
Performance Enhancement of a Computational
Persistent Homology Package

Alan Hylton
Space Communications and Navigation

NASA Glenn Research Center
Cleveland, OH, USA

alan.g.hylton@nasa.gov

Greg Henselman
Dept. of Electrical and Systems Engineering

University of Pennsylvania
Philadelphia, PA, USA

grh@seas.upenn.edu

Janche Sang
Dept. of Elect. Eng. and Computer Science

Cleveland State University
Cleveland, OH, USA

sang@eecs.csuohio.edu

Robert Short
Dept. of Mathematics

Lehigh University
Bethlehem, PA, USA
rss212@lehigh.edu

Abstract—In recent years, persistent homology has become
an attractive method for data analysis. It captures topological
features, such as connected components, holes, voids, etc., from
a point cloud by finding out when these features appear and
disappear in the filtration sequence. In this project, we focus
on improving the performance of Eirene, a fancy computa-
tional persistent homology package. Eirene is a 5000-line open-
source software implemented by using the dynamic programming
language Julia. We use the Julia profiling tools to identify
the performance bottlenecks and develop different methods to
manage the bottlenecks, including the parallelization of some
time-consuming functions on the multicore/manycore hardware.
The empirical results show that the performance can be greatly
improved.

Keywords-Performance Optimization, Profiling, Persistent Ho-
mology, Multicore/Manycore Computing

I. INTRODUCTION

Persistent Homology, formalized by Edelsbrunner, Letscher
and Zomorodian [1] at the beginning of the last decade, is
a method from algebraic topology adapted in an algorithmic
context to topological data analysis. It extracts the homol-
ogy classes, such as connected components, cycles, voids,
etc., from a point cloud data set and keeps track of when
these classes appear and disappear in the filtration sequence.
Persistent homology finds numerous applications in research
areas involving very large data sets, including biology [2],
image analysis [3], sensor networks [4], Cosmology [5], etc. A
detailed roadmap for the computation of persistent homology
can be found in [6].

Eirene is a state-of-the-art open-source platform for com-
putational persistent homology [7]. It is implemented in Julia
[8], a high-performance dynamic scripting language for nu-
merical and scientific computation. Eirene adopts the novel
relationship between the Schur complement (in linear algebra),
discrete Morse Theory (in computational homology), and
minimal bases (in combinatorial optimization) unearthed in [9]
to build the algorithms. Hence, its performance can be much

faster than most of other computational persistent homology
packages. Furthermore, it provides user-friendly utilities for
graphical visualization of homological classes. Figure 1 is a
3D visualization WorldMap graph displayed by Eirene which
shows a persistent 1-cycle of cities embedded in the Eurasian
continent.

Fig. 1. A Cycle in the WorldMap displayed by the Eirene tool

However, we noticed that Eirene runs slower when we used
the recent release Julia v0.6. Therefore, the objective of this
project was to optimize the performance of Eirene. We used
the profiling technique to identify the potential performance
bottlenecks. Note that the software profiling tool, which can
display the call graph and the amount of time spent in
each function, has been used to tune program performance
for several decades [10] [11]. After locating each of the

dim 0

dim 1

A

B

B

C

A
B

C

B

Fig. 2. An example of zero- and one-dimensional barcodes for a sequence of Vietoris-Rips complexes

bottlenecks, we found the cause of it and developed a method
to solve the problem. For some time-consuming functions, we
re-implemented the code and ported them on the multicore and
manycore architectures, by using pthreads [12] and CUDA
threads [13], respectively. The experimental results showed
that the performance can be improved significantly.

The rest of the paper is organized as follows. In Section
2, we briefly review the necessary background on persistent
homology. In Section 3, we identify the bottlenecks and pro-
pose different performance-improving methods. We evaluate
our methods by conducting benchmark experiments in Section
4. A short conclusion is given in Section 5.

