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Abstract

Hadoop has become the de facto standard for processing large data in today’s
cloud environment. The performance of Hadoop in the cloud has a direct im-
pact on many important applications ranging from web analytic, web indexing,
image and document processing to high-performance scientific computing. How-
ever, because of the scale, complexity and dynamic nature of the cloud, failures
are common and these failures often impact the performance of jobs running
in Hadoop. Although Hadoop possesses built-in failure detection and recovery
mechanisms, several scheduled jobs still fail because of unforeseen events in the
cloud environment. A single task failure can cause the failure of the whole job
and unpredictable job running times. In this paper, we propose ATLAS (Adap-
Tive faiLure-Aware Scheduler), a new scheduler for Hadoop that can adapt its
scheduling decisions to events occurring in the cloud environment. Using statisti-
cal models, ATLAS predicts task failures and adjusts its scheduling decisions on
the fly to reduce task failure occurrences. We implement ATLAS in the Hadoop
framework of Amazon Elastic MapReduce (EMR) and perform a case study to
compare its performance with those of the FIFO, Fair and Capacity schedulers.
Results show that ATLAS can reduce the percentage of failed jobs by up to 28%
and the percentage of failed tasks by up to 39%, and the total execution time of
jobs by 10 minutes on average. ATLAS also reduces CPU and memory usages.

Index terms— Failure Prediction, Tasks Scheduling, Cloud, Google Clusters, Hadoop,
Amazon Elastic MapReduce.
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1 Introduction

MapReduce [1] has emerged as the leading programming model for large-scale dis-
tributed data processing. Hadoop [2], the open-source implementation of MapReduce
has become the framework of choice on many off-the-shelf clusters in the cloud. It is
extensively used in many applications ranging from web analytic, web indexing, image
and document processing to high-performance scientific computing and social network
analysis. Major large companies like Google, Facebook, Yahoo or Amazon rely daily on
Hadoop to perform important data-intensive operations in their data centers. However,
because of the scale, complexity and the dynamic nature of cloud environments, failures
are common in data centers powering the cloud. Studies [3] show that more than one
thousand individual machine failures and thousands of hard-drive failures can occur
in a cluster during its first year of service. Several power problems can also happen
bringing down between 500 and 1000 machines for up to 6 hours. The recovery time
of these failed machines being as high as 2 days. These frequent failures in data cen-
ters have a significant impact on the performance of applications running Hadoop [4,5].
Dinu et al. [4,6] who examined the performance of Hadoop under failures reported that
many task failures occur because of a lack of sharing of failure information between
the different components of the Hadoop framework.

The Hadoop scheduler is a centrepiece of the Hadoop framework. An effective Hadoop
scheduler can avoid submitting tasks on fault-prone machines; which would reduce the
impact of machine failures on the performance of the applications running Hadoop.
However, basic Hadoop scheduling algorithms like the FIFO algorithm, the Fair-sharing
algorithm, and the Capacity algorithm only rely on small amount of system informa-
tion to make their scheduling decisions. They are not equipped with pro-active failure
handling mechanisms. Yet, a single task failure can cause the failure of a whole job
and unpredictable job running times. In our previous work [7] we have shown that it
is possible to predict task and jobs scheduling failures in a cloud environment and that
such predictions can reduce the percentage of failed jobs by up to 45%. But, we did
not propose an efficient strategy to reschedule tasks predicted as failed.

In this paper, we build on that previous work and propose ATLAS (AdapTive faiLure-
Aware Scheduler), a new scheduler for Hadoop that adapts its scheduling decisions to
events occurring in the cloud environment. Using information about events occurring
in the cloud environment (e.g., resource depletion on a node of the cluster or failure of
a scheduled task) and statistical models, ATLAS predicts the potential outcome of new
tasks and adjusts its scheduling decisions accordingly to prevent them from failing. In
addition, ATLAS scheduler introduces novel strategies to reschedule tasks predicted
as failed like multiple speculative executions and penalty mechanism. We implement
ATLAS in the Hadoop framework of Amazon Elastic MapReduce (EMR). To the best
of our knowledge, ATLAS is the first scheduler for Hadoop that adapts its scheduling
decisions based on predicted failures information. We perform a case study using mul-
tiple single and chained Hadoop jobs (these jobs are composed of WordCount, TeraGen
and TeraSort job units [8]), to compare the performance of ATLAS with those of the
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FIFO, Fair and Capacity schedulers. To assess the performance of each scheduler, we
compute the total execution times of jobs, the amount of resources used (CPU, mem-
ory, HDFS Read/Write), the numbers of finished and failed tasks and the numbers
of finished and failed jobs. Using this information, we answer the following research
question.
RQ: Does ATLAS outperforms FIFO, Fair, and Capacity schedulers in terms
of execution time, number of finished and failed tasks, number of finished
and failed jobs, and resource usage?
Results show that ATLAS can reduce the percentage of failed jobs by up to 28%, the
percentage of failed tasks by up to 39%. Although ATLAS requires training a predic-
tive model, we found that the reduction in the number of failures largely compensates
for the model training time. In fact, ATLAS even reduces the total execution time of
jobs by 10 minutes on average. ATLAS also reduces CPU and memory usages, as well
as the number of HDFS Reads and writes.

The remainder of this paper is organized as follows: Section 2 presents back-
ground information about Hadoop. Section 3 presents the motivation for this work.
Section 4 describes our proposed scheduler (i.e., ATLAS). Section 5 describes our case
study and discusses the obtained results. Section 6 discusses threats to the validity
of our work. Section 7 summarizes the related literature, and Section 8 concludes the
paper and outlines some avenues for future works.

2 Background

In this section, we briefly introduce MapReduce, Hadoop and its schedulers.

