Qlen. As a
result, by leveraging the knowledge of burstiness, this new
load balancer can quickly adapt to changes in user demands
by shifting between the “greedy” and the “random” schemes,
and thus optimize the utilization of available resources and
application performance by making a smart site selection for
cloud users. The high level idea of the online ARA is described
in Figure 5.

Algorithm: online ARA
1. initialize

a. the large threshold thl for K; /* e.g., thl = d0.5 ∗Ne */
b. the small threshold ths for K; /* e.g., ths = 1 */

2. run the prediction algorithm;
3. upon the detection of changes in user demands

a. if detect the start of “burst”
then increase K to thl;

b. if detect the start of “idle”
then decrease K to ths;

c. use K for the site selection process as shown in Fig. 2;
end

Fig. 5. The high level idea of the online ARA.

C. Performance Improvement of ARA PRED

To investigate the performance of the online ARA, we here
consider a case such that user demands arriving during the
“burst” and the “idle” phases both have non-negligible impacts
on the system load, as well as the overall system performance.
For example, in the arrival trace used by the following experi-
ments, there are almost half of traffic arriving when the system
is relatively idle, although 51% of jobs aggregate in bursts. It
becomes sophisticated and time consuming to search a good
value of K for the static version. Some value of K may benefit
the arrivals during “idle” periods but degrade the performance
of those in the “burst” periods; vice versa. Thus, adjusting
values of K based on the changes in traffic becomes more
important to such a case.

Figure 6 depicts the performance measures (e.g., the average
response times) under the online version of ARA. The results
under the greedy (e.g., Qlen) and the random (e.g., Rand)

algorithms are plotted in the figure as well. Also, in order to
evaluate the prediction algorithm, we present the results for
a new version of ARA, dubbed as ARA OPT, that assumes
to have a priori knowledge of each job’s arrival time and
thus makes an exact detection of when the burst starts and
when it ends. This version thus provides an upper bound for
ARA PRED. Note that when both ths and thl are equal to 1,
ARA PRED performs exactly as Qlen. In all experiments, the
number of computing sites is N = 16, the average utilization
of each computing site is 50%, and the information query
delay is D = 1s. Additionally, we here fix the small threshold
ths as 1 but change the large threshold thl from 1 to 16 in
Figure 6 (a), while fix the large threshold thl as 14 but change
the small threshold ths from 1 to 16 in Figure 6 (b).
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Fig. 6. The average response times under the online version of ARA, where
(a) the small threshold ths is kept as 1 while the large threshold thl is
changed from 1 to 16, and (b) the small threshold ths is changed from 1 to
16 while the large threshold thl is kept as 14. The performance under Qlen,
Rand and ARA OPT are also plotted. Here, the number of computing sites is
N = 16, and the average site utilization is 50%, and the information query
delay is D = 1s.

The results shown in Figure 6 first confirm that neither Qlen
nor Rand is able to obtain good performance for this workload.
Qlen even presents the worst behavior because of the moderate
burstiness in arrivals. Instead, our new algorithms ARA PRED
and ARA OPT significantly improve the system performance,
using distinguished values of K for the phases with different



burstiness intensities. Also, ARA PRED performs closely to
the one with optimal forecasting, validating the accuracy of
our prediction algorithm. More importantly, ARA PRED can
always achieve such performance improvements as long as
thl is larger than some thresholds (e.g., 8 in Figure 6 (a))
and ths is smaller than some thresholds (e.g., 6 in Figure 6
(b)). This is because jobs in a “burst” phase could be almost
equally distributed among all the sites in the following cases:
when K = 8 and the duration of a “burst” phase is short
(e.g., around 2s), the jobs in this phase may be sent randomly
to the top 8 sites in the first second and to the remaining
8 sites in the second seconds, leading to the similar results
as the case that K = 16 and all jobs are sent randomly
to 16 sites in two seconds. Therefore, we argue that the
results shown in Figure 6 demonstrate that our algorithms
ARA PRED has more robustness, which provides a simple yet
flexible knob for deciding the value of K. In contrast, the static
version described in Section III-A and the algorithm proposed
in [9] require more efforts to tune the values of K, which is
sophisticated when the workload is dynamically changed.