II. BACKGROUND

Homology is a tool in algebraic topology for analyzing the
connectivity of simplicial complexes, such as points, edges,
solid triangles, solid tetrahedra, and other higher dimensional
shapes. By using homology, we can measure several features
of the data in metric spaces – including the numbers of
of connected components (0-cycle), holes(1-cycle), voids(2-
cycle), etc. In this project we limit the study in the homology
of Vietoris-Rips complexes only. To construct a Vietoris-Rips
complex, a distance threshold ε is chosen first. Then, any two
points which are less than the distance ε from each other are
connected by an edge. A solid triangle is created if all its three
edges have been generated. A solid tetrahedra is constructed
if all its face triangle have been created. Similar constructions
are used to build higher-dimensional simplexes

Note that using different distance thresholds to generate the
Vietoris-Rips complexes from the same point cloud data set
may result in very different homologies, i.e different numbers

and types of cycles. Because cycles are the topologically
significant features to be captured from the data set, we do
not want to miss any of them. For solving this problem,
a method, which is called persistent homology [1], is to
generate Vietoris-Rips complexes from a set of points at every
distance threshold and then derive when the cycles appear
and disappear in the complexes as the distance increases.
Therefore, the distance threshold is often referred to as time.

The topological data produced by using persistent homology
can be visualized through a barcode [14]. A barcode is a
collection of intervals, where each interval represents a cycle
that exists in at least one Vietoris-Rips complex generated from
a point cloud. The left endpoint and the right endpoint of an
interval represent the birth and the death times of a cycle,
respectively. The horizontal axis corresponds to the distance
threshold and the vertical axis represents an arbitrary ordering
of captured cycles.

Figure 2 illustrates an example of zero- and one-dimensional
barcodes for a sequence of Vietoris-Rips complexes. The red
bars represent the lifetime of the connected components. Note
that at beginning the number of components is the same as the
number of points. When the distance threshold ε increases,
the number of components is decreased because more and
more components are connected together. The green bars
represents the lifetime of the cycles in dimension 1. The cycle
disappear when it is completely filled in by solid triangles. It
can be observed that a cycle, denoted as B in the diagram,
is significantly longer than the others, while the cycle A is
short-lived and can be considered as noise. A barcode also
encodes all the information regarding the Betti numbers on
different scales. Betti numbers count topological features, like

connected components (0th Betti number), holes (1st Betti
number), voids (2nd Betti number), etc., for an individual
simplicial complex. For one of the Vietoris-Rips complexes
in the barcode, these numbers can be obtained by counting
the numbers of the intersections between a vertical line and
the bars in the diagram.

For the computation of persistent homology, there are sev-
eral open-source software packages available, such as javaPlex
[15], Dionysus [16], Perseus [17], etc. Basically, for computing
persistence intervals of a finite filtration, a program firstly
constructs filtered simplicial complexes from a point cloud
and store the information into a matrix. Next, it applies matrix
reduction techniques and obtains the intervals of the barcode
by pairing the simplices in the reduced matrix. As mentioned
before, the key feature of Eirene is that it adopts discrete
Morse Theory to reduce the matrix size and uses the Schur
complement to perform the matrix reduction efficiently.

III. PERFORMANCE-IMPROVING METHODS

Code analysis tools are important for programmers to under-
stand program behavior. Software profiling measures the time
and memory used during the execution of a program to gain
this understanding and thus helps in optimizing the code. To
develop efficient software, it is essential to identify the major
bottlenecks and focus the optimization on the bottlenecks.
Therefore, our strategy is to use Julia’s built-in Profile module,
a statistical profiler, to find the key bottlenecks in Eirene
and then develop different performance-improving methods to
solve them.

To profile an execution of Eirene, we simply need to put the
macro @profile before calling the main function of Eirene,
e.g.
@profile C = eirene(data-file-path,...)

Note that the Julia profiling tool works by periodically taking
a backtrace during the execution of a program. Each backtrace
takes a snpshot of the current state of execution, i.e. the current
running function and line number along with the complete
chain of function calls which led to this line. Therefore, a
busy line of code, such as the code inside nested loops,
has a higher opportunity to be sampled and hence appeared
frequently in the set of all backtraces. However, profiling
a very long-running task may cause the backtrace buffer
to fill full. Programmers can use the configuration function
Profile.init(n, delay) to either increase the total
number of backtrace instruction pointers n (default: 10ˆ6) or
the sampling interval delay (default: 0.001) or both.