2.1 MapReduce

MapReduce is a programming model inspired by functional programming languages
like Lisp. It is designed to perform parallel processing of large datasets using a large
number of computers (nodes) [9]. It splits jobs into parallel sub-jobs to be executed
on different processing nodes where the data are located instead of sending the data
to where the jobs will be executed. A MapReduce job is composed of map and reduce
functions and the input data. The map function subdivides the input record into a set
of intermediate <key, value> pairs. The input data which are called splits represent
a set of distributed files that will be assigned to the mappers. The reduce function
takes a set of values to process for a same key and generates the output for this key.
MapReduce requires a master (known as “JobTracker”) that controls the execution
procedure across the mappers (i.e., worker running a map function) and the reducers
(i.e., worker running a reduce function), using “TaskTrackers”, in order to ensure that
all the functions are executed and have their input data as shown in Figure 1. The
intermediate data generated from the map functions are assigned to the reducers based
on a key hash function that collects the outputs of mappers having the same key. Each
reducer can execute a set of intermediate results belonging to the mappers at a time,
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then all the generated results will be aggregated after the shuffling step to get the final
output once the reducers finish their tasks [10].
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Figure 1: An overview of Job Execution in MapReduce [1]

2.2 Apache Hadoop

Hadoop is a Java-based open source implementation of MapReduce proposed by Doug
Cutting and Mike Cafarella in 2005. It has become the de facto standard for processing
large data in today’s cloud environment [2]. Hadoop is composed of two main units: a
storage unit (Hadoop Distributed File System (HDFS)) and a processing unit (MapRe-
duce). It has a Master-Slave architecture: the master node consists of a JobTracker and
NameNode. A slave (or worker) node can act as both a DataNode and TaskTracker.
Hadoop hides all system-level details related to the processing of parallel jobs (such as
the distribution to HDFS file store or error handling), allowing developers to write and
enhance their parallel programs while focusing only on the computations issues rather
than the parallelism ones. Over the years, a collection of additional frameworks have
been proposed to enhance the features of Hadoop. For example, the Apache Pig plat-
form allows creating MapReduce programs for Hadoop using the Pig Latin language
and the data warehouse Apache Hive enables data summarization, query, and analysis
of large datasets stored in Hadoop’s HDFS.

2.3 Hadoop Schedulers

The default scheduling algorithm of Hadoop is based on the First In First Out (FIFO)
principle. The JobTracker of Hadoop is responsible for scheduling and provisioning the
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submitted jobs. These functions were first located in one daemon. Hadoop developers
decided to subdivide them into one Resource Manager and and per-application Appli-
cation Masters to have more flexibility and facilitate the addition of new schedulers.
The Resources Manager daemon is called YARN (Yet Another Resources Negotiator)
and is responsible for the attribution of resources to applications. Facebook and Ya-
hoo! have developed two new schedulers for Hadoop: Fair Scheduler and Capacity
scheduler, respectively.

2.3.1 FIFO Scheduler

The default scheduler of Hadoop uses a FIFO queue (without any extra configuration).
In cloud environment, users’ applications are considered as jobs composed of one or
more tasks. Each task is a Linux program involving one or multiple processes. The
received jobs are partitioned into sub-tasks which will be loaded into the queue and
executed in the order in which they are submitted, regardless of the type and size of
the jobs. Although, the FIFO algorithm is easy to implement and grants a full access
to resources to the scheduled jobs (which can result in good performances), starvation
is possible (especially when there are long run-time jobs waiting in the queue) as a
scheduled job can use the entire resource of the cluster for a long time, while others
wait in the queue until they time out. Moreover, it does not have the ability to control
the number of maps and reduces slots for each job and it does not support multi-user
executions [11].

2.3.2 Fair Scheduler

The Fair Scheduler was developed by Facebook to ensure that resources are assigned
fairly among different jobs so that all users get on average the required resources avail-
able in the cluster over the time. It considers the number of available slots (i.e.,
mappers or reducers) when making decisions about resource allocation. It improves
the scheduling of the jobs by assigning the minimum number of slots while guaran-
teeing a high level of service to support Quality of Service (QoS) requirements. By
default, its scheduling decisions are based on memory distribution fairness. However,
it can support both CPU and memory allocation according to the notions of Dominant
Resource Fairness proposed by Ghodsi et al. [12]. It supports multi-user execution in
one cluster unlike the default FIFO scheduler of Hadoop. Moreover, it can use the
priorities assigned to users applications as a factor to determine the required resources.
Therefore, it can guarantee that long jobs will not be starving, by optimizing their
waiting time in the queue [13].

2.3.3 Capacity Scheduler

The Capacity scheduler was originally implemented by Yahoo!. It supports multi-user
execution within one cluster and allows large number of users to execute their jobs
fairly over time. In fact, it divides the cluster into multiple queues with configurable
capacity (i.e., CPU, memory, disk, etc.). It assigns the minimum number of available
slots to the received jobs in the queues using FIFO scheduling principles. The queues
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support jobs priorities and guarantee that there is a limit on the allocated resources
to all users in order to prevent some jobs from using all available resources in the
queue where they are assigned. In addition, it improves resources sharing among the
queues in order to fairly distribute the available cluster capacity among users rather
than among the submitted jobs (Fair Scheduler). The capacity scheduler relies only on
memory capacity allocation to optimize the execution time and the throughput of the
data-intensive jobs within Hadoop large clusters [14].

3 Motivation

3.1 Limitation of Current Hadoop’s Implementation

Dinu et al. analysed the behavior of the Hadoop framework under different types of
failure and found that TaskTracker and DataNode failures are very important since
they affect the availability of jobs input and output data [4, 6]. In addition, these
failures can cause important delays during the execution of HDFS read and write pro-
cedures. Their experiments showed that a single failure can lead to unpredictable
execution time; for example the average execution time of a job, which is 220s, can
reach 1000s under a TaskTracker failure and 700s under a DataNode failure. Moreover,
they claimed that the recovery time of the failed components (such as TaskTracker or
DataNode) in Hadoop can be long and can cause jobs delays which may affect the
overall performance of a cluster. As an illustration, let’s consider a TaskTracker that
sends heartbeats to the JobTracker every 10 minutes (this is the default value), if a fail-
ure occurs in the TaskTarcker within the first minute after a communication with the
JobTracker, all the tasks assigned to this TaskTracker will fail and the JobTracker will
notice these failures only after about 9 minutes, resulting in a delay in the rescheduling
of the failed tasks and an increase of the execution time of the job. Even if tasks are
speculatively executed to prevent their full rescheduling in the event of a failure, there
is still a cost associated with this replication (the resource spent on the speculative
executions) [15].

