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Abstract

CPU-based many-core processors present an alternative to multicore CPU and GPU processors. In particular,
the 93-Petaflops Sunway supercomputer, built from clustered many-core processors, has opened a new era for high
performance computing that does not rely on GPU acceleration. However, memory bandwidth remains the main
challenge for these architectures. This motivates our endeavor for optimizing one of the most data-intensive kind
of stencil computations, namely the three-dimensional applications of the lattice Boltzmann method (LBM). We
propose optimizations on many-cores processors by using local memory and asynchronous software-prefetching on
a representative 3D LBM solver as an example. We achieve 33 % performance gain on the Kalray MPPA-256 many-
core processor by actively streaming data from/to local memory, compared to the “passive” OpenCL programming
model.

1. Introduction

Since the last decade, the lattice Boltzmann method (LBM) has become widely used
in computational fluid dynamics for incompressible and weakly compressible flows, see
e.g. [1]. An LBM model is characterized by its stencil type, denoted DdQq, where d is the
number of space dimensions (one, two or three) and q is the number of particle distribution
functions (PDFs), see e.g. [2]. Physically, an LBM time step on a lattice node consists of
a collision and a propagation step (also known as streaming step). The collision applies a
pre-defined physical model on the lattice distribution vector of q values. The propagation
then updates these new distribution values to the node itself and q − 1 of its neighboring
nodes. The most used stencil types are D2Q5, D2Q9 and D3Q19 (see Fig. 1), or D3Q27.

From a programming point of view, LBM kernels are easy to implement and well-
suited for parallelization on recent multi-/many-core platforms. However, lattice Boltz-
mann methods are known for their low arithmetic intensity and particularly high memory
bandwidth requirement. Taking the example of a basic LBM solver, depending on collision
operator, between 200 and 400 floating-point operations are performed on a lattice node
per time step. Most D3Q19 LBM implementations require storing all the 19 distribution
values for each lattice node. A lattice domain L × L × L contains 19 × L3 single- or
double-precision floating-point numbers. Updating this lattice grid in a single time-step
requires 19 × 2 × L3 load/store memory operations for less than 400 × L3 arithmetic
operations. Thus, simulating the whole lattice domain through T time-steps will gen-
erate a huge amount of data movement of 19 × 2 × L3 × T floating-point numbers



for 400 × L3 × T floating-point operations. While recent architectures gain computing
performance by increasing the clock speed and multiplying the number of cores, evolution
of memory systems still cannot fetch enough data to keep cores busy. The dataset cannot
always fit in caches and must be stored in the main (even remote) memory with much
higher latency. The low arithmetic intensity of stencil kernels like LBM is thus the limit
of performance, as well as their poor data-locality which reduces significantly the cache-
reuse ratio. Previous studies by [3] and [4] show that LBM implementations are memory-
bound and hardly obtain good performance on CPU or Xeon Phi processors. GPU-based
accelerators, thanks to their graphics-dedicated high-bandwidth memory, appear to be the
most suitable platforms for LBM today. However, their low capacity of local memory
inhibits optimization techniques for data prefetching (to reduce transfer time) and data
sharing between cores (for stencil neighboring dependencies).

Although other clustered many-core processors have much less global memory band-
width than GPUs do, they embed significant amount of fast local memory, see [5] and
[6], and provide more predictability in both computing time and data transfer. This en-
ables using explicit and efficient user buffers for elaborate optimizations, such as software
prefetching and streaming. This motivates our approach in developing a pipelined 3D
LBM algorithm on the Kalray MPPA processor, based on local memory exploitation and
asynchronous communications. Our algorithm is described in every detail and can be used
on similar many-core architectures.
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Figure 1. LBM D3Q19 stencil.

Our key contributions are as follows:

1) Introduction of a new parallel algorithm for decomposing and streaming 3D stencil
domains on local-memory-centric clustered many-core processors, by user-buffers
and asynchronous software-prefetching to build a pipelined 3D stencil kernel. The
proposed approach is implemented from the LBM compute kernel of OPAL [4] and
delivers 33% performance gain compared to its original OpenCL code on the Kalray



MPPA-256 Bostan many-core processor.
2) This work provides fundamental responses and methods to further domain-decomposition

algorithms on clustered many-core processors (2D/3D stencils, image processing).
An API proposal is also given in designing user-friendly 2D/3D asynchronous copy
on DMA-enabled platforms.

