
ORCA: An Offloading Framework for I/O-Intensive Applications on Clusters

Ji Zhang, Xunfei Jiang, Yun Tian, Xiao Qin
Auburn University

Auburn, AL 36849-5347
{jzz0014,xzj0009,tianyun,xqin}@auburn.edu

Mohammed I. Alghamdi
Al-Baha University

Al-Baha City, Saudi Arabia
mialmushilah@bu.edu.sa

Maen Al Assaf
University of Jordan

Amman, Jordan
m alassaf@ju.edu.jo

Meikang Qiu
University of Kentucky

Lexington, KY 40506-0046
mqiu@engr.uky.edu

Abstract—This paper presents an offloading framework -
ORCA - to map I/O-intensive code to a cluster that consists
of computing and storage nodes. To reduce data transmission
among computing and storage nodes. our offloading framework
partitions and schedules CPU-bound and I/O-bound modules
to computing nodes and active storage nodes, respectively.
From developer’s perspective, ORCA helps them to deal with
execution-path control, offloading executable code, and data
sharing over a network. Powered by the offloading APIs, de-
velopers without any I/O offloading or network programming
experience are allowed to write new I/O-intensive code running
efficiently on clusters.

We implement the ORCA framework on a cluster to
quantitatively evaluate performance improvements offered by
our approach. We run five real-world applications on both
homogeneous and heterogeneous computing environments. Ex-
perimental results show ORCA speeds up the performance of
all the five tested applications by a factor of up to 90.1% with
an average of 75.5%. Moreover, the results confirm that ORCA
reduces network burden imposed by I/O-intensive applications
by a factor of anywhere between 35 to 68.

Keywords-offloading; I/O intensive;

I. INTRODUCTION

Although offloading techniques have been applied to a
wide range of computing platforms (e.g. parallel file sys-
tems [13] [18] and object-based storage [12]), there is a lack
of a general network offloading framework tailored for I/O
intensive applications running on clusters. Moreover, none
of existing works pay any attention on offloading application
development from developers’ perspective. Based on our
experience, writing an appropriate offloading program is
difficult and time-consuming. In this paper, we propose
a new offloading framework called ORCA to map I/O-
intensive code to a cluster that consists of computing and
storage nodes.

Motivations. The following two factors motivate us to
develop the ORCA offloading framework:

• heavy network traffic is imposed by transmitting data
from storage to computing nodes in clusters, and

• writing an offloading program without any general
framework is difficult.

Due to the nature of I/O intensive applications, heavy
network traffic is caused by retrieving massive amount
of data between computing and storage nodes in clusters.

During the data staging phase, data to be processed by
applications running on computing nodes must be loaded
from storage nodes through interconnections. Transferring
huge amount of data can slow down the performance of
the applications. This I/O problem becomes even worse for
clusters using the Ethernet, where all nodes share network
bandwidth in the clusters.

The second motivation driving us is that studies of of-
floading development are missing. Even for an experienced
developer, a number of issues related to the offloading
development are difficult to solve, including appropriately
designing offloading programs, accurately deciding the I/O-
bound modules of the programs, controlling execution paths
and efficiently sharing data.

Our goal is to address the above two issues by developing
the ORCA framework to automatically offload I/O-bound
modules of an application to active storage nodes in a
cluster. The offloading framework deals with configurations,
execution-path control, offloading executable code, and data
sharing. Our framework coupled with an application pro-
gramming interface (API) and a run-time system enables
programmers without any I/O offloading experience to easily
write new I/O-intensive code or extend existing code running
efficiently on clusters.

Contributions. The main contributions of this work are:

• We describe the ORCA framework centered around an
offloading API and a run-time system (see Sec. IV).

• We discuss the implementation details, including the
issues of configurations, programming interface, and
data sharing (see Sec. V).

• We develop a testbed to evaluate real-world applications
in our run-time system (see Sec. VI).

• We present experimental results to show that both
homogeneous and heterogeneous clusters powered by
ORCA experience reduced amount of network band-
width used to transfer data among computing and
storage nodes (see Sec. VII).

Online resources. The source code and documentation
of our I/O offloading framework are freely available at http:
//www.eng.auburn.edu/∼xqin/software/offloading

In the next section, we discusses related work. The main
idea behind our offloading framework is highlighted in

Section III. Sections IV and V describe design and imple-
mentation details of the framework. Section VI outlines our
experimental testbed and methodology. Benchmark applica-
tions and performance analysis are presented in Section VII.
Conclusions and future plans are discussed in Section. VIII.

II. RELATED WORK

The concept of active disks was proposed by Acharya et
al. [9]. In their active disk architecture, processing power
and memory are deployed into individual disks, to which
a portion of application computation can be offloaded by
using a stream-based programming model. Their simulation
results show that significant performance improvement can
be achieved by reducing data traffic. Riedel et al. designed
a similar system that moves an application’s processing to
disk drives. In addition, they developed an analytical model,
evaluating a wide range of applications that may benefit from
the active storage [19].

Lim et al. designed an active-disk-based file system
(ADFS), in which application-specific operations can be
executed by disk processors [16]. When a file is loaded, only
results processed by an application are returned. Moreover,
the ADFS file system also offloads a part of file system
functionalities (e.g. lookup) to active disks. This approach
is able to significantly reduce the workload of central file
management. Chiu et al. presented a distributed architecture
that utilizes smart disks equipped with processing power,
on-disk memory, and network interfaces [10]. A set of
representative I/O-intensive workloads are evaluated on the
architecture. Their experimental results suggest that the
distributed architecture outperforms partially distributed and
centralized systems.