In addition, DataNode failures have a large impact on the start up time of speculative
task executions. This is because of the statistical nature of the speculative execution
algorithm which is based on data about task progress. In fact, if a task was making good
progress and suddenly fails because of a DataNode failure, its speculative execution
will start with a delay (i.e., later than speculative executions of straggler tasks), since
Hadoop expected a normal behavior from that task. Also, many map and reduce
tasks may fail because they exceeded the number of failed attempts allowed by the
TaskTracker. For simplicity and scalability, each computing node in Hadoop manages
failure detection and recovery on its own and hence the launched tasks can not share
failure information between them. Therefore, multiple tasks, including the speculative
tasks, may fail because of an error already encountered by a previous task (it can even
be a task belonging to the same job) [4].
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3.2 Problem Formulation

Let’s consider N jobs submitted to Hadoop, where each job is composed of X map
tasks and Y reduce tasks. Let’s assume that each job is using R(CPU, Memory, HDFS
Read/Write) resources from M machines in an Hadoop cluster. Each map/reduce task
is allowed a maximum number of scheduling attempts: each new task is assigned to
a node and if it fails it can be rescheduled multiple times either on the same node or
on another available node. When a task exceeds its maximum number of scheduling
attempts allowed by the TaskTracker, the task is considered to be failed, otherwise it
is finished successfully. Because of the dependency between map and reduce tasks, if
either a map or a reduce task fails, the whole job to which the task belongs will fail as
well, even if all the other tasks in the job were completed successfully. For example,
in Figure 2, Job3 failed because one of its map tasks failed (because it exceeded its
maximum number of scheduling attempts). As a consequence of the failure of this map
task, all reduce tasks were failed automatically.

....

........ ....

Master
Node

Worker  
Node 1

Worker  
Node 2

Job1

Job4Job5Job6Job7

Job2

m1

m2

m3

mX

r1

r2

rY

att 1 Worker  
Node MJob3

Job 3 Execution

FailureSuccess m = map task,  r = reduce task,   att  = attempt 

Hadoop Scheduler Queue

att 2 att X

Figure 2: Example of Hadoop Job Failure

More formally, if S(job) is the outcome of an executed job; S(MapAttip) the status of
a mapi after the pth attempt (we give a value of 1 when an attempt is successful and 0
otherwise) and S(ReduceAttjq) the status of reducej after the qth attempt. If K and
L are the maximum numbers of scheduling attempts allowed for map and reduce tasks
respectively:

S(job) = [

X∏
i=1

(

K∑
p=1

S(MapAttip))] ∗ [

Y∏
j=1

(

L∑
q=1

S(ReduceAttjq))] (1)

Given that the execution time of a task is the sum of execution times of all its launched
attempts (both the finished and the failed attempts), the more a task experience failed
attempts, the longer its execution time will be. This delay in the execution of the tasks
will also translate into longer execution times for the job (to which the tasks belong)
and larger resources usages. More specifically, if T(job) is the total execution time of
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a job composed of a set of A = {mapi}i∈X map tasks and a set of B = {reducej}j∈Y
reduce tasks. If T (MapAttip) and T (ReduceAttjq) are respectively the execution times
of the mapi and reducej tasks during the attempts p, q respectively:

T (job) = MaxA(

K∑
p=1

T (MapAttip)) + MaxB(

L∑
q=1

T (ReduceAttjq)) (2)

Therefore, we believe that it is very important to reduce the number of tasks failed
attempts if we want to improve the overall performance of an Hadoop cluster. By
reducing the number of tasks failed attempts, one will reduce the turnaround time
of jobs running in the cluster. If one can predict task failure occurrences and adjust
scheduling decisions accordingly to prevent failures from occurring, one may be able
to reduce the number of tasks failed attempts. In our previous work [7] we have shown
that it is possible to achieve such predictions. In the following Section 4, we build
on our previous work and propose ATLAS, a scheduling algorithm that adapts its
scheduling decisions based on predicted failures information.

4 ATLAS: an Adaptive Failure-aware Scheduler for

Hadoop

4.1 Proposed Methodology

In this section, we present our scheduler ATLAS, which can reduce the number of
tasks failed attempts by predicting task scheduling outcomes and adjusting scheduling
decisions to prevent failure occurrences. We describe the approach followed to anal-
yse Hadoop’s log files and build task failure predictive models. Figure 3 presents an
overview of this approach. First, we run different jobs on Hadoop cluster in order
to get trace of data about previously executed tasks and jobs. Next, we analyse log
files obtained from Amazon EMR Hadoop Clusters and extract jobs and tasks main
attributes. Next, we analyse correlations between tasks attributes and tasks schedul-
ing outcomes. Finally we apply statistical predictive learning techniques to build task
failures prediction models. The remainder of this section elaborates more on each of
these steps.

4.1.1 Extraction of Tasks/Jobs Attributes

First, we run different workload in parallel including single and chained jobs on Ama-
zon EMR Hadoop clusters. We run different single jobs in parallel such as WordCount,
TeraGen, TeraSort [8] to get different workload on several machines. In addition, we
run chained jobs (sequential, parallel and mix chains) composed of WordCount, Ter-
aGen, TeraSort jobs to get different types of job running on the cluster. Also, we
vary the size of the used jobs (number of map and reduce tasks, number of jobs in a
chained job). These jobs represent different job pattern similar to the ones running in
real world applications. We implemented a bash script to extract job/task attributes
as described in Table 1. For each job we extracted: job ID, priority, execution time,
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number of map/reduce, number of local map/reduce tasks, number of finished/failed
map/reduce tasks and the final status of the job.
For each task we extracted the following information: job ID, task ID, priority, type,
execution time, locality, execution type, number of previous finished/failed attempts of
the task, number of reschedule events, number of previous finished/failed tasks, num-
ber of running/finished/failed tasks running on the TaskTracker, the amount of used
resources (CPU, Memory and HDFS Read/Write) and the final status of the task.