3) Detailed description of the use of generic equations to calculate decomposition
indexes dynamically, subdomain dimension and halo size, usable with or without
ghost layer as in [7].

The remainder of this paper is structured as follows. Section 2 presents some related
works that are relevant for our contributions. Section 3 introduces the main characteristics
of the MPPA architecture and some low-level asynchronous transfer primitives required
for building 3D stencils streaming algorithm. Section 4 presents an overview and technical
details of the new LBM streaming algorithm using these asynchronous transfers. Experi-
mental results are presented in Section 5, and we conclude in Section 6.

2. Related work

The straightforward method for implementing LBM is to use two instances of the lattice
grid. Collision is carried out on data read from the first grid and propagation consists
in writing the new distribution values to the second one. At the next time step, the two
grids are swapped and the same procedure is repeated. One-step two-lattice method with
collision and propagation fused in a same kernel was first introduced by Massaioli and
Amati [8]. In the fused kernel, propagation can be done either before (pull scheme) or after
collision (push scheme). In spite of its implementation simplicity, the two-lattice method
results in substantial memory allocations with large domains.

Most existing LBM implementations on GPU employ the fused two-lattice approach as
the easiest and most computationally efficient method. In particular, OpenCL Processor
Array LBM (OPAL) from [4] implements a one-step two-lattice 3D LBM solver based on
the D3Q19 stencil. OPAL is designed to be simple and portable on GPUs, accelerators and
other OpenCL-enabled devices.

In the related work on porting a 3D seismic wave propagation on the MPPA processor,
Castro et al. [9] developed a 2D-prefetching algorithm for anticipating data transfers be-
tween global memory and local memory. The 3D domain is decomposed in small 2D slices.
These slices are copied to the local memory such that transfers overlap with computations.
The authors observed important waiting time for data arrival without identifying clearly
the DDR bandwidth limitation of the MPPA. The impingement of halo slices on data
throughput was not studied either.

Raase and Nordstrom [10] presented a 2D and 3D LBM implementation on Epiphany,
a clustered many-core architecture very similar to MPPA. The LBM domain is distributed



on 16 cores with user local memory of 24KB per core. Subdomain distribution is done by
static mapping of a 4x4 topology on the 16 cores. This 2D mapping is also used on the
3D problem where the third dimension of subdomains is assigned with one global domain
dimension, giving rectangular parallelepiped subdomains. These choices allow simulating
only very small problem sizes (e.g 12x35x12) and can not be scaled to large simulations.
The authors declined using the DRAM memory to implement a streaming algorithm for
large LBM domains. Neither memory bandwidth optimization nor possibility of using
DMA to perform asynchronous transfer on Epiphany was discussed. In this work, we aim
to provide a generic and scalable 3D decomposition with its cuboid distribution function
and asynchronous subdomain streaming to reduce data transfer time. Such algorithm can
be used as a reference point to implement further high performance LBM or stencil appli-
cations on clustered many-core architectures.

Nagar et al. [11] implemented a similar cube-based decomposition and distribution
function which maps on CPU threads in the shared-memory context of large-memory
multi-socket systems. Halo exchange between threads is done by writing directly into the
memory zone of the respective cube owners, protected by mutual locks thanks to the CPU
cache system. This mechanism cannot be directly used onto clustered architectures like
MPPA as it requires either: (1) explicit inter-cluster communications; or (2) committing
changes to the global memory then fetched by other clusters. Solution (1) is not relevant
in our scope due to (small) local memories, numerous subdomains must be streamed
continuously in the MPPA’s compute clusters. Such streaming should be done preferably
by a self-governing and synchronization-free algorithm. Thus, keeping data in the local
memory and waiting for communication does not seem appropriate, not to mention the
complexity of managing the inter-subdomain spatial data dependency. In this work, we
choose to adapt solution (2), consisting in continuously committing changes of subdomains
to the global memory and performing one global synchronization between clusters at each
simulation time step.