The idea of active storage was implemented in the Lus-
tre file system by Felix et al. [13]. Afterwards, piernas
et al proposed an active storage for Lustre in the user
space [18]. Both approaches reduce data movements and
improve computing capability. Compared with the kernel-
based implementation, the user-space approach is faster,
more flexible and readily deployable. In addition, motivated
by requirements of specific applications, piernas et al. de-
signed and evaluated an efficient way to manage complex
striped files in active storage [17].

Du designed an intelligence storage system that combines
active disks and object-based storage device (OSD) [12].
Du’s study mainly focused on fundamental changes in
existing storage systems; he proposed a number of future
research directions in the realm of OSD-based storage. Son
et al. investigated an active storage in the context of parallel
file systems [22]. Based on the analysis of parallel appli-
cations, they designed an enhanced programming interface
that enables application codes to embed in the parallel file
system. Moreover, their approach also provides server-to-
server communication for reduction and aggregation.

Although the offloading techniques have been extensively
explored in the aforementioned studies, our approach differs
from the above solutions with respect to the following three
issues. First, recognizing that there is a lack of generic
offloading framework, we propose a general offloading
programming model that can be applied to either sequen-
tial or parallel applications (e.g., multi-thread and multi-
process programs). We introduce the concept of offloading
domains to represent computation consequences. Server-to-
server communications proposed by Son et al. [22] can be
converted into domain-to-domain communications. Second,
developing offloading-oriented applications is non-trivial
from programmers’ perspective. In this study, we address
a number of critical implementation issues raised in the
development of offloading-oriented programs. These issues,
which are crucial to program designs and performance,
include I/O-bound module identification, execution path
control, and data sharing in an offloading domain. Last,
developing offloading-oriented programs in C language is
time consuming due to the complexity of the programming
language and; therefore, we propose an approach that is able
to share dynamic and static data (e.g., codes).

III. I/O OFFLOADING FRAMEWORK

We will begin this section by highlighting the main idea
of our offloading framework for I/O-intensive applications.
Then, we will discuss structures of applications designed to
gain maximum benefit from the I/O offloading framework.

A. System Architecture

Computing Nodes Storage Nodes

N
e

tw
o

rk
 in

te
rco

n
n

e
ct

N
e

tw
o

rk
 in

te
rco

n
n

e
ct

Figure 1. The architecture of commodity clusters, where a number of
nodes are connected with each other through interconnects. We focus on
clusters enhanced with active storage nodes that have computing capability.

Fig. 1 illustrates the architecture of commodity clusters,
where a number of nodes are connected with each other
through interconnects. In this work, we focus on clusters
enhanced with active storage nodes that have computing
capability. In our study, a cluster has two types of nodes:
(1) computing nodes that deal with CPU-bound jobs and
(2) storage nodes that are responsible for storing data and
processing I/O-bound jobs.

In many existing clusters, parallel file systems (see,
for example, Lustre [21] and PVFS[14]) are employed to
distributed data across multiple storage nodes. To support
data-intensive applications, the parallel file systems need
to transfer files back and forth between computing and

storage nodes. Although high peak aggregate I/O bandwidth
can be achieved by accessing multiple storage nodes in
parallel, moving data between computing and storage nodes
will inevitably slow down the performance of I/O-intensive
applications. Our preliminary evidence shows that reducing
the amount of data transferred among nodes is a practical
approach to boosting the overall performance of clusters.

B. Structure of Applications in the Offloading Framework

App 1

Computing Node 1

App 2

Storage Node 1

Offloading Domain

Offloading Domain

Offloading Domain

Offloading Domain

Computing Node 2 Storage Node 2

Figure 2. An offloading domain is a logic processing unit, in which a
pair of computation and offloading modules are coordinating. I/O-bound
modules are assigned to and executed on storage nodes; whereas CPU-
bound modules are handled by computing nodes. The framework strives to
overlap the executions of CPU-bound and I/O-bound modules to achieve
high performance.

Fig. 2 depicts our network offloading framework, in which
I/O-bound modules are assigned to and executed on storage
nodes. The goal of this framework is to reduce the amount
of data transferred from storage nodes to computing nodes.
Our offloading idea is inspired by the observation that
many I/O-intensive applications (see Section VI for real-
world examples) can be partitioned into CPU-bound and
I/O-bound modules. CPU-bound modules are handled by
computing nodes; whereas I/O-bound modules, running on
storage nodes, are referred to as offloading parts. To achieve
high performance, the framework makes an effort to overlap
the executions of CPU-bound and I/O-bound modules on
computing and storage nodes in a cluster.

We now introduce the concept of offloading domains,
which are used to group CPU-bound and I/O-bound mod-
ules. An offloading domain is a logic processing unit, in
which a pair of computation and offloading modules are
coordinating. An application may contain either only one
offloading or multiple domains. The number of offloading
domains in an application heavily depends on the appli-
cation’s design and the number of offloading modules.
Offloading domains are independent of, and isolated from
each other in the sense that one offloading domain can not
be interfered with by the others.