Table 1: Jobs and Tasks Attributes

Job/Task At-
tributes

Description Rationale

Job/Task ID Immutable and unique identifier for a job/task Used to identify a job/task
Type Type of a task It represents the type of a task: Map

or Reduce
Priority Preemption type of a task/job Used to capture task/job priority to

access resources
Locality/Execution
Type

Locality/Execution type of a task Used to capture the fact that a task
was launched locally/speculatively or
not

Execution Time Time between submission date and date when
task is finished/failed

Used to capture the execution time of
a task

Nbr Finished and
Failed Tasks

Number of finished and failed tasks Used to capture the proportion of fin-
ished/failed tasks

Nbr Pre. Finished and
Failed Attempts

Number of previous finished and failed at-
tempts

Used to capture failure events depen-
dent on a task

Nbr of Reschedule
Events

Number of reschedule events of a failed task Used to capture the number of times
that a failed task was rescheduled

Nbr of Finished, Failed
and Running Task TT

Number of finished, failed and running tasks
on TaskTracker

Used to capture failure events on the
same TaskTracker

Available resources on
TT

Amount of available resources on TaskTracker Used to capture the availability of re-
sources on TT

Total Nbr of Tasks of a
Job

Total number of tasks within a job Used to capture the distribution of
tasks within the jobs

Used CPU/RAM/
HDFS R/W

Used CPU, RAM and Disk Space for a task Used to capture the usage of resources

Final Status Final state on a scheduling life-cycle Used to describe the processing out-
come of a task/job

4.1.2 Profiling of Tasks/Jobs Failure

To identify the correlation between job/task scheduling outcome and their attributes,
we analyse the dependencies between the jobs and tasks and perform a mapping be-
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tween the failed ones and their attributes. Second, we checked the obtained data
to identify the most relevant attributes that impact the final scheduling outcome of
task/job by removing the ones having unchanged value or null value. This step is
preliminary to the following one.

4.1.3 Statistical Predictive Learning

We aim to explore the possibility to predict a potential task failure in advance based
on its collected attributes and machine learning techniques. We believe that if we can
share the failure information between tasks in advance, we can prevent the occurrence
of the predicted failure and reschedule them on appropriate clusters to ensure their
timely and successful completion. To do so, we choose several regression and classifi-
cation algorithms in R [16] to build models: GLM (General Linear Model), Random
Forest, Neural Network, Boost, Tree and CTree (Conditional Tree). GLM is an exten-
sion of linear multiple regression for a single dependent variable. It is extensively used
in regression analysis. Boost creates a succession of models iteratively, each model be-
ing trained on a data set in which points misclassified by the previous model are given
more weight. All the successive models are weighted according to their success and
their outputs are combined using voting or averaging to create a final model. Neural
networks are graphs of interconnected nodes organised in layers. The predictors (or in-
puts) form the bottom layer, and the forecasts (or outputs) form the top layer. Decision
Tree is a widely used classification approach for predicting binary outcomes. CTree is
a different implementation of Decision Tree. Based on Decision Tree, Leo Breiman and
Adele Culter developed Random Forest, which uses a majority voting of decision trees
to generate classification (predicting, often binary, class label) or regression (predicting
numerical values) results [16]. Random Forest offers good out-of-the-box performance
and has performed very well in different prediction benchmarks [16]. The algorithm
yields an ensemble that can achieve both low bias and low variance [16].

We use different training and testing data set for both jobs and tasks. We collected
data related to 70,000 jobs and 180,000 tasks from the Hadoop cluster we used in our
experiments as described in Section 4.1.1. The log data were collected over a fixed
period of time of 10 minutes. The training time is related to the steps of training
process and not to the complexity of the running jobs. We apply 10-fold random
cross validation to measure the accuracy, the precision, the recall and the error of
the prediction models [16]. The accuracy is TP+TN

TP+TN+FP+FN
, the precision is TP

TP+FP
,

the recall is TP
TP+FN

, and the error is FP+FN
TP+TN+FP+FN

, where TP is the number of true
positives, TN is the number of true negatives, FP is the number of false positives, and
FN is the number of false negatives. In the cross validation, each data set is randomly
split into ten folds. Nine folds are used as the training set, and the remaining fold is
used as the testing set.
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4.2 The ATLAS Scheduling Algorithm

ATLAS aims to provide better scheduling decisions for predicted failed tasks, in order
to ensure their successful execution. A scheduling decision may require either assigning
the tasks to other TaskTrackers with enough resources or waiting for some other tasks
to be finished. We designed ATLAS using the predictive model that provided the best
results in terms of precision and accuracy when predicting tasks scheduling outcomes.
ATLAS integrates with any Hadoop’s base scheduler (like FIFO, Fair, Capacity, etc).
In fact, when tasks are predicted to succeed, ATLAS relies on Hadoop’s base scheduler
to make its scheduling decision. Algorithm 1 presents ATLAS in details. The main
algorithm is composed of 3 main parts: (1) a task failure prediction algorithm, (2) an
algorithm to check the availability of resources, and (3) a task rescheduling algorithm
(for potential failed tasks).