To the best of our knowledge, there is no work yet on solving the challenges of sim-
ulating large LBM domains on clustered many-core architectures. However, large LBM
domains cannot fit into on-chip memory and must be stored in the off-chip DDR memory,
which has much higher latency. Hence, using DMA to perform asynchronous transfers
between off-chip and on-chip memories becomes a key performance factor in order to
mask the memory latency. This involves important code re-structuration, as well as new
communication primitives and algorithms. In this work, all these problems are addressed
and solved while keeping a clear abstraction level from the underlaying target hardware for
the sake of genericity.



3. MPPA-256 Bostan

3.1. Architecture overview

The second generation of Kalray MPPA-256 processor named Bostan (see Fig. [12])
embeds 256 VLIW compute cores grouped into 16 compute clusters (CC) and 16 system
cores in two unified I/O subsystems (IOS). The processor delivers peak performance of
634 GFlops in single precision and 317 GFlops in double precision within a consumption
of 20 W.

Figure 2. MPPA-256 processor overview (Source: Kalray).

Each compute cluster owns 2 MB of local memory (SMEM) shared between 16 user
cores (Processing Elements-PEs) running at maximum frequency of 600 MHz. One sys-
tem core, known as Resource Manager (RM), is reserved for running operating system
and resources management. DMA engines of each compute cluster and I/O subsystem
provide the system with high bandwidth and low latency transfers between SMEM-SMEM
(symmetric inter-cluster) and SMEM-DDR memory (asymmetric cluster-IO).

3.2. Kalray OpenCL

The MPPA platform supports OpenCL 1.2 Data Parallel programming model. Such a
model exposes each PE as a work-group with 64 KiB of __local memory. As defined
in the OpenCL specification, these work-groups cannot share their __local memory to
form somehow a large common memory. Moreover, we will see in further discussions that
the global three-dimensional domain has to be cut down into smaller subdomains in order
to fit in the local memory of clusters. The overhead of copying halo cells of small cuboids
is more important than larger ones. In fact, subdomains should be sized to be cubic and



as large as possible. Given the maximum 64 KiB of __local memory per work-group,
implementing a pipelined 3D LBM algorithm could not be efficient on the current Kalray
OpenCL programming model.

On the other hand, in the POSIX programming model, each compute cluster appears
as an independent 16-core CPU with 2 MB of shared memory. Thus large buffers can be
allocated in the on-chip memories and this multi-core can be programmed using either
OpenMP or Pthread multi-threading. This avoids useless data replication for each core
and makes it possible to work on a larger common buffer inside the multi-core; therefore,
increasing data reuse and reduces halo copy overhead. Such a model is relevant to our
scope for efficient on-chip memory usage.

3.3. POSIX low-level 3D asynchronous API

In this section, we briefly present some essential primitives performing asynchronous
3D data transfers used to build our pipelined LBM algorithm onto the Kalray MPPA
processor. As shown in Fig. 3, the mppa_async_point3d_t type describes copy-
position and dimensions of the global and local 3D buffers. The subdomain is represented
by width × height × depth elements, whose each element has size in bytes. We take
an example to illustrate this specification design. In a common image processing decom-
position, one may need to copy a 2D sub-image of 16 × 16 pixels to a larger local buffer,
allocated at 18×18 pixels for instance. In this case, users must to explicitly deal with a local
stride of two pixels between each data block, since the local buffer is sparse and the data
should not be written contiguously to it. This is important when local buffers are declared
as true multi-dimensional arrays in the C99 standard, a feature which particularly eases
2D and 3D stencil programming. With the convenient mppa_async_point[2|3]d_t
data type (see Fig. 4), arbitrary positions and copy-block dimensions are automatically
taken into account inside the 2D/3D put and get functions, facilitating subdomain copy
and computation.

A structure mppa_async_event_t is also defined in the API to contain required
information for performing an asynchronous transfer. In a put/get function, if the event
structure is set, the function fills a pending transaction event and returns immediately
(non-blocking paradigm). One can further come back and wait on this event by calling
the mppa_async_event_wait() function for job completion. Otherwise, when the
event structure is NULL, the function blocks and returns whether the buffer is ready to be
reused (put) or the data are received (get).