Moreover, two simple applications that create two offload-
ing domains are demonstrated in fig. 2. App 1 is a multi-
process program, in which the CPU-bound modules in both
offloading domains are allocated on two computing nodes.
The corresponding I/O-bound modules are executed on
storage node 1. This is a typical n-to-1 model that multiple

computer nodes and a storage node are used by App 1. On
the other hand, App 2 shows a typical 1-to-n model that
a computing node and multiple storage nodes are utilized.
The CPU-bound modules of App 2 can be created as either
threads or processes. The I/O-bound modules are offloaded
to separated storage nodes. More complex applications can
be derived from the two simple examples.

CPU-bound and I/O-bound modules in an offloading
domain are, in some cases, serially and synchronously
executed. Thus, while CPU-bound modules are running on
computing nodes, their I/O-bound counterparts must be wait-
ing and vice versa. In the case where CPU-bound and I/O-
bound modules in an offloading domain are asynchronous,
our framework can overlap the executions of the CPU-bound
and I/O-bound modules on computing and storage nodes to
achieve high performance in a cluster.

IV. DESIGN ISSUES

Before developing the proposed I/O offloading frame-
work, we need to address the following four design issues.

A. Data-intensive module Identification

The first step in partitioning a data-intensive application
is to identify the I/O-bound modules of the application.
Intuitively, I/O-bound modules need to process huge amount
of data, meaning that I/O time should dominate the per-
formance of such modules. On the other hand, CPU-bound
modules spend the majority of their time using CPUs to
do calculations. A profiling and performance analysis tool
can be employed to evaluate whether modules in a data-
intensive application are CPU-bound or I/O-bound. With
the performance analysis tool in place, programmers can
evaluate whether applying the offloading technique improves
overall application performance. Such an evaluation process
should take into account various aspects such as computing
workload, I/O workload, and network traffic.

B. Offloading a program

The second design issue is that of an efficient way of
offloading an executable file to an active storage node. Two
practical approaches to offloading executable modules are
dynamic offloading and static offloading. The main idea of
dynamic offloading is to automatically transfer an executable
file and its configurations to storage nodes in a cluster
before loading the file into the memory. In this method, the
offloading platform must be aware of details of the run-time
system implementation (e.g., programming languages and
libraries) if the run-time system is platform dependent. If the
run-time system is platform independent(e.g., implemented
in scripts or java), the offloading platform does not have to
consider run-time system details. Thus, the level of difficulty
in implementing the offloading technique using dynamic
distributions highly relies on the nature of the applications
to be supported by the framework.

Dynamic offloading introduces another challenge - ver-
sion management - for platform-dependent applications. In
heterogeneous environments, all types of executable files,
each of which is dedicated to a specific hardware platform,
need to be precompiled. To invoke I/O-bound modules
offloaded to storage nodes, applications must detect the type
of hardware/software in the storage nodes and choose a
proper version of the I/O-bound module to be offloaded
on the fly. Moreover, this dynamic-distribution approach
suffers from repeatedly transferring I/O-bound modules from
computing to storage nodes. Although storage nodes are able
to cache and reuse offloaded modules, it is time consuming
for computing nodes to decide whether the cached ones on
the storage end are valid and updated.

Unlike dynamic offloading, static offloading configures
offloaded I/O modules a priori. Static offloading encom-
passes three distinct procedures if active storage systems are
heterogeneous in nature. The first procedure is to manually
compile I/O-bound modules for various hardware and run-
time systems in heterogeneous storage systems. The second
procedure is to write specific configuration files. The last
procedure is to deploy the configuration files along with I/O-
bound modules onto target storage nodes. Although these
three procedures are seemingly complicated, they can be
automatically completed by a simple yet efficient tool in
our offloading framework. Moreover, the static offloading
approach greatly simplifies the design of our offloading
framework, because there is no need to address the platform-
dependent issues. In this approach, when an application
starts, its offloaded I/O-bound modules have already been
compiled and installed on storage nodes.

C. Controlling an execution path

The third design issue is a mechanism for transferring
executions back and forth between a pair of CPU-bound
and I/O-bound modules in an offloading domain.

A feasible option for our framework is Remote Procedure
Call (RPC), which is a broadly accepted method of invoking
a function to execute in a remote machine. Thanks to
RPC’s simplicity, it is easy for any programmer to learn
and use. There are many RPC libraries implemented by
various general-purpose programming languages. RPC was
applied to implement Network File System (NFS) [20],
MapReduce [11] and Hadoop [8].

D. Data sharing among storage and computing nodes

The last issue is data sharing between a pair of CPU-
bound and I/O-bound modules in an offloading domain.
Shared data include both global variables and code segments.
A major challenge is that in an offloading domain, global
variables can not be shared by CPU-bound and I/O-bound
modules allocated to different computing and storage nodes.

An intuitive solution for the above challenge is to establish
a synchronization mechanism to allow a pair of modules in

an offloading domain to notify each other when any global
variable is updated. For example, if a CPU-bound module
modifies shared data on a computing node, a notification
along with the updated data will be delivered to the corre-
sponding I/O-bound module on a storage node.

A second solution is motivated by an observation that
in some cases, I/O-bound modules are synchronized with
their CPU-bound modules. In a synchronization process,
offloaded I/O-bound modules are unable to access global
data on storage nodes until control is regained from CPU-
bound modules on computing nodes. Thus, CPU-bound
modules can transfer updated shared variables to I/O-bound
modules by appending the shared variables with offloading
requests. In our approach, the framework updates global
variables before processing offloading requests. In other
words, the changes that occur at offloaded modules can be
treated as results in response messages.