We implemented a procedure to collect the attributes of the tasks (map/ reduce) de-
scribed in Table 1. The attributes of the tasks represent the predictors of our models.
Using the values of these attributes, the failure prediction algorithm predicts whether
a task will be finished or failed if executed. The response of the trained models is
a binary variable taking “True” if a scheduled task succeeds and “False” if it fails.
We implemented two different prediction algorithm for the mappers and the reducers
since they have different input parameters. Next, if a task is predicted to succeed, our
algorithm checks the availability of the TaskTracker and DataNode to verify if they
are activated or not, since we noticed that the scheduler may assign tasks to a dead
TaskTracker, because of the predetermined frequency of heartbeats between the Job-
Tracker and TaskTracker (between two heartbeats a JobTracker has no means to know
that a TaskTracker is dead).
Moreover, we implemented a procedure to modify the time spent between two successive
heartbeats based on collected information about TaskTracker failures. This procedure
is running in parallel along with ATLAS. So, if there are very frequent TaskTracker
failures (i.e., if more than 1/3 of TaskTrackers were failed between two heartbeats), the
time between two heartbeats will be decreased in order to detect faster node failures
and reschedule tasks early on, on other alive nodes. This time is decreased each time
by half of the previous time elapsed between two heartbeats (i.e., the value was 10 min,
then it will be decreased to 5 min) until reaching a minimum value. The minimum
value in our experiment is 2 min. If there are less TaskTracker failures (i.e., less than
1/3 of the workers), this time will be increased in order to reduce the cost associated
with communication between the JobTracker and TaskTracker. The value of heartbeat
is adjusted on the fly according to events related to TaskTracker failures.

After checking the TaskTracker, ATLAS checks if there are enough slots on the selected
TaskTracker or not since some tasks may fail because of a high number of concurrent
tasks on a TaskTracker. If an assigned task is predicted to fail but there are enough
available resources in the cluster, ATLAS will launch the task speculatively on many
nodes (specifically the ones that are not very distant) that have enough resources, in
order to speed up the execution of the task and increase the chances of success of
the task. All the decisions made by the ATLAS scheduler are controlled by a time-
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out metric from Hadoop’s base scheduler. Hence, if a task reaches its time-out, its
associated attempt will be considered as failed and the task will be rescheduled again
but with a low priority. We rely on a penalty mechanism to manage the priority of
the tasks. We assign a penalty to tasks causing delays to other tasks and tasks that
are predicted to fail multiple times. This penalty reduces their execution priority,
causing them to wait in the queue until enough resources are available to enable their
speculative execution on multiple nodes. In Algorithm 1, we denote JobTracker as JT,
TaskTracker as TT and DataNode as DN.

Algorithm 1 : The ATLAS Scheduling Algorithm

1: if (TypeofTask(Task) == ”Map”) then
2: /* Collect attributes of Task listed in Table 1 */
3: Attributes = Collect-Attributes-Map(Task)
4: /* Learning Algorithm will predict if Task will be finished/failed */
5: Predicted-Status = Predict-Map(Task, Attributes)
6: else
7: Attributes = Collect-Attributes-Reduce(Task)
8: Predicted-Status = Predict-Reduce(Task, Attributes)
9: end if

10: if (Predicted-Status == ”SUCCESS”) then
11: /* Check whether the TT and DN are dead or alive */
12: Check-Availability(TT,DN)
13: if (TT and DN are available) then
14: /* Test if the TT have enough slots to serve Task */
15: Check-Availability-Slots(Task,TT)
16: if (Slots are available in TT) then
17: Execute(Task,TT)
18: else
19: Wait Until Free Slots in TT and Time-Out Not Reached
20: if (Time-Out is Reached ) then
21: /* Resubmit Task since it will fail in such conditions */
22: Send to Queue + Penalty
23: else
24: /* Execute Task in the TaskTracker TT */
25: Execute(Task,TT)
26: end if
27: end if
28: else
29: while (TT/DN not activated and Time-Out Not Reached ) do
30: /* Send a HeartBeat to the JT to activate TT/DN */
31: Notify JT to Activate TT/DN
32: end while
33: if (Time-Out is reached) then
34: Send to Queue + Penalty
35: else
36: Execute(Task,TT)
37: end if
38: end if
39: else
40: if (There are Enough Resources on Nodes) then
41: /* Launch Many Speculative Instance of Task to increase the probability of its success/
42: Execute-Speculatively(Task,N)
43: end if
44: end if

5 Evaluation

In this section we presents the design of our case study aimed at assessing the effec-
tiveness of the ATLAS scheduler.
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5.1 Setup of the Case Study

We instantiated 15 Hadoop machines in Amazon EMR. We set one machine to the role
of master, another one to the role of secondary master (to replace the master in case of
failure) and 13 machines to the role of slaves. We selected 3 different types of machines
to have heterogeneous environment which represents a real world environment hosting
real and different machines. The three types of Amazon EMR machines are m3.large,
m4.xlarge and c4.xlarge [17]. Details about their characteristics are listed in Table 2.
We choose these types of machine since they can support different workloads and they
were widely used in the literature to test many systems in cloud environment. In addi-
tion, different types of Amazon EMR instance allow to have a real world cluster where
different types of machines are used.

We used the AnarchyApe tool described in [18] to create different failure scenarios
in Hadoop nodes such as TaskTarcker and DataNode failures, slowdown or drop in
the network, loss of some job data, failure of tasks/jobs, and so on. Specifically,
we killed/suspended DataNodes/TaskTrackers; disconnected/slowed/dropped network;
and randomly killed/suspended threads within DataNodes/TaskTrackers in the run-
ning executions. To specify the amount of failures to be injected in the Hadoop clusters,
we performed a quantitative analysis of failures in the public Google Traces [7], which
contains different types of jobs (including Hadoop jobs). The public Google Traces
provides data about task and job failures in real world Google clusters. We found that
more than 40% of the tasks and jobs can be failed [7]. Therefore, in our case study, we
performed different simulations of varying the injected failure rates, with a maximum
failure rate of 40%.