We used three benchmarks: HIV, WorldMap, and Dragon2,
to locate the bottlenecks in Eirene. The HIV benchmark
contains the Hamming distances between 1088 different ge-
nomic sequence of the HIV virus. The WorldMap benchmark
includes the data of 7322 cities in the world. The Dragon2 data
set contains 2000 points sampled from the Stanford Dragon
graphic. Both of the HIV and the Dragon2 benchmarks are
available from [6] , while the WorldMap data can be obtained
from [7].

After the major bottlenecks were identified, we figured
out how each of the bottlenecks was formed and developed
solutions to fix them, as described in detail below.

A. Dynamic-type Any

Note that the Julia’s sampling profiler only displays the
results in textual format. To have a faster comprehension
of the results, we used another package called ProfileView
which can give users a graphical view of the data collected
by the profiler. The function ProfilevView.view() plots
a flame graph [18] which is a visual representation of the
call graph of the code just being profiled. In such a graph,
the vertical axis (from bottom to top) represents the stack
of function calls, while the horizontal axis represents the
number of backtraces being sampled at each line. To identify
a potential bottleneck, users can move the mouse to a long
bar usually located on the top two levels in the graph and
the corresponding backtrace of the function name and the line
number will be shown on the screen.

Figure 3 shows our first identification of a
performance bottleneck located in the function
getstartweights_subr2() using the HIV benchmark.
It spans 90% of the horizontal axis and similar results can be
found in the other two benchmarks. Examining the code in
this function, we found that the use of the dynamic-type Any
in the following three lines

val = Array(Any,m)
supp = Array(Any,m)
suppDown = Array(Any,m)

causes the Julia interpreter to generate many dynamic invoker
objects when these three arrays appeared in an expression and
hence the performance is greatly suffered. Fortunately, we also
figured out the use of the dynamic-type Any is unnecessary in
this function because the array supp[] stores the indices (i.e.
of integer type) of non-zero elements returned from the Julia
function find(). After replacing the dynamic-type Any with
the static-type Int64, this bottleneck has been solved.

Fig. 3. Identification of the bottleneck caused by the Dynamic-type Any

B. Redundant Calculations

We ran the code and performed the profiling procedure
again after fixing the first large bottleneck. We noticed that
there is a certain amount of time spent in the function
integersinsameorderbycolumn() when running the
Dragon2 benchmark, as shown in Figure 4 displayed by
the ProfileView tool. After looking the original code of this
function(see the top box in Figure 5), we found that there
are some unnecessary calculations. The array y is used to
calculate the prefix sums of the array x and only some of
them will be copied to the array z to be returned to its caller.
When the maxvalue, a parameter passed to this function, is
large, the inner loop for i = 1:maxvalue will let this
function be executed much longer. As shown in the bottom
box in Figure 5, we modified the code to find out the range
first and then calculate only the prefix sums within this range.
Furthermore, we can just use the array x to accumulate the
prefix sums of itself instead of using another local array y.
The initialization of the whole array x inside the beginning of
the loop can also be replaced by cleaning up the dirty elements
before the end of the loop.

Fig. 4. Identification of the bottleneck in the function integersinsameorder-
bycolumn

C. Deeply Nested Loops

Even we removed the overhead caused by the dynamic-type
Any in the function getstartweights_subr2(), the
execution of the Dragon2 benchmark still spends a reasonable
amount of time in this function. As shown in Figure 6, this
function calculates the weight for each column in the matrix
s. It firstly finds the indices of the non-zero elements in each
column and then uses nested loops to increment the counter
of the column if certain conditions are met. When there are
many non-zero elements in the matrix s, the deeply nested
loops will consume much CPU computation time.

To deal with the deeply nested loops, one feasible approach
is to use the GPU to accelerate the execution. NVIDIA
provides a parallel computing platform and programming
model called CUDA (Compute Unified Device architecture).
Therefore, now it is much more convenient to write application