Code segments are considered to be a special type of
global data. In applications implemented by compiled lan-
guages, function objects can not be shared directly. The
reason for this is that addresses of an function in a pair of
CPU-bound and I/O-bound modules may be different after
being loaded into the main memory. On the other hand,
in interpreted applications, functions are parsed by names
rather than addresses. Hence, both the CPU-bound and I/O-
bound modules in an offloading domain are able to obtain
identical functions by their names.

In this subsection, we only highlighted the basic idea of
data sharing supported in our offloading framework. Please
refer to Section V-C for implementation details on the data-
sharing mechanism .

V. IMPLEMENTATION DETAILS

In this section, we will describe the implementation
details of our offloading framework and explain how to run
offloading applications on clusters.

A. Configuration

Recall that we took the static offloading approach (see
Section IV-B) by adopting the pre-configuration method to
offload I/O-bound modules to storage nodes. The following
five steps are required to run a data-intensive application in
our offloading framework.

1. Design a data-intensive application and identify I/O-
bound modules to be offloaded to storage nodes.

2. Convert the application into its offloading version
by using the offloading programming interface (API)
described in Section V-B. Developers may need to
write configuration files.

3. Create executable files for target storage nodes if the
executables are implemented by compiled languages.
If the application is developed by interpreted lan-
guages, then source files are executable.

4. Copy executable and configuration files to specified
directories on computing and storage nodes.

5. Start I/O-bound modules on storage nodes followed
by computing nodes. This order is important because
offloaded modules must provide services to CPU-
bound modules in an initial phase.

B. Offloading API (Application Programming Interface)

The current version of the offloading framework provides
an application programming interface (API) for C and
C++ languages. Similar APIs can be implemented in other
languages like java or python. Our offloading framework
provides four API sets summarized in Table I.

The init function in the first group initializes and sets up
the offloading environments. Programs must execute init
before issuing any offloading requests. First, init decides
the role – a CPU-bound or I/O-bound module – that the
program plays by identifying a dedicated command-line ar-
gument. After the role decision, init removes the dedicated
argument which cannot longer be accessed. Then, a serial
of MARSHAL and UNMARSHAL functions for primitive data
types (e.g., char and unsigned short) are registered
for supporting primitive types serialization.

The second set of function in Table I is to register
offloading entries. In C/C++ applications, offloading en-
tries are addresses of functions in offloaded I/O-bound
modules. After compilation, all functions are converted
into addresses; an identical function may have differ-
ent addresses in CPU-bound and I/O-bound modules. In
order to exchange offloading entries between a pair of
CPU-bound and I/O-bound modules, we enable applica-
tions to call register_function to register func-
tions and then exchange function names instead of ad-
dresses. Addresses are automatically converted to names in
CPU-bound modules and reverse in offloaded I/O-bound

Table I Offloading Programming Interface
Interface & Description

void init ()

Initialize the system.
void register_function (func_addr)

build a map from function addresses to their names.
func_name find_name_by_func_addr (func_addr)

Get a function name by a given address.
func_addr find_func_by_name (func_name)

Get a function address by a given name.
void MARSHAL (void* obj, char**buf, int* len)

Serialize an object pointed by obj into a data stream. The
address and size of the data stream are specified by buf and len.
void UNMARSHAL (void* obj, char*buf, int len)

Un-serialize an object pointed by obj from a data stream. The
address and size of the data stream are specified by buf and len.
void offload_call (addr, func_name, ins, outs)

Invoke an offloading procedure named by func name. addr
indicates a network address (e.g., an IP address) of the target node.
The input parameters and results are specified by ins and outs.

modules by calling find_name_by_func_addr and
find_func_by_name respectively.

The goal of the third API set in Table I is to send
and receive parameters and results. Both MARSHAL and
UNMARSHAL accept input parameters object in the type of
void * in order to adapt all types of objects. The following
two parameters specify the buffer of the data stream and
its length. All data being exchanged between CPU-bound
and I/O-bound modules must implement corresponding
MARSHAL and UNMARSHAL functions that are automatically
called by the offloading framework. If a function pointer
need to be serialized or un-serialized, the pointer has to be
converted to the function name by a second set of interfaces
and then processed as a regular string. These functions must
be registered during initialization as well.
offload_call is a real action for calling an offload.

The parameter addr indicates the network address (e.g., an
IP address) of the node where an offloading part will take
place. func_name specifies an offloading entrance. ins
and outs are an input and output parameters defined as
instances of the offloading_para structure.

C. Sharing Data

Recall that the complexity of offloading programs heavily
depends on data sharing mechanisms (see Section IV-D).
Because our goal is to keep offloading programs simple,
our framework offers a simple yet efficient way of passing
data as input and output parameters. We consider two key
issues regarding data sharing.

The first one is how to share global data between com-
puting and storage nodes. All data accessed by both nodes
should be overseen by input parameters and results (see Sec-
tion IV-D), and is required to be deeply copied in MARSHAL
and UNMARSHAL instead of merely copying object points.
This is because objects created in address spaces are totally
different in the two parts. A function pointer is the data that
maintains the address of the function. The address has to be
converted to the function name in MARSHAL and recovered
in UNMARSHAL, since the function name keeps consistent
in both CPU-bound and I/O-bound modules. The conversion
can be completed by Dynamically Loaded (DL) libraries1 if
the function is defined as extern. The CPU-bound and I/O
bound modules are responsible for handling global updates.