To generate the jobs, we used the WordCount, TeraGen and TeraSort examples pro-
vided by Apache, as job unit to create single or chained jobs as described in Sec-
tion 4.1.1. The generated jobs represent different job pattern from real world applica-
tions. These jobs have different input files (e.g., books1) that we downloaded to have
large set of data to process. For each single job, we decided on the number of map
and reduce tasks using information about the number of HDFS blocks in the input
files. For example, we had jobs with 10 map tasks and 15 reduce tasks. For each
chained job, we decided on the number of job unit within each chain (e.g., 3 jobs, 20
jobs), the type of used job (e.g., WordCount, TeraSort) and the structure of the jobs
(e.g., sequential, parallel and mix chains). For each type of Hadoop scheduler (i.e.,
FIFO, Fair, Capacity), we generated several single and chained jobs and collected their
execution logs to build the task failure prediction model required by ATLAS. We built
prediction models using all the classification algorithms described in Section 4.1.3 and
assessed their performances following the 10-fold cross-validation approach described
in Section 4.1.3. Also, we retrained the prediction models in the instantiated Amazon
EMR machines which represent a cloud environment where drastic changes may occur
because of unreliable machines. This step was performed each 10 min to make the pro-
posed system more robust. We implemented ATLAS using the prediction model that

1http://www.gutenberg.org/wiki/Main Page
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Table 2: Amazon EC2 Instance Specifications

Machine
Type

vCPU* Memory
(GiB)

Storage
(GB)

Network
Performance

m3.large 1 3.75 4 Moderate
m4.xlarge 2 8 EBS-Only+ High
c4.xlarge 4 7.5 EBS-Only+ High

* Each vCPU is a hyperthread of an Intel Xeon core [17].
+ Amazon EBS is a block-level storage volume attached to a running Amazon EC2 instance [17].

achieved the best performance, and compared the performance of Hadoop equipped
respectively with the FIFO scheduler, the Fair scheduler, the capacity scheduler, and
our proposed ATLAS scheduler integrated with these 3 existing schedulers. All the
comparisons were done using the exact same jobs and data. We measured the perfor-
mance each Hadoop’s scheduler using the total execution times of jobs, the amount of
resources used (CPU, memory, HDFS Read/Write), the numbers of finished and failed
tasks, and the numbers of finished and failed jobs.

5.2 Case Study Results

5.2.1 Prediction Algorithms

Table 3 summarises the performance of the six prediction models applied on data
collected from the schedulers’ logs. This result shows that the Random Forest algorithm
achieves the best precision, recall, accuracy and error when predicting the scheduling
outcome of the Map and Reduce tasks for the three studied schedulers (FIFO, Fair
and Capacity). This is because Random-Forest algorithm uses the majority voting on
decision trees to generate results which makes it robust to noise, resulting usually in
highly accurate predictions. For map tasks, a Random Forest model can achieve an
accuracy up to 83.7%, a precision up to 86.4%, a recall up to 94.3% and an error up
to 21.7%. The total execution time of the 10-fold cross-validation was 25.97 ms. For
reduce tasks, the Random Forest model achieved an accuracy up to 95.3%, a precision
up to 98.1%, a recall up to 95.9% and an error up to 16.6%. The total execution
time of the evaluation of Random Forest for reduce tasks was 35.65 ms. Also, we
noticed that Random Forest is achieving these results in a acceptable time compared
to the other algorithms (for example, the Boost algorithm can take up to 297.29 ms
which can affect the performance of the scheduler). In addition, we also found a strong
correlation between the number of running/finished/failed tasks on a TaskTracker, the
locality of the tasks, the number of previous finished/failed attempts of a task, and
the scheduling outcome of the task. More specifically, tasks characterized by multiple
past failed attempts, many concurrent tasks (running on the same TaskTracker) that
experienced multiple failed attempts, have a high probability to fail in the future.

5.2.2 Performance Evaluation of the Schedulers

As stated in Section 5.2.1, we used the Random Forest algorithm (to predict the
scheduling outcome of tasks) when implementing the proposed ATLAS scheduler. Fig-
ure 4, Figure 5 and Figure 6 present respectively the number of finished jobs, map
and reduce tasks for the three schedulers. Overall, we observe that the number of
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Table 3: Accuracy, Precision, Recall, Error (%) and Time(ms) for different Algorithms:
(Random 10-fold Cross-validation)

Task Scheduler FIFO Fair Capacity

Map

Algo. Acc. Pre. Rec. Err. Time Acc. Pre. Rec. Err. Time Acc. Pre. Rec. Err. Time
Tree 68.6 85.3 74.3 31.4 12.34 92.6 85.2 62.1 7.4 9.14 68.7 85.7 73.4 31.3 58.18
Boost 75.9 86.7 78.5 24.1 180.51 65.9 85.6 73.5 34.1 199.80 72.5 85.3 71.3 27.5 280.56
Glm 63.5 87.2 72.4 36.5 9.43 67.4 88.6 65.8 32.6 13.34 62.1 83.6 61.8 37.9 16.01

CTree 65.9 87.5 65.2 34.1 15.61 62.6 85.2 69.3 37.4 16.38 61.8 79.5 61.2 38.2 17.53
R.F. 83.7 86.4 94.3 16.3 23.53 79.8 83.9 94.0 20.2 25.91 78.3 85.2 89.2 21.7 25.97
N.N. 65.8 85.8 79.4 34.2 61.81 68.7 86.3 74.1 31.3 63.61 72.1 83.6 72.3 27.9 59.71

Reduce

Algorithm Acc. Pre. Rec. Err. Time Acc. Pre. Rec. Err. Time Acc. Pre. Rec. Err. Time
Tree 72.4 95.3 69.3 27.6 13.51 72.8 92.2 73.0 27.8 10.23 63.2 83.4 68.7 36.8 13.25
Boost 83.5 93.4 85.1 16.5 297.29 93.1 98.7 92.3 6.9 269.37 66.8 91.7 54.7 33.2 198.37
Glm 61.9 92.6 65.1 38.1 17.32 77.2 91.3 75.3 22.8 17.39 68.7 91.9 71.9 31.3 19.83