...
for j = 1:numcols

x[:] = 0
for i = colptr[j]:(colptr[j+1]-1)

x[v[i]]+=1
end
y[1] = colptr[j]
for i = 1:maxvalue

y[i+1]=y[i]+x[i]
end
for i = colptr[j]:(colptr[j+1]-1)

u = v[i]
z[i] = y[u]
y[u]+=1

end
end
return z

...
x[:] = 0
for j = 1:numcols

for i = colptr[j]:(colptr[j+1]-1)
x[v[i]]+=1

end

maxv = v[colptr[j]]; minv = maxv
for i = (colptr[j]+1):(colptr[j+1]-1)

if v[i] > maxv
maxv = v[i]

elseif v[i] < minv
minv = v[i]

end
end

prevsum = colptr[j]
for i = minv:maxv

sum = prevsum + x[i]
x[i] = prevsum
prevsum = sum

end
for i = colptr[j]:(colptr[j+1]-1)

u = v[i]
z[i] = x[u]
x[u]+=1

end

for i = minv:maxv
x[i] = 0

end
end
return z

Fig. 5. The original(top) and the modified(bottom) function integersinsame-
orderbycolumn() in Eirene

function getstartweights_subr2(s::Array{Int64,2},
w::Array{Int64,1},m::Int64)

...
for i = 1:m

supp[i] = find(s[:,i])
l[i] = length(supp[i])
...

end
for i = 1:m

Si = supp[i]
...
for jp = 1:l[i]

...
for ...

if conditions met
w[i]+=1

end
end

end
end

end

Fig. 6. The original function getstartweights subr2() in Eirene

Julia script
num = 1<<24
a = rand(Float32,num)
b = rand(Float32,num)
c = similar(a)

VectorAdd_jl(a,b,c,num)

a C/CUDA wrapper in Julia
function VectorAdd_jl(x::Array{Float32,1},
 y::Array{Float32,1},a::Array{Float32,1},n)

 ccall((:HostVectorAdd,"./libVectorAdd",Void,
 (Ptr{Cfloat},Ptr{Cfloat},Ptr{Cfloat},Cint),
 x,y,z,n)

end

SM 1

SM N

SP SP SP SP SP SP SP SP

SP SP SP SP SP SP SP SP

Register File

Shared Memory

Instruction Unit

Device Memory

GPU
Device

__global__ void vectorAdd(const float *A,
 const float *B, float *C, int N) {
 int i = blockDim.x*blockIdx.x+threadIdx.x;
 if (i < N)
 C[i] = A[i] + B[i];
}

shared library libVectorAdd.so

extern "C" void HostVectorAdd(float *h_A,
 float *h_B, float *h_C, int len) {

 use cudaMalloc to allocate d_A, d_B, d_C;

 use cudaMemcpy to transfer h_A, h_B to
 d_A, d_B, respectively;

 vectorAdd<<<BlkPerGrid,ThrPerBlk>>>(d_A,
 d_B, d_C, len);

 get d_C back via cudaMemcpy;

 cudaFree d_A, d_B, d_C;
}

Fig. 7. An example of calling C/CUDA functions from Julia script

programs on the GPUs for processing large amounts of data,
without the need to use low-level assembly language code.

The NVIDIA GPU architecture consists of a scalable num-
ber of streaming multiprocessors (SMs), each containing many
streaming processors (SPs) or cores to execute the lightweight
threads. The kernel function, which is declared by using
the __global__ qualifier keyword in front of a function
heading, is executed on the GPU device. It consists of a grid
of threads and these threads are divided into a set of blocks
and each block contains multiple warps of threads. Blocks are
distributed evenly to the different SMs to run. A warp, which
has 32 consecutive threads bundled together, is executed using
the Single Instruction, Multiple Threads (SIMT) style. Note
that the GPU device has its own off-chip device memory (i.e.
global memory). and on-chip faster memory such as registers
and shared memory. Fancy warp shuffle functions are also
supported in modern GPUs [19]. They permit exchanging of
variables (i.e. registers) between threads within a warp without
using shared memory.

Though there are some Julia packages which enable pro-
grammers to launch GPU kernel calls, we decided to imple-
ment our own wrappers because of more flexibility and more
efficiency. Figure 7 shows an example of calling a CUDA
function named vectorAdd() by way of the host function
HostVectorAdd() in C. A wrapper function in Julia is
needed which utilizes the ccall() function to invoke the
host function. Note that the first argument of ccall() is a
tuple pair (:function,"library-path"). The rest of
the arguments include the function return type, a tuple of input
parameter types, and then the actual parameters. The C/CUDA

functions should be compiled and linked as a shared objects.
It is worth mentioning that, when using the nvcc NVIDIA
CUDA Compiler to compile the C/CUDA code, programmers
need to use the options -Xcompiler -fPIC to pass the
position-independent code (PIC) option from nvcc to g++.