D. Sensitivity Analysis on Experimental Parameters

Now, we turn to analyze the effects of different experimental
parameters on ARA PRED’s performance. We first focus on
investigating the sensitivity of ARA to the network size (i.e.,
the number of computing sites) by evaluating job response
time for N = 8, 16, and 32. In all experiments, we scale the
mean service times in order to fix the site utilization levels
equal to 50%. All the other parameters are kept the same as the
experiments shown in Figure 6. The performance results under
the four algorithms are shown in Table II(a). These results first
confirm that the conventional algorithms (e.g., Rand and Qlen)
poorly behave under all the three network sizes, and our new
ARA ones improve the system performance by discriminating
bursty periods from non-bursty ones. We also observe that as
the system becomes larger (i.e., N increases), jobs experience
worse response times under the “greedy” and the “random”
methods. But, such a performance trend disappears under the
two ARA ones. We interpret that as the number of sites
becomes larger, it is more likely for Qlen (resp. Rand) to make
wrong decisions for bursty (resp. non-bursty) traffic, resulting
in more dramatic degradation on system performance. On the
other hand, by online adjusting the values of K for bursty
and non-bursty traffic, two ARA algorithms select the good
sites for incoming jobs, which may have less loads (i.e., the
number of queuing jobs) as the number of sites increases and
thus reduce the waiting times for those jobs.

As the existence of delays in computing and communi-
cating the site load information is critical to the algorithm
performance, we investigate the sensitivity of load balancers
to information query delay D. In this set of experiments, we
fix all the other parameters, e.g., N = 16 and site utilization is
50%, but increase D to 2s and 6s. The reason to set D = 6s is
because the average duration of bursty periods is equal to 6s
as well, which then provides an extreme case such that all jobs
arriving during bursty periods are either sent to a single site or

(a)
network Load Balancer

size Rand ARA OPT ARA PRED Qlen
8 1089.25 1063.39 1064.66 1101.02
16 1109.33 1056.07 1059.00 1244.32
32 1148.38 1042.79 1051.21 1751.43

(b)
delay Load Balancer
time Rand ARA OPT ARA PRED Qlen
1s 1109.33 1056.07 1059.00 1244.32
2s 1111.07 1057.76 1062.97 1692.26
6s 1110.77 1063.23 1070.57 3653.21

(c)
site Load Balancer
load Rand ARA OPT ARA PRED Qlen
30% 487.83 471.05 473.04 606.62
50% 1109.33 1056.07 1059.00 1244.32
80% 4220.09 3964.39 3968.77 4138.34

TABLE II
SENSITIVE ANALYSIS OF SYSTEM PARAMETERS (A) NETWORK SIZE, (B)

DELAY TIME, AND (C) SITE LOAD ON ARA PRED PERFORMANCE.

fully randomly sent to one of all sites in average. Table II(b)
shows the performance results. First, different delay times do
not affect the performance of the “random” algorithm because
the candidate site is always selected randomly no matter how
long the delay is. However, for the “greedy” algorithm, the
performance becomes worse as the delay time increases. This
is because more jobs in bursty periods are then sent together
to the same site due to the outdated load information and thus
the load of that particular site significantly increases, causing
serious load unbalancing and bad performance. For both
of the ARA algorithms, we observe again the performance
improvement compared to the other two conventional ones.
Also, the delay time has less impact on the ARA performance.
This is because after detecting the start of bursty periods, ARA
quickly shifts to the “random” scheme.

In order to understand the performance benefit of the
algorithm when the system reaches critical congestion, we
turn to analyze the impacts of utilization levels on ARA
performance. We here conduct experiments with three different
site utilization levels: 30%, 50% and 80% by scaling the mean
service times, while keeping the other parameters fixed as the
experiments shown in Figure 6. The performance measures
provided by four load balancing algorithms are illustrated in
Table II(c). We observe that both two ARA algorithms achieve
better performance than the conventional ones (e.g., Rand and
Qlen) across all three utilization levels.

In summary, the extensive experimentation produced in this
section has validated that ARA using prediction information
can effectively improve the system performance, compared to
the conventional load balancers which ignore the effects of
burstiness in arrivals. The sensitivity results on network size,
delay time, and system load have further demonstrated that the
gains of ARA are visible in a variety of different conditions.

IV. CASE STUDY: AMAZON EC2

To further verify the effectiveness of our new load balancer,
we implement and evaluate the ARA algorithms as well as the
conventional ones (i.e., Rand and Qlen) in Amazon EC2, a real



Fig. 7. The overview framework of our implementation in Amazon EC2.

cloud platform that provides pools of computing resources to
developers for flexibly configuring and scaling their compute
capacity on demand. Figure 7 illustrates the basic framework
of our implementation in Amazon EC2.

In particular, we replace the Elastic Load Balancing (ELB)
in Amazon EC2 with our load balancing (LB) service and
then direct all the incoming application requests to this new
LB service for load dispatch across multiple Amazon EC2
instances. This new LB service is then run at a High-CPU
Medium Instance which provides five EC2 compute units for
compute-intensive applications. We also lease 8 Small Stan-
dard Instances as servers, each of which has one EC2 compute
unit and 1.7GB memory by default. Such a configuration of
instances aims to ensure that the system bottleneck is not
our load balancer while the overall performance is dominated
by the load balancing algorithms as well as the processing
capability of each server instance.