The second issue is how to share code segments. Function
entries or executable objects are a special type of data in
programs. The framework can not simply copy binary codes
and transfer them to another node, because the code might
be not executable. In our implementation, we link all object
codes to each part, regardless of whether the codes are
used or not; therefore, programmers do not need to identify
which functions belong to either parts or both. To transfer
a function entry, we build a map between function names

1http://tldp.org/HOWTO/Program-Library-HOWTO/dl-libraries.html

and addresses, thereby placing function names in offloading
requests and responses. Both computing and active storage
nodes can resolve function names and addresses by using
the offloading API.

VI. EVALUATIONS

A. Experimental Testbed

We set up a homogeneous cluster and a heterogeneous
cluster as two testbeds to evaluate real-world applications
supported by our offloading framework. Both clusters are
comprised of 16 nodes, which form 8 independent offloading
domains (see Fig. 2 for an example of offloading domains).

Table II summarizes the hardware and software configu-
rations of the two types of nodes - Type I and Type II - used
in our testbeds. Type I nodes have better CPU performance
and larger main memory than Type II nodes. Interestingly,
measurements collected by hdparm [3] indicate that Type
II nodes have higher sequential I/O throughput (130.35
MBytes/Sec.) than Type I nodes (106.94 MBytes/Sec.).

The homogeneous cluster is made up of 16 Type I nodes;
the heterogeneous cluster contains 8 Type I nodes and 8
Type II nodes. In the second testbed, computing nodes are
Type I and storage nodes are Type II.

B. Benchmark Applications

1) Applications: We tested five benchmarks (see Ta-
ble III), which are well-known data-intensive applications.
PostgreSQL, Word Count(WC), Sort, and Grep were down-
loaded from their official websites, whereas the Inverted
Index application was implemented by our research group at
Auburn. In our experiments, we ran the baseline applications
on computing nodes and loaded data from the storage nodes
through the Network File System (NFS) service [20], that
is used to manage massive amount of data in numerous
commercial products [4] [15].

We applied the offloading framework to the five bench-
mark applications, each of which has an I/O-bound module
running on storage nodes. In particular, the ”executor” is de-
fined as an offloaded module in PostgreSQL. The framework
offloads the I/O-bound modules of the other applications
to storage nodes. Table III describes the implementation of
these benchmarks.

Table II Hardware and Software Configurations
Name Hardware Software

Type I 1 × Intel Xeon 2.4 GHz processor Ubuntu 10.04
1 × 2 GBytes of RAM Linux kernel 2.6.23
1 × 1 GigaBit Ethernet network card
1 × Seagate 160 GBytes Sata disk [6]

Type II 1 × Intel Celeron 2.2 GHz processor Ubuntu 10.04
1 × 1 GBytes of RAM Linux kernel 2.6.23
1 × 1 GigaBit Ethernet network card
1 × WD 500 GBytes Sata disk [7]

2) Data Preparation: To measure performance of Post-
greSQL running in our offloading framework, we created
four databases with sizes of 5 GBytes, 10 GBytes, 15 GBytes
and 20 GBytes. No index was generated in these databases;
therefore, PostgreSQL had to directly access data in the
tables rather than merely checking index structures during
query processing. Each database is made up of 1,000 tables,
each of which has 100 integer attributes. Tuples are equally
distributed across these tables, so a larger database has more
tuples in each table. We generated 1,000 queries, each of
which scans only one table. Together, these queries cover
all the tables in the database.

For the other four benchmark applications, we created
five text files of relatively smaller sizes (i.e., 400 MBytes,
600 MBytes, 800 MBytes, 2 GBytes and 4 GBytes). Each
text file contained a number of randomly generated words.
Due to the limitation of the main memory, we tested the
inverted index application using the first three text files on
the homogeneous cluster. This was because frequent page
faults made I/O noise in the experiments when the input file
size was larger than the main memory. We also tested the
other four applications on the heterogeneous cluster.

VII. RESULTS

A. Overall Performance Evaluation

1) Homogeneous Clusters: Fig. 3 illustrates the execution
times of the five applications (see Table III) to compare the
ORCA-enabled cluster against the same cluster without I/O
offloading. The results show that the offloading framework
significantly reduces the execution times of all five tested
applications. For example, when data size is 4 GBytes, our

Table III Real-World Benchmark Applications
Applications Descriptions

PostgreSQL
9.0 [5]

It is a relational database management system. The of-
floading framework offloads the ”executor” module to
storage nodes. The I/O-bound module receives an execu-
tion plan and performs queries. The CPU-bound module
manages connections to clients, converts SQL statements
to execution plans and sends results back to clients.

Word
Count
in GNU
coreutils
7.4 [1]

It counts the number of words in a set of files. Our
framework partitions the Word Count application into an
I/O-bound module that calculates word occurrences in one
file, and a CPU-bound module that sums the occurrences
up.

Sort in
GNU
coreutils
7.4 [1]

It sorts lines of a text file in alphabetical order. Our frame-
work treats the entire Sort application as an offloaded I/O-
bound module that receives a file name and stores sorted
text in a file.

GNU Grep
2.7 [2]

It searches through a file for lines which contains a given
keyword. The I/O-bound module in Grep finds desired
lines in a file; the CPU-bound module in Grep transfers
keywords and file names to the I/O-bound module.