1 t y p e d e f s t r u c t {
2 i n t xpos ; i n t ypos ; i n t zpos ; /∗ copy i n d e x ∗ /
3 i n t xdim ; i n t ydim ; i n t zdim ; /∗ b u f f e r d i m e n s i o n s ∗ /
4 } m p p a a s y n c p o i n t 3 d t ;
5

6 /∗ 3D a s y n c h r o n o u s t r a n s f e r from remote t o l o c a l ∗ /
7 i n t mppa async memsget block3d (
8 vo id ∗ l o c a l , c o n s t vo id ∗ g l o b a l ,
9 s i z e t s i z e , i n t width , i n t h e i g h t , i n t depth ,

10 c o n s t m p p a a s y n c p o i n t 3 d t ∗ l o c a l p o i n t ,
11 c o n s t m p p a a s y n c p o i n t 3 d t ∗ r e m o t e p o i n t ,
12 mppa async even t t ∗ e v e n t ) ;

.Figure 3. A part of MPPA Async API for 3D transfer. Prototype of get and put are similar.
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Figure 4. Illustration of point2d_t datatype for 2D copy. 3D copy is conceived by adding depth and Z fields.

4. Pipelined 3D LBM stencil on clustered many-core processors

4.1. Global algorithm

In the following, we take the D3Q19 LBM kernel from OPAL [4] as a reference point,
from which we propose a generic 3D LBM streaming algorithm with domain decomposi-
tion, detailed index and halo size calculation in any configuration. The streaming method
is used for updating the whole domain by one time step, then is repeated till the end of
simulation duration. While we are focusing on optimizing LBM, our streaming method
can also be generalized for other kinds of stencil codes, by adapting the compute kernel,
some auxiliary settings (DdQq, halo size, number of time steps T ), and a suitable set of
asynchronous transfer primitives (2D/3D).

The first step consists in re-writing the LBM kernel of OPAL from OpenCL-C to a
standard C99 code to run on CCs. Given the similarity between OpenCL-C and standard
C99, the porting process did not raise much difficulty. The one-step two-lattice method
with pull scheme originally implemented in OPAL is re-applied. Two instances of the 3D
lattice grid (LatticeEven, LatticeOdd), each containing Lx×Ly×Lz nodes, are allocated on
the global DDR memory and are accessed in node-wise layout, i.e distribution values of a
lattice are stored consecutively. The second step divides the lattice domain into subdomains
(see Fig. 5), then copies and computes them one by one on the CC local memory. Each
subdomain is defined as a Cx×Cy×Cz cuboid. To avoid repetitions, we use the subscript



d as a symbol for the three Cartesian coordinates (x, y, z). Any variable or equation whose
variables are subscripted by d should be interpreted as three variables or equations with
x-/y-/z-subscripted terms respectively.

For the sake of simplicity, we assume that Ld and Cd are powers of two and define
Md the number of subdomains in each dimension (Md = Ld/Cd). The total number of
subdomains is the product of the number of subdomains in each dimension M = Mx ×
My×Mz. Besides, we denote the constant Fd = Cd+h to be the extended subdomain size
with halo layers (h) added1. Thus, updating a subdomain of Cx × Cy × Cz nodes fetches
an extended cuboid F = Fx × Fy × Fz nodes to the local memory. This requirement is
true for most cases (non-boundary subdomains - e.g subdomain 4 of Fig. 8). On boundary
subdomains (e.g subdomains 0, 1, 2, 3 of Fig. 8), the extended cuboid should be adjusted
by applying a halo cutoff to deal with solid nodes. A local subdomain slot must therefore
be allocated for Fx × Fy × Fz nodes to match any cases.

async_copy_3D

async_copy_3D

Cluster 0

Post-collision

Pre-collision

   Collide

Propagate

Figure 5. 3D LBM/stencil decomposition where Main-block subdomain (green) is copied with its surrounding halo layers (if exists) and one extra subdomain
(blue) is needed to store post-collision state.