CTree 79.3 92.6 81.4 20.7 16.85 81.4 91.1 81.3 18.6 16.52 61.7 91.5 65.1 38.3 17.13
R.F. 95.3 98.1 95.9 4.7 35.65 92.5 97.6 92.4 7.5 28.54 83.4 91.5 95.6 16.6 27.93
N.N. 74.5 91.5 75.3 25.5 89.74 81.5 97.3 71.6 18.5 78.61 74.9 94.1 83.7 25.1 85.37

finished jobs, map and reduce tasks in ATLAS are higher in comparison to the results
obtained for the FIFO, Fair, and Capacity schedulers. This was expected since the
prediction model enables the quick rescheduling of tasks that are predicted to fail. In
addition, the improvement is larger for FIFO and Fair schedulers compared to the ca-
pacity scheduler. This happens because the capacity scheduler forces the killing of any
tasks consuming more memory than configured [19]. The number of finished tasks is
improved by up to 46% when using ATLAS instead of the Fair scheduler (see ATLAS-
Fair in Figure 5), and the number of finished jobs increased by 27% when using ATLAS
instead of the Fair scheduler (see ATLAS-Fair in Figure 4). The improvement of the
number of finished jobs is lower than the improvement of the number of finished tasks
since a single task failure causes the whole job to fail. We also noticed that the number
of failed jobs and tasks was decreased by up to 28% for the jobs (see ATLAS-Fair in
Figure 7) and up to 39% for the tasks (see ATLAS-Capacity in Figure 8) respectively.
Moreover, we also observed that when the failure of one map task causes the failure of
the dependent reduce tasks belonging to the same job, ATLAS is unable to propose a
better scheduling decision (because some data are lost, as explained in Figure 2).

Moreover, we noticed that the number of finished single and chained jobs was improved.
This was expected because ATLAS enables the successful processing of the tasks com-
posing these jobs and because of the dependency between the jobs within the chained
jobs. In addition, the number of finished single jobs was higher than the number of
finished chained jobs. This is due to the dependency between the jobs composing the
chained one (i.e., sequential ones). Also, a single job failure in the composed chain can
cause the failure of the whole chained job.
In general, we conclude that our proposed ATLAS scheduler can reduce up
to 39% of tasks failures and up to 28% of jobs failures that are experienced
by the 3 other schedulers (i.e., FIFO, Fair, and Capacity).

Overall, the execution time of tasks and jobs is lower for ATLAS. We attribute this
outcome to the fact that ATLAS reduces the number of launched attempts and the
time spent to execute the attempts. The total execution time of jobs was decreased on
average by 10 minutes (from 20 minute to 10 minute), representing a 30% of reduction
of the total execution time of these jobs (see the ATLAS-Capacity in Figure 10) and the
total execution time of tasks by about 1.33 minute (from 2.33 minute to 1 minute) (see
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ATLAS-Capacity : reduce task in Figure 12). For long running jobs (running for 40-50
minutes), the reduction was up to 25 minutes (representing a 54% reduction) over the
Capacity scheduler. In this context, we should mention that there was an overhead
associated with the training phase of the predictive algorithm and the communication
between the JobTracker and TaskTrackers. However, this overhead was very small and
is included in the execution time of ATLAS presented on Figure 10, Figure 11, and
Figure 12. In fact, the reduction in the number of failures largely compensated for this
overhead.
ALTLAS successfully reduces the overall execution times of tasks and jobs
in Hadoop.
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Figure 5: Finished Map Tasks
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Figure 6: Finished Reduce Tasks
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Figure 7: Failed Jobs
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Figure 8: Failed Map Tasks
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Figure 9: Failed Reduce Tasks
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Figure 10: Jobs Exec. Time
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Figure 11: Map Exec. Time
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Figure 12: Reduce Exec. Time

By enabling the rescheduling of potential failed tasks in advance, ATLAS reduces
the total execution time of the tasks and the number of tasks and jobs failure events.
Consequently, it is expected that it will reduce resource utilisations in the cluster, since
it should save the amount of resources that would have been consumed by tasks failed
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attempts. The results presented in Table 4 confirms this anticipated outcome. In fact,
by quickly rescheduling tasks predicted to be failed, ATLAS can save the resources that
would have been consumed by these tasks. ATLAS speculatively executes the tasks
predicted to be failed on multiple nodes to increase their chance of success. Whenever
one of these tasks achieves a satisfactory progress, the other speculative executions are
stopped.
Overall, the jobs and tasks executed using ATLAS scheduling policies con-
sumed less resources than those executed using the FIFO, Fair, or Capacity
schedulers (in terms of CPU, Memory, HDFS Read and Write).

Table 4: Resources Utilisation of the Different Hadoop Schedulers

Job/Task
Scheduler

FIFO Fair Capacity
Basic ATLAS Basic ATLAS Basic ATLAS

Resource Avg. Avg. Avg. Avg. Avg. Avg.

Job

CPU (ms) 11495 8415 12647 9538 14475 10784
Memory (105 bytes 7479 4530 7741 3647 9463 5486
HDFS Read (103 bytes) 9930 7431 10968 8762 12463 8360
HDFS Write (103 bytes) 8583 5985 9784 6202 10285 7420

Task

CPU (ms) 3855 2520 4033 2184 4170 2851
Memory (105 bytes 1412 1058 2496 1741 2638 2115
HDFS Read (105 bytes) 1638 1215 1894 1428 7426 4541
HDFS Write (105 bytes) 1774 1385 3643 2429 5052 3715

6 Threats To Validity

This section discusses the threats to validity of our study following the guidelines for
case study research [20].

Construct validity threats concern the relation between theory and observation.
When building the predictive models used by ATLAS, we did not include information
about the requested resources by tasks, since this information was not available in the
collected logs. However, it is possible that some tasks were failed because they did
not receive their requested resources. Our predictive models would hardly predict such
failures. Nevertheless, we used the number of available slots in the machines to predict
task failure in case of shortage of resources. Hence, ATLAS can reschedule the task on
a different machine (with enough resources).

Internal validity threats concern the tools used to implement ATLAS. In addition,
we used AnarchyApe [18] to inject different types of failures in Hadoop machines. We
relied on rate of failures observed in Google clusters [7]. It is possible that the majority
of Hadoop clusters do not experience such high rate of failures. It is also very possible
that our simulations missed some types of failures occurring in Hadoop clusters. Fu-
ture works should be performed on a more diverse set of Hadoop clusters and different
failure rates.