We then conduct real experiments in Amazon EC2 by
running microbenchmarks like the execution of Fibonacci
numbers. As illustrated in Figure 7, multiple users can simul-
taneously send HTTP requests to our load balancer instance.
Each HTTP request contains an URL, which includes a
decision maker ID and the corresponding job size parameters.
Once the load balancer receives an HTTP request, Apache
Tomcat, an installed Java Servlet container, parses that re-
quest’s header and then selects a server instance for serving
that request according to the implemented load balancing al-
gorithm. Here, on each of server instances, the sar command
was run for measuring and reporting the CPU utilizations every
1 second to load balancer via advert board. The chosen server
instance then calculates a Fibonacci number and sends the
result back to a client through the load-balancer instance.
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Fig. 8. The average end-to-end response times under Rand, Qlen and our
online ARA where the small threshold ths is kept as 1 while the large
threshold thl is changed from 1 to 8.

In terms of evaluation, we measured end-to-end response

times (i.e., the duration between request submission and reply
receiving) for the QoS assessment and monitored utilization
levels at each site (or application instance) for the load
balance assessment. Figure 8 presents the performance of the
online ARA in our Amazon EC2 model, where burstiness
was injected into the arrivals of HTTP requests. The results
under both Qlen and Rand are also plotted in the figure.
We observe that consistently to our simulations, none of the
conventional load balancers (e.g., Qlen and Rand) is able
to obtain good performance under bursty workload, while
our online ARA algorithm achieves significant performance
improvements by dynamically shifting between “greedy” and
“random” according to the workload changes. The best per-
formance under ARA is obtained when K is equal to 4 such
that the relative improvements are 48% over Qlen and 50%
over Rand, respectively. We also observe that the measured
utilization levels at all 8 server instances are quiet close to
each other, i.e., about 41% in average, which indicates a good
load balancing across multiple Amazon EC2 instances.

V. RELATED WORK

Burstiness has been known as an important characteristic of
traffic in communication networks [11], [12], [13], [14] and
has fueled much research over the past two decades [15], [13].
Recently, the presence of burstiness has also been identified
in a variety of settings, including enterprise systems [2], [16],
grids [1], storage systems [17], [18] and file systems [19].
The impact of burstiness on system performance has been
examined and reported in [20], [21], [2].

In resource-sharing environments, such as grids and clouds,
a privileged resource management system is designated to
manage how these resources are used. LoadLeveler [22],
PBS [23], LSF [24], NQS [25], Maui [26] and Condor [27]
are the most commonly used resource management systems.
These systems manage computing resources within a single
administrative domain. Loadleveler, PBS, and LSF can allocate
resources in a parallel system running a homogeneous oper-
ating system. Condor is designed for a distributed computing
environment with non-dedicated resources that can be shared
with local users while processing computational requests from
remote users. Nimrod/G [28] is a resource management and
scheduling system based on the Globus Toolkit. It targets
applications that involve a large number of task executions
and a range of parameters.



In cloud computing systems, users pay to lease a collection
of virtual machines that are used to execute applications.
These virtual machines are assigned to physical resources
so as to achieve certain goals. These goals may include
satisfying users’ resource requirements and computational de-
mands, minimizing application latency, or maximizing appli-
cation throughput. [29] evaluated conservative, selective, and
aggressive backfill cloud scheduling algorithms by comparing
computing the performance/cost ratio for each algorithm.
Other market-based scheduling algorithms have been proposed
to manage cloud resources [30]. However, we notice that
none of the above studies research resource management in
cloud systems by taking account of the performance impact
of burstiness.

A dynamic load balancing scheme was proposed by Mitzen-
macher in [9] which considers the supermarket model such that
customers can randomly choose a constant number of servers
and waits for service at the one with the fewest customers.
Via theoretical justification and simulations, the author shows
that two or a small number of choices can produce exponential
improvements. We notice that this approach [9] is the closest
one to our work presented in this paper. However, it only con-
siders the Poisson arrival streams as well as the exponentially
distributed service time and the fixed number of choices (i.e.,
servers). On the other hand, we provide a method of adjusting
the number of candidates depending on the measurement of
traffic burstiness.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have described our new adaptive load bal-
ancing algorithms for clouds under bursty workloads. Our new
static ARA algorithm tunes the load balancer by adjusting the
trade-off between randomness and greediness in the selection
of sites. While this approach gives very good performance,
tuning the algorithm can be difficult. We therefore proposed
our new online ARA algorithm that predicts the beginning and
the end of workload bursts and automatically adjusts the load
balancer to compensate. We show that the online algorithm
gives good results under a variety of system settings. This
approach is more robust than the static algorithm, and does
not require the algorithm parameters to be carefully tuned.
We conclude that an adaptive, burstiness-aware load balancing
algorithm can significantly improve the performance of cloud
computing systems.
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