Figure 8 shows our implementation of the function
getstartweights_subr2(). Our idea is to use m warps
to handle the outermost for i=1:m loop in the origi-
nal code. Since the second for i=1:m loop needs the
result from the first loop, we need to use two kernel
functions: init_supp() and calcstartweights(),
and launch them one after the other in the host function
Host_getstarweights(). To find the indices of the non-
zero elements for each column, each thread within a warp
check the corresponding element and cast its one-bit vote via
the __ballot() intrinsic function. The __ballot() col-
lects the votes from all threads in a warp into a 32-bit integer
and returns this integer to every thread. The __popc(int
v) function returns the number of bits which are set to 1 in
the 32-bit integer v. That is, it performs the population count
operation. By combining the __ballot() and __popc()
functions along with bit-masking , each thread in a warp can
quickly find out how many non-zero elements in front of it
and then stores its index into the corresponding location in
the array supp[]. This procedure will be repeated stride by
stride until all elements in a column have been processed. Note
that similar strategy has been used in [20] and [21] to perform
efficient stream compactions on GPU.

After getting the indices of the non-zero elements for
each column, each thread in the second kernel function

calcstartweights() uses a local counter (i.e. a register)
and increments this counter by one if certain conditions are
met. When all non-zero elements have been checked, a parallel
reduction sum operation via the efficient shuffle function
__shfl_down() is performed. All of the local counter
values in each warp will be added together and stored into
the counter at the first thread (i.e lane ID 0). This thread then
writes the weight to the output array w.

_global__ void init_supp(const long long *s,
int *supp, int *l, ..., long long m) {

int tid = blockIdx.x * blockDim.x + threadIdx.x;
int lnid = threadIdx.x % WARP_SIZE ; // lane id
int warp_id = tid >> 5; // global warp number
if(warp_id >= m) return;

int supplen = 0;
int j = lnid;

while (j < m) {
int b = s[warp_id*m + j] != 0 ;
int votes = __ballot(b); // cast b if non-zero
int lidx = __popc(votes & ((1 << lnid) - 1)) ;

if (b)
supp[warp_id*m + supplen+lidx] = j;

supplen += __popc(votes);
j += WARP_SIZE; // next stride

}
...
if(lnid == 0) {

l[warp_id] = supplen;
...

}
}

_global__ void calcstartweights(const long long *s,
int *supp, int *l, long long *w, long long m) {

// Same as in init_supp, calc. tid , lnid, and warp_id ;
if(warp_id >= m) return;

int supplen = l[warp_id];
int jp = lnid;
int wt = 0; // each thread has a counter (in register)
while (jp < supplen) {

int j = supp[warp_id*m + jp];
...

for ... {
if (conditions met)

wt += 1;
}

jp += WARP_SIZE; // next stride
}
// parallel reduction sum through registers
for(int offset = WARP_SIZE>>1; offset>0; offset >>= 1)

wt += __shfl_down(wt, offset);

if (lnid == 0) w[warp_id] = wt;
}

extern "C" void Host_getstarweights(long long * s,
long long *h_w , long long m) {

use cudaMalloc to allocate d_s, d_supp, d_l, d_w, etc.

use cudaMemcpy to transfer data to d_s on GPU

init_supp<<<BlkPerGrid, ThrPerBlk>>>(d_s, d_supp,
d_l,..., m);

calcstartweights<<<BlkPerGrid, ThrPerBlk>>>(d_s, d_supp,
d_l, d_w, m);

use cudaMemcpy to get the weights h_w from device d_w
}

Fig. 8. Implementation of the getstartweights subr2() on GPU

D. Sortperm a Large Array

Another bottleneck occurs in the function
ordercanonicalform() when it calls Julia’s
sortperm(v) to find the rank of each element in the
distance matrix. The sortperm(v) computes a permutation
of the array v’s indices that puts the array into sorted order.
For example, if the input array v is

v = [7, 3, 8, 4, 2] ,
then the output from sortperm(v) will be

[5, 2, 4, 1, 3] .
When the size of the matrix is large, e.g. the WorldMap
benchmark, sortperm(v) performs poorly. We found
out that if we change the default sorting algorithm from
MergeSort to RadixSort, the performance can be greatly
improved, especially for the WorldMap benchmark.