Inverted
Index (our
bench-
mark)

It loads a set of files and builds a map between words
to their occurrences. In the Inverted Index application,
its I/O-bound modules constructs a map for each file; a
CPU-bound module transfers file names to the I/O-bound
module.

5 10 15 20
0

50

100

150

200

250

300

350

400

450

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Data Size (GBytes)

Offloading PostgreSQL

Official PostgreSQL

(a) PostgreSQL

400 600 800 2000 4000
0

20

40

60

80

100

120

140

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Data Size (MBytes)

Offloading WC

Official WC

(b) Word Count

400 600 800 2000 4000
0

50

100

150

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Data Size (MBytes)

Offloading Sort

Official Sort

(c) Sort

400 600 800 2000 4000
0

10

20

30

40

50

60

70

80

90

100

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Data Size (MBytes)

Offloading Grep

Official Grep

(d) Grep

400 600 800
0

5

10

15

20

25

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Data Size (MBytes)

Offloading Inverted Index

Inverted Index

(e) Inverted Index

400 800 2,000 4,000 10,000 20,000
0

20

40

60

80

100

120

140

160

D
if
fe

re
n
c
e
 o

f
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Data Size (MBytes)

Official − Offloading

(f) Performance Improvement

Figure 3. Execution times of the five real-world benchmark applications running on the homogeneous cluster (i.e., the first testbed).

scheme can improve performance of PostgreSQL, and Grep
by a factor of 60.8% and 90.1%, respectively.

The applications without the I/O-offloading support are
slowed down by remotely accessing huge amount of data,
because the data must be transferred from storage nodes
to computing nodes. Our framework solves this perfor-
mance problem by offloading I/O-bound modules to storage
nodes, thereby substantially reducing I/O time through local
data accesses. Although the applications running in our
framework have to exchange input/output parameters among
computing and storage nodes, the data size of input/output
parameters is significantly smaller than the dataset size.

Fig. 3(f) shows the impact of data size on performance
improvement gained by our offloading framework. We mea-
sured the performance of the four applications (i.e., WC,
Sort, Grep and Inverted Index) on four datasets (400MB,
800MB, 2GB, and 4GB) and PostgreSQL on two large
datasets (10GB and 20GB). We plotted performance im-
provement in terms of execution-time reduction. This reveals
that the performance improvements achieved by our offload-
ing framework become more pronounced as the datasets
grow in size. When data size is small, the non-ORCA-
enabled applications can take advantage of continuous I/O
operations optimized by the NFS service. For example, NFS
can cache entire datasets in the main memory so that the
datasets can be repeatedly processed without further remote
I/O accesses. Unfortunately, when the datasets grow in size,
the non-ORCA-enabled applications benefit very little from
caching due to limited caching ability in computing nodes.

2) Heterogeneous Clusters: Fig. 4 shows execution times
of the five benchmark applications supported by the offload-
ing framework on a heterogeneous cluster, in which com-
puting nodes and storage nodes have different performance.
The results plotted in Fig. 4 are consistent with those shown

in Fig. 3.
Comparing Figs. 3 and 4, the heterogeneous cluster offers

better performance than the homogeneous one. This is
because the bottleneck of I/O-intensive applications is the
I/O bandwidth, and the storage nodes (i.e., Type II nodes)
in the heterogeneous cluster have higher I/O bandwidth than
the storage nodes (i.e., Type I nodes) in the homogeneous
cluster. Although Type I nodes are superior to Type II nodes
in terms of CPU speed and memory capacity, higher I/O
throughput of Type II nodes cause the heterogeneous cluster
to outperform its homogeneous counterpart.

B. Network Load Evaluation

1) Homogeneous Clusters: Fig. 5 shows network load
caused by PostgreSQL when data size is set to 5GB, 10GB,
15GB, and 20GB, respectively. The results confirm that
the ORCA framework minimizes the network traffic of the
homogeneous cluster running PostgreSQL. For example,
ORCA reduces network burden by a factor of anywhere be-
tween 35 to 55. When the non-ORCA-enabled PostgreSQL
is running, transferring data from the storage to computing
nodes keeps the network resources very busy.

Fig. 6 shows network load imposed by the other four
applications processing an 800MB dataset. WC, Grep, and
Inverted Index share a similar network traffic pattern with
PostgreSQL. ORCA reduces network traffic in the cluater
by a factor of anywhere between 35 to 45. Fig. 6(b) shows
that the data transmission rate in Sort is constantly changing
between 0 and 65MB/s.

2) Heterogeneous Clusters: Figs. 7 and 8 show the net-
work traffic patterns of the five applications running on the
heterogeneous cluster. The empirical results indicate that
ORCA lowers network load of the heterogeneous clusters
by a factor of anywhere between 35 to 68.

5 10 15 20
0

50

100

150

200

250

300

350

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Data Size (GBytes)

Offloading PostgreSQL

Official PostgreSQL

(a) PostgreSQL

400 600 800
0

5

10

15

20

25

30

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Data Size (MBytes)

Offloading WC

Official WC

(b) Word Count

400 600 800
0

5

10

15

20

25

30

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Data Size (MBytes)

Offloading Sort

Official Sort

(c) Sort

400 600 800
0

1

2

3

4

5

6

7

8

9

10

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Data Size (MBytes)

Offloading Grep

Official Grep

(d) Grep

400 600 800
0

2

4

6

8

10

12

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Data Size (MBytes)

Offloading Inverted Index

Inverted Index

(e) Inverted Index

400 800 5,000 10,000 20,000
0

10

20

30

40

50

60

70

80

90

100

D
if
fe

re
n
c
e
 o

f
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Data Size (MBytes)

Official − Offloading

(f) Performance Improvement

Figure 4. Execution times of the five real-world benchmark applications running on the heterogeneous cluster (i.e., the second testbed).