Algorithm 1 sums up the mono-cluster context where the compute cluster 0 (CC0) is
updating M subdomains within an LBM time step. These subdomains are organized in a
macro-pipeline using asynchronous 3D put and get functions to overlap computation and
communication. We also apply the two-lattice method on local memory, i.e the number of
buffer slots is doubled, one for fetching the pre-collision cuboid (S) from the first global
lattice grid and one for storing the post-collision cuboid (S ′) that will be put in the second
lattice grid. The pre-collision cuboid is allocated for Fx × Fy × Fz nodes, while the post-
collision cuboid only needs to store Cx × Cy × Cz nodes. Fig. 5 only draws one global
lattice grid for compactness, but it should be understood that the local post-collision cuboid
will be put in the second grid. These two global grids are then swapped before starting the
processing of the next time step.

Ideally, the algorithm should run on multiple compute clusters and exploit all process-
ing cores (PEs) in each cluster (multi-cluster multi-PE). For instance, on MPPA, multi-
threading within a compute cluster is enabled by spawning up to 15 threads, one per PE,

1. h = 2 with the D3Q19 stencil.



from the PE0 in the POSIX-pthread fashion (create, join). As there are 16 compute
clusters available on MPPA, each CC is then responsible for M

16 subdomains. Note that
depending on the value of M , there might be K trailing subdomains (K ∈ [0..15]). If
K > 0, the algorithm must perform an extra step to copy, update and put back these K
trailing subdomains by K compute clusters, while other clusters are waiting. A synchro-
nization barrier at the end of each time step is needed between all CCs to avoid data races
at the next time step. This procedure is then repeated as many times as the number of
timesteps.

Algorithm 1 Explicit macro-pipeline of 3D stencil updates using double-buffering within a time step.
1: /* Prolog: get first subdomain */
2: prefetch cube(0);
3: /* Pipeline */
4: for i in 0 .. M-1 do
5: if i < M-1 then
6: prefetch cube(i+1); // get next cuboid
7: end if
8: wait cube(i); // wait current cuboid
9: compute cube(i); // compute current cuboid

10: put cube(i); // put back to global
11: end for
12: /* Epilog: wait last put and barrier */
13: wait cube(M-1);
14: barrier all clusters();

The double-buffering (2-depth) pipeline in Algorithm 1 is the most basic algorithm
where communication is overlapped by only one compute-step. As computations are faster
than data transfers, deeper pipelines such as triple- or quadruple-buffering (whose details
are found in Fig. 6 ) provide better overlapping, but also require more local memory. Note
that the time spent in GET and PUT is considered negligible (non-blocking) and transfers
are executed in background. However, the time spent in COMPUTE depends on core speed,
while the WAIT time depends on how fast the memory system is serving transfer requests
and how they are hidden entirely or partially by the COMPUTE function.

In the next sub-sections, we propose methods to solve the following questions that
immediately arise from Algorithm 1:

• How can we distribute fairly and exclusively all subdomains across CCs with their
proper subdomain-indexing?

• Which subdomain size and pipeline depth should we choose to fit with the local
memory size and to obtain the best trade-off?

• How to manage copy indexes and halo size of any subdomain, with or without using
ghost layer?



m=0 1 2 3 4 5 6 7
i=0 1 2 0 1 2 0 1

buffers[0] G WCP WG WCP WG WCP W
buffers[1] G WCP WG WCP WG WCP W
buffers[2] G WCP WG WCP W

Prologue Epilogue

Figure 6. 3-depth pipeline (triple-buffering) which allows 2-step distance between GET and WAIT, but only 1-step distance between PUT and WAIT, thus
the PUT transfer will not be well overlapped (m: index of subdomain to compute, i: index of local buffer slot; G = GET; P = PUT; W = WAIT; C
= COMPUTE; WCP = {WAIT + COMPUTE + PUT}; WG = {WAIT + GET}).

4.2. Subdomain distribution

Given a CC identified by ccid ∈ [0..15], its working subdomains is indexed by a one-
dimensional range m as ccid × M

16 ≤ m < (ccid + 1) × M
16 (assume K = 0). Mapping

bijectively this 1D domain (m) to a 3D one (mx,my,mz) for spatial cube indexing (see
Fig. 5) was done by space filling curves, such as Morton or Hilbert curves, in [13]. These
curves have been efficiently implemented by bit-interleaving in [14] or lookup-table in
[15]. However, Morton, Hilbert and other curves are better suited for square or cubic grids
where the number of elements in all dimensions is equal. In our 3D decomposition scheme,
despite the fact that global lattice domain may be cubic (Lx = Ly = Lz), subdomains may
be not (Cx 6= Cy 6= Cz) due to many reasons (see next section), thus these curves are not
always suitable for subdomains, as Md can be different.