Furthermore, CUDA Thrust is a powerful library [22] which
provides a rich collection of data parallel primitives such as
sort, scan, reduction, etc. Hence, using CUDA Thrust to build
GPU applications, programming efforts can be reduced greatly.
Though CUDA Thrust does not support the sortperm-like
function directly, we can simply use the sequence() and
sort_by_key() to implement it on GPU quickly, as shown
in Figure 9.

extern "C" void
sortperm_thrust(double *h_s, long long *h_idx, long long n)
{

thrust::device_ptr<long long> d_idx =
thrust::device_malloc<long long>(n);

// create an array with elements 1, 2, 3, ..., n
thrust::sequence(d_idx, d_idx + n, 1);

thrust::device_ptr<double> d_s =
thrust::device_malloc<double>(n);

thrust::copy(h_s, h_s+n, d_s); // copy s to device

thrust::sort_by_key(d_s, d_s + n, d_idx);

// we are interested in idx
thrust::copy(d_idx, d_idx + n, h_idx);

thrust::device_free(d_s);
thrust::device_free(d_idx);

}

Fig. 9. Implementation of sortperm() on GPU

E. Sparse Matrix Multiplication and Addition

For efficiently computing the matrix reduction, the Eirene
library uses the Schur complement to encapsulate the LU
factorization [9]. Given a matrix M with four sub-matrices
A, B, C, and D in it, i.e.

M =

[
A B
C D

]
the Schur complement S of the block A of the matrix M is

S = D + CA−1B

using the modulo-2 operation. Inside the Schur com-
plement function schurit4!() in Eirene, the function

blockprodsum() is invoked to compute D + CE after
getting E = A−1B. Even Eirene uses sparse matrices for
computing, we found that the function blockprodsum()
becomes a bottleneck when the matrices are large.

To alleviate this problem, we decided to take the advantage
of the multicore architecture and adopted the master/workers
parallel computation model to speed up the execution. We
partitioned the matrices D and E columnwise (due to the use
of Compressed Sparse Column(CSC) format in Eirene) into
several workers (i.e. pthreads) and let each worker i compute
Si = Di +CEi, as illustrated in Figure 10. Unlike the dense
matrix multiplication in which the product matrix is fully data
parallel after partitioned, the index pointers in CSC which
point to the starting locations of every column have to be
adjusted one after the other. We let the master do the adjusting
work when it copies the result to its caller.

+ XD D D D
1 2 3 4 1 2 3 4

1 2 3 4

EEEE

S S S S

Worker1 Worker4

Master

D C E
.

Sparse
Matrix

Sparse
Matrix

Sparse
Matrix

Fig. 10. Parallel Implementation of blockprodsum() using Master/Workers

IV. EXPERIMENTAL RESULTS

To evaluate the effects of the performance-improving meth-
ods discussed in the previous section, we ran the exper-
iments with three different versions of Eirene: the orig-
inal version which is Eirene v0.3.5 released in January
2017; the modified version which removes the dynamic-type
Any, avoids unnecessary calculations, and uses RadixSort in
sortperm(); the enhanced version which is a superset of the
modified version and utilizes manycore/multicore to calculate
the getstartweights_subr2(), sortperm(), and the
blockprodsum() (using 4 workers).

We firstly adopted the workstation at the Ohio
Supercomputing Center(OSC) to conduct the experiments.
The machine has the Intel Xeon E5-2680 v4 CPU (2.4GHz),
28 cores per node, 128 GB of memory, as well as a cutting-
edge NVIDIA Pascal P100 GPU(1.33GHz, 3584 CUDA
cores, 16GB) running CUDA Driver Version 8.0. Tables

I, II, III show the major bottlenecks’ execution times and the
total execution time for the HIV, WorldMap and Dragon2
benchmarks, respectively. In these three tables, we use A, B, C,
D, and E to denote the major bottlenecks caused by dynamic-
type ”Any” , integersinsameorderbycolumn(),
getstartweights_subr2(), sortperm(), and
blockprodsum().