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

50

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading PostgreSQL

Official PostgreSQL

(a) 5 GBytes

0 50 100 150 200 250
0

10

20

30

40

50

60

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading PostgreSQL

Official PostgreSQL

(b) 10 GBytes

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading PostgreSQL

Official PostgreSQL

(c) 15 GBytes

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading PostgreSQL

Official PostgreSQL

(d) 20 GBytes

Figure 5. Network load imposed by PostgreSQL accessing different databases on the homogeneous cluster (i.e., the first testbed).

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading WC

Official WC

(a) Word Count

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading Sort

Official Sort

(b) Sort

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading Grep

Official Grep

(c) Grep

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading Inverted Index

Official Inverted Index

(d) Inverted Index

Figure 6. Network load imposed by the four real-world applications accessing 800 MB datasets on the homogeneous cluster (i.e., the first testbed).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading PostgreSQL

Official PostgreSQL

(a) 5 GBytes

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading PostgreSQL

Official PostgreSQL

(b) 10 GBytes

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading PostgreSQL

Official PostgreSQL

(c) 15 GBytes

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading PostgreSQL

Official PostgreSQL

(d) 20 GBytes

Figure 7. Network load imposed by PostgreSQL accessing different databases on the heterogeneous cluster (i.e., the second testbed).

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading WC

Official WC

(a) Word Count

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading Sort

Official Sort

(b) Sort

0 5 10 15 20
0

10

20

30

40

50

60

70

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading Grep

Official Grep

(c) Grep

0 5 10 15 20
0

10

20

30

40

50

60

70

D
a
ta

 T
ra

n
s
m

is
s
io

n
 R

a
te

 (
M

B
y
te

s
/s

)

Time (s)

Offloading Inverted Index

Official Inverted Index

(d) Inverted Index

Figure 8. Network load imposed by the four real-world applications accessing the 800 MB datasets on the heterogeneous cluster (i.e., the second testbed).

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

s
a

g
e

 (
%

)

Time (s)

Offloading PostgreSQL

(a) PostgreSQL

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

s
a

g
e

 (
%

)

Time (s)

Offloading WC

(b) Word Count

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

s
a

g
e

 (
%

)

Time (s)

Offloading Sort

(c) Sort

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

100
C

P
U

 U
s
a

g
e

 (
%

)

Time (s)

Offloading Grep

(d) Grep

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

s
a

g
e

 (
%

)

Time (s)

Offloading Iverted Index

(e) Inverted Index

Figure 9. CPU load imposed by the five real-world applications in the storage nodes of the homogeneous cluster (i.e., the first testbed).

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

s
a

g
e

 (
%

)

Time (s)

Offloading PostgreSQL

(a) PostgreSQL

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

s
a

g
e

 (
%

)

Time (s)

Offloading WC

(b) Word Count

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

s
a

g
e

 (
%

)
Time (s)

Offloading Sort

(c) Sort

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

s
a

g
e

 (
%

)

Time (s)

Offloading Grep

(d) Grep

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

s
a

g
e

 (
%

)

Time (s)

Offloading Iverted Index

(e) Inverted Index

Figure 10. CPU load imposed by the five real-world applications in the storage nodes of the heterogeneous cluster (i.e., the second testbed).

C. CPU Usage Evaluation

We observed that the data transmission rate (ranging from
50MB/s to 70MB/s) of the non-ORCA-enabled PostgreSQL
on the heterogeneous cluster is constantly higher than that
of the homogeneous cluster. In addition, the network links
of the homogeneous and heterogeneous clusters are not
saturated, because the data transmission rates are below the
maximum network bandwidth (i.e., 1 Gbps) in both cases.
Data retrieved from the storage nodes can be delivered to the
computing nodes; thus, accessing data in the heterogeneous
cluster is faster than in its homogeneous counterpart.

1) Homogeneous Clusters: The goal of these experiments
was to assess the performance impact of offloaded I/O-
bound modules on storage nodes. This goal was achieved

by evaluating CPU usage of storage nodes in the homo-
geneous cluster running the five data-intensive applications.
Evaluating CPU usage of storage nodes is very important,
because offloaded I/O-bound modules may have side effect
on other I/O services running on the storage nodes.

Fig. 9 illustrates CPU utilization of PostgreSQL process-
ing a 10 GB dataset and the other applications processing
an 800 MB dataset. We observed that CPU usage, in most
cases, is below 30% although there were two cases where
the CPU utilization reaches 40% and 70% for a few seconds
(see Fig. 9(c)). These two cases have little negative impact
on storage nodes. Of all the five tested applications, Grep
(see Fig. 9(d)) had the least overall impact on other services
running on storage nodes. Overall, we concluded that our
offloading framework has minimal negative impact on any

services running on storage nodes in homogeneous clusters.
We confirmed that improving performance of data-

intensive applications comes at the cost of increasing CPU
usage in storage nodes. Fig. 9 indicates that different of-
floaded I/O-bound modules lead to different CPU-usage
increases in storage nodes. An increase in CPU utilization of
storage nodes heavily relies on the complexity of the I/O-
bound modules, varying from a simple word counter to a
complicated procedure, scanning an entire table.