Conclusion validity threats concern the relation between the treatment and the
outcome. We implemented a procedure to check the time spent by ATLAS in a way
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to not exceed the time-out value specified by the scheduler. In addition, we carefully
checked the time spent by the algorithm to check the availability of the TaskTarckers
and the DataNodes and to activate them through the JobTracker in a way that do not
generate extra overhead times. We also verified that the scheduling decisions generated
by ATLAS did not violate any property of the system.

Reliability validity threats concern the possibility to replicate our study. We believe
that our proposed approach can be reused on other cloud platforms such as Microsoft
Azure [21]. To do that, a developer only needs to record the log files of processing
nodes, build the predictive models, and implement the ATLAS algorithm on top of a
Hadoop scheduler (like FIFO, Fair or Capacity) to adjust scheduling decisions accord-
ing to task failure predictions.

External validity threats concern the generalization of our obtained results. Further
validation on larger clusters using diverse sets of tasks and jobs is desirable.

7 Related Work

7.1 Fault-Tolerance Mechanisms in Hadoop

Hadoop was designed with some built-in fault-tolerance mechanisms. For example, the
HDFS keeps multiple replicas of each data block on several different nodes, to allow
for a quick restoration of data in the event of a node failure. Map and Reduce tasks
are re-scheduled whenever they fail. Whenever a node fails, all the Map and Reduce
tasks on that node are re-scheduled to another node for re-execution. However, these
simple redo solutions are not always effective. For example, If a failed task was almost
completed, repeating the whole task can significantly increase the computation cost
of the jobs. To address these limitations, researchers have proposed new mechanisms
to improve the fault-tolerance of Hadoop. Quiane-Ruiz et al. [22] proposed RAFT, a
Recovery Algorithm for Fast-Tracking in Mapreduce that saves the states of tasks at
multiple checkpoints. Whenever a task fails, the JobTracker can restart the task from
the last checkpoint. They considered three types of checkpoints: (1) local checkpoints
(RAFT-LC) to store states of the local reducer and mapper, (2) remote checkpoints
(RAFT-RC) to store the intermediate results of remote workers, and (3) query meta-
data checkpoints (RAFT-QMC) to store the offset of input key-value pairs producing
the intermediate results. RAFT does not re-execute the finished tasks belonging to a
failed jobs. They assessed the performance of RAFT and found that it could reduce
the total execution time of tasks by 23% under different type of failures. Qi et al. [23],
developed an algorithm called Maximum Cost Performance (MCP), to improve exist-
ing speculative execution strategies. However, this algorithm (i.e., MCP) was found to
negatively impacting the scheduling time of some jobs (batch jobs in particular) [24].
The CREST (Combination Re-Execution Scheduling Technology) algorithm was pro-
posed to improve MCP, by using data locality during the speculative scheduling of slow
running tasks [25]
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7.2 Adaptive Scheduling in Hadoop

Given the dynamic nature of Hadoop environment, its scheduler can use information
about the factors affecting their behavior to make better scheduling decisions and im-
prove cluster performance. One scheduler that was proposed to do that is LATE [26].
LATE collects data about running tasks and assigns weights to tasks based on their
progress. Using historical information about the weights assigned to tasks in the past,
LATE prioritizes new tasks waiting to be executed. LATE was able to improve the
execution time of jobs by a factor of 2 in large Hadoop cluster. Quan et al. proposed
SAMR (Self-Adaptive MapReduce scheduling), a scheduler that uses hardware system
information over time to estimate the progress of tasks and adjust the weights of map
and reduce tasks, to minimize the total completion time of a job [27]. SAMR does
not consider job characteristics such as size, execution time, or weights. To improve
on this limitation of SAMR, Xiaoyu et al. proposed ESAMR(Enhanced Self-Adaptive
MapReduce scheduling) [28] which considers system information about straggling tasks,
jobs length, etc. ESAMR uses the K-means clustering algorithm to estimate task ex-
ecution times. In [29], Tang et al. proposed a scheduling algorithm named SARS
(Self-Adaptive Reduce Start time) which uses job completion time, reduce completion
time and the total completion time information as well as system information to decide
on the starting time of reduce tasks. By improving the decisions about when to start
reduce tasks, SARS could reduce the average response time of the tasks by 11%. Kc and
Anyanwu [30] also proposed an algorithm that schedules jobs on Hadoop using user’s
specified deadlines. Li et al. [31] proposed WOHA (WOrkflow over HAdoop) with the
aim to improve workflow deadline satisfaction rates in Hadoop clusters. WOHO relies
on job ordering and progress requirements to select the worklflow that falls furthest
from its progress based on the Longest Path First and Highest Level First algorithms.
Results show that WOHO can improve workflow deadline satisfaction rates in Hadoop
clusters by 10% compared to the existing scheduling solutions (FIFO, Fair and Capac-
ity).

8 Conclusion and Future Work

In this paper, we proposed ATLAS (AdapTive faiLure-Aware Scheduler), a new sched-
uler for Hadoop. The primary goal of ATLAS is to reduce the failure rates of jobs
and tasks and their running times in Hadoop clusters. Based on information about
events occurring in the cloud environment and statistical models, ATLAS can adjust
its scheduling decisions accordingly, in order to avoid failure occurrences. We im-
plemented ATLAS in Hadoop deployed on Amazon Elastic MapReduce (EMR) and
performed a case study to compare its performance with those of the FIFO, Fair and
Capacity schedulers. Results show that ATLAS can reduce the percentage of failed
jobs by up to 28% and the percentage of failed tasks by up to 39%. Although ATLAS
requires training a predictive model, we found that the reduction in the number of fail-
ures largely compensates for the model training time. ATLAS could reduce the total
execution time of jobs by 10 minutes on average, and by up to 25 minutes for long
running jobs. ATLAS also reduces CPU and memory usages, as well as the number of

21



HDFS Reads and writes. In the future, we plan to extend ATLAS using unsupervised
learning algorithms and assess the performance of ATLAS when the prediction model
is retrained at fixed time intervals.
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