TABLE I
EXECUTION TIMES (IN SECONDS) OF THE MAJOR BOTTLENECKS USING

THE HIV BENCHMARK
(INTEL XEON E5-2680 V4 AND NVIDIA TESLA P100 (PASCAL))

Original Modified Enhanced
A 95.7 0 0
B 0.078 0.002 0.002
C 3.2 3.2 0.068(Manycore)
D 0.42 0.043(RadixSort) 0.008(Manycore)
E 0.135 0.135 0.134(Multicore)

Total 110.8 13.1 9.9

TABLE II
EXECUTION TIMES (IN SECONDS) OF THE MAJOR BOTTLENECKS USING

THE WORLDMAP BENCHMARK
(INTEL XEON E5-2680 V4 AND NVIDIA TESLA P100 (PASCAL))

Original Modified Enhanced
A 18.6 0 0
B 2.2 0.002 0.002
C 1.3 1.3 0.29(Manycore)
D 38.8 4.1 (RadixSort) 0.39(Manycore)
E 1.18 1.18 0.90(Multicore)

Total 80.6 23.4 17.1

TABLE III
EXECUTION TIMES (IN SECONDS) OF THE MAJOR BOTTLENECKS USING

THE DRAGON2 BENCHMARK
(INTEL XEON E5-2680 V4 AND NVIDIA TESLA P100 (PASCAL))

Original Modified Enhanced
A 416.6 0 0
B 36.2 0.05 0.05
C 15.4 15.4 0.72(Manycore)
D 2.4 0.41(RadixSort) 0.03(Manycore)
E 15.5 15.5 9.6(Multicore)

Total 565.2 109.9 89.0

It can be seen that the removal of unnecessary use of
the dynamic-type Any can greatly improve the performance
for all benchmarks. The other methods also have positive
impacts on the performance for different benchmarks. Note
that there is no significant improvement for the HIV and
Worldmap benchmarks when using multicore to speed up the
blockprodsum() due to the small amount of computation.
Moreover, we used different number of threads to compute the
blockprodsum() for the Dragon2 benchmark. As shown in
Table IV, using a few more threads can still further improve the
performance. For parallel dense matrix multiplication, usually
linear or close to linear speedups can be obtained. The reason
we cannot get linear speedups here is because the matrices
are sparse and the workload is not fully balanced among the

worker threads. Currently, a load balancing implementation of
the blockprodsum() function is being developed.

TABLE IV
EXECUTION TIMES (IN SECONDS) OF THE BLOCKPRODSUM() IN

DRAGON2 BENCHMARK WITH DIFFERENT NUMBER OF WORKERS)

Num. of Workers 1 2 4 6 8
Time 15.5 11.3 9.6 9.2 8.6

To show our methods which can also work well on different
hardware platforms, we ran the benchmarks using the worksta-
tions in our laboratories. Table V shows the timing results on a
workstation with Intel Core i7-4770K(3.50Hz, 32GB memory)
and NVIDIA GeForce GTX 760(Kepler) GPU, while Table VI
displays the results from a workstation with Intel Xeon CPU
E3-1231(3.40GHz, 8GB memory) and NVIDIA Quadro K620
(Maxwell) GPU.i These machines have higher CPU clock rate
but older GPU models than the OSC workstation.

TABLE V
EXECUTION TIMES (IN SECONDS) OF THE THREE BENCHMARKS USING
INTEL CORE I7-4770K AND NVIDIA GEFORCE GTX 760 (KEPLER)

Original Modified Enhanced
HIV 91.7 9.92 8.53

WorldMap 67.5 17.7 11.9
Dragon2 473 84.3 72.9

TABLE VI
EXECUTION TIMES (IN SECONDS) OF THE THREE BENCHMARKS USING
INTEL XEON CPU E3-1231 AND NVIDIA QUADRO K620 (MAXWELL)

Original Modified Enhanced
HIV 108.4 13.0 11.1

WorldMap 74.9 23.1 17.9
Dragon2 543 110.3 94.0

V. CONCLUSION

We used the profiling tools in Julia to identify the bot-
tlenecks in Eirene, a fancy open-source platform for com-
puting persistent homology. Several performance-improving
methods targeting the bottlenecks have been developed, such
as removing unnecessary use of dynamic-type, eliminating
redundant computation, use of manycore/multicore to accel-
erate execution, etc. Experimental results demonstrate that the
performance can be greatly improved.