2) Heterogeneous Clusters: To the heterogeneous clus-
ters, fig. 10 shows CPU usages of storage nodes running the
offloaded modules for the five benchmark applications. The
results suggest that WC and Inverted Index give rise to a high
CPU usage (i.e., >90%). The Sort application repeatedly
pushes the CPU usage up to 100% and then drops down
to nearly 0%. PostgreSQL and Grep keep CPU usage at a
moderate level (i.e., 50%-60%) and a low level (i.e., <18%),
respectively. If storage nodes have low-performance CPUs
or offloaded modules are CPU-intensive, then the offloaded
modules can cause high CPU utilization in the storage nodes.

VIII. CONCLUSION AND FUTURE WORK

In this study, we proposed the ORCA programming
framework to automatically offload I/O-bound modules of
applications to storage nodes in a cluster. ORCA aims to
reduce network traffic incurred by transferring data among
computing and storage nodes in a cluster. The ORCA
framework allows programmers to easily write new I/O-
bound modules or partition existing code to run efficiently on
clusters without imposing heavy network load. Our empirical
results show that ORCA achieves two important objectives
in both homogeneous and heterogeneous clusters.

For future research, our model can be extended to a
multi-offloading-domain model in which multiple offloading
domains can be properly coordinated. In light of this new
model, we will upgrade the offloading management in our
framework. We plan to implement a dispatch manager that
allocates I/O-bound modules to appropriate storage nodes.

ACKNOWLEDGMENT

The work in this paper was supported by the US National
Science Foundation under Grants CCF-0845257(CAREER), CNS-
0757778 (CSR), CCF-0742187 (CPA), and CNS-0917137 (CSR).

REFERENCES

[1] Gnu core utilities. http://www.gnu.org/software/coreutils/.

[2] Gnu grep. http://www.gnu.org/software/grep/.

[3] hdparm. http://en.wikipedia.org/wiki/Hdparm.

[4] Oracle 11g release 1 rac on linux using
nfs. http://www.oracle-base.com/articles/11g/
OracleDB11gR1RACInstallationOnLinuxUsingNFS.php.

[5] Postgresql. http://www.postgresql.org/.

[6] Seagate product manual of barracuda 7200.12 serial
ata. http://www.seagate.com/staticfiles/support/disc/manuals/
desktop/Barracuda%207200.12/100529369b.pdf.

[7] Wd5000aaks specification. http://www.wdc.com/en/products/
products.aspx?id=110.

[8] Apache hadoop. http://lucene.apache.org/hadoop/, 2006.

[9] A. Acharya, M. Uysal, and J. Saltz. Active disks: pro-
gramming model, algorithms and evaluation. SIGPLAN Not.,
33(11):81–91, Oct. 1998.

[10] S. Chiu, W.-k. Liao, and A. Choudhary. Design and evaluation
of distributed smart disk architecture for i/o-intensive work-
loads. ICCS’03, pages 230–241, Berlin, Heidelberg, 2003.
Springer-Verlag.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107–113,
2008.

[12] D. H. C. Du. Intelligent storage for information retrieval.
NWESP ’05, pages 214–, Washington, DC, USA, 2005. IEEE
Computer Society.

[13] F. E.J., F. K., R. K., and N. J. Active Storage Processing in
a Parallel File System. In Proc. of the 6th LCI International
Conference on Linux Clusters: The HPC Revolution, 2006.

[14] I. F. Haddad. Pvfs: A parallel virtual file system for linux
clusters. Linux J., 2000(80es), Nov. 2000.

[15] R. Kassick, F. Boito, and P. Navaux. Impact of i/o coor-
dination on a nfs-based parallel file system with dynamic
reconfiguration. pages 199–206, oct. 2010.

[16] H. Lim, V. Kapoor, C. Wighe, and D. H.-C. Du. Active disk
file system: A distributed scalable file system. MSS ’01, page
101. IEEE Computer Society, 2001.

[17] J. Piernas and J. Nieplocha. Efficient management of complex
striped files in active storage. Euro-Par ’08, pages 676–685,
Berlin, Heidelberg, 2008. Springer-Verlag.

[18] J. Piernas, J. Nieplocha, and E. J. Felix. Evaluation of active
storage strategies for the lustre parallel file system. SC ’07,
pages 28:1–28:10, New York, NY, USA, 2007. ACM.

[19] E. Riedel, G. A. Gibson, and C. Faloutsos. Active storage for
large-scale data mining and multimedia. VLDB ’98, pages
62–73. Morgan Kaufmann Publishers Inc., 1998.

[20] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and
B. Lyon. Innovations in internetworking. chapter Design and
implementation of the Sun network filesystem, pages 379–
390. Artech House, Inc., Norwood, MA, USA, 1988.

[21] P. Schwan. Lustre: Building a file system for 1000-node
clusters. In Proceedings of the 2003 Linux Symposium, 2003.

[22] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisiky-
ilmaz, P. Kumar, W.-K. Liao, and A. Choudhary. Enabling
active storage on parallel i/o software stacks. In Mass
Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1 –12, may 2010.