In order to solve this problem, we implement a simple alternative bijective function
f : N → N3 in Fig. 7. It follows the 3D-row-major layout, which is also a space-filling
curve, to index subdomains. Each conversion of the 3D-row-major curve implemented by
f takes less than 10 instructions and is as fast as Morton or Hilbert curves.

1 vo id c u b o i d i n d e x 1 t o 3 ( i n t m, /∗ i n p u t ∗ /
2 i n t ∗ mx , i n t ∗ my , i n t ∗ mz ) /∗ o u t p u t s ∗ /
3 {
4 i n t z = (m / (Mx ∗ My) ) ;
5 i n t y = (m − ( z ∗ (Mx ∗ My) ) ) / Mx;
6 i n t x = (m − ( z ∗ (Mx ∗ My) ) ) − ( y ∗ Mx) ;
7 ∗mx = x ; /∗ o u t p u t s ∗ /
8 ∗my = y ; /∗ o u t p u t s ∗ /
9 ∗mz = z ; /∗ o u t p u t s ∗ /

10 }

.Figure 7. 3D Row-major subdomain-indexing f : N→ N3.

4.3. Local subdomain dimensions

In most of the cases, a cubic subdomain would be ideal for coding and optimizing.
However, the local memory of clustered many-core processors is usually limited but plays
an important role. On each MPPA’s compute cluster, 2 MB local memory is quite small and
should also host an embedded operating system, services and the user application binary.



A remaining space of about 1.5 MB is available for dynamic buffer allocations. Some
auxiliary variables are also needed in LBM for macroscopic monitoring (velocity, den-
sity. . . ). The maximal allocatable space for local pre-collision and post-collision cuboids
is around 1.4 MB. Halo copy also consumes memory bandwidth. Hereafter, we refer to
“halo bandwidth” HBW as the bandwidth lost in fetching halo layers. The HBW ratio is
defined as the quotient of the number of halo cells by the total number of copied cells (main
block and halo). On small subdomains, this ratio can be significant. For example, given a
cubic subdomain whose main block size is Cx × Cx × Cx, its HBW ratio is:

g(Cx, Cx, Cx) =
(Cx + 2)3 − C3

x

(Cx + 2)3
= O( 1

Cx
)

lim
Cx→∞

g(Cx, Cx, Cx) = 0

Example: g(16, 16, 16) =
183 − 163

183
≈ 0.29

(1)

The best performance is achieved when the volume of the main block (Cx × Cy × Cz)
is maximized and the HBW is minimized. Likewise, local storage should be reduced as
much as possible. Let’s assume single-precision floating-point representation, applying a
D-depth pipeline for the two-local-cuboid method described above must fit into 1.4 MB of
local memory and satisfy the linear-programming formulation below:

Find: (D,Cx, Cy, Cz)

Maximize: Cx × Cy × Cz (nodes updated per subdomain)
Minimize: Fx × Fy × Fz (per subdomain storage)

Minimize: (Fx×Fy×Fz)−(Cx×Cy×Cz)
Fx×Fy×Fz

(HBW)

Subject to:
D×((Fx×Fy×Fz)+(Cx×Cy×Cz))×19×4

10242 ≤ 1.4
Fd = Cd + 2 ; Cd ∈ {2n} ; D,n ∈ N+

(2)

For instance, using D ≥ 3 in order to have better overlapping than with a 2-depth
pipeline, restricts to a very small search domain (Cd ≤ 128) that can be resolved by running
the branch-and-bound algorithm in a script. Solutions can either be (D,Cx, Cy, Cz) =
(3, 16, 8, 16) with 36% HBW ratio or (D,Cx, Cy, Cz) = (4, 8, 8, 16) with 43% HBW ratio.
A permutation of Cx, Cy, Cz also gives other satisfactory solutions, with the same HBW
ratio. On the other hand, note that increasing pipeline depth is not relevant, because the
higher D is, the smaller (Cx, Cy, Cz) will be, thus HBW will become unacceptable. More-
over, compute cores will switch between