ACKNOWLEDGMENT

This research was supported by the NASA GRC Summer
Faculty Fellowship and by allocation of computing time from
the Ohio Supercomputer Center.

REFERENCES

[1] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological persis-
tence and simplification,” Discrete & Computational Geometry, vol. 28,
no. 4, pp. 511–533, 2002.

[2] J. M. Chan, G. Carlsson, and R. Rabadan, “Topology of viral evolution,”
in Proceedings of the National Academy of Sciences of the United States
of America, vol. 110, 2013.

[3] G. Carlsson, V. d. S. T. Ishkhanov, and A. Zomorodian, “On the local
behavior of spaces of natural images,” International Journal of Computer
Vision, vol. 76, pp. 1–12, 2008.

[4] V. D. Silva and R. Ghrist, “Coverage in sensor networks via persistent
homology,” Algebraic & Geometric Topology, vol. 7, pp. 339–358, 2007.

[5] P. Pranav, H. Edelsbrunner, R. van de Weygaert, G. Vegter, M. Kerber,
B. J. Jones, and M. Wintraecken, “The topology of the cosmic web
in terms of persistent betti numbers,” Monthly Notices of the Royal
Astronomical Society, vol. 465, no. 4, pp. 4281–4310, 2016.

[6] N. Otter, M. Porter, U. Tillmann, P. Grindrod, and H. Harring-
ton, “A roadmap for the computation of persistent homology,”
arXiv:1506.08903.

[7] G. Henselman, “Eirene: a platform for computational homological
algebra,” http://gregoryhenselman.org/eirene.html.

[8] “The Julia Language,” http://https://julialang.org/.
[9] G. Henselman, “Matroids, filtrations, and applications,” PhD thesis,

University of Pennsylvania, 2016.
[10] S. L. Graham, P. B. Kessler, and M. K. McKusick, “An execution profiler

for modular programs,” Software: Practice and Experience, vol. 13,
no. 8, pp. 671–685, August 1983.

[11] M. K. McKusick, “Using gprof to tune the 4.2bsd kernel,” in Pro-
ceedings of the European UNIX Users Group Meeting, Nijmegen,
Netherlands., April 1984.

[12] B. Nichols, D. Buttlar, and J. P. Farrel, Pthreads Programming, 1st ed.
Sebastopol, CA 95472: O’Reilly & Associates, Inc., 1996.

[13] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, 3rd ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2016.

[14] R. Ghrist, “Barcodes: The persistent topology of data,” Bulletin of the
American Mathematical Society, vol. 45, pp. 61–75, 2007.

[15] A. Tausz, M. Vejdemo-Johansson, and H. Adams, “JavaPlex: A research
software package for persistent (co)homology,” in Proceedings of ICMS
2014, ser. Lecture Notes in Computer Science 8592, H. Hong and
C. Yap, Eds., 2014, pp. 129–136.

[16] D. Morozov, “Dionysus,” http://www.mrzv.org/software/dionysus/.
[17] V. Nanda, “erseus, the persistent homology software,” http://www.sas.

upenn.edu/∼vnanda/perseus.
[18] B. Gregg, “The flame graph,” Communications of the ACM, vol. 59,

no. 6, pp. 48–57, 2016.
[19] M. Harris, “CUDA Pro Tip: Do The Kepler Shuffle,

PARALLEL FORALL,” http://devblogs.nvidia.com/parallelforall/
cuda-pro-tip-kepler-shuffle/, 2015.

[20] M. Harris and M. Garland, Optimizing Parallel Prefix Operations for the
Fermi Architecture. San Francisco, CA, USA: Chapter 3 of the book
”GPU Computing Gems - Jade Edition”, Morgan Kaufmann Publishers
Inc., 2011.

[21] V. Rego and J. Sang and C. Yu, “A Fast Hybrid Approach for Stream
Compaction on GPUs,” in Proceedings of International Workshop on
GPU Computing and Applications, 2016.

[22] J. Hoberock and N. Bell, “Thrust: A parallel algorithms library which
resembles the C++ Standard Template Library (STL),” http://thrust.
github.io, 2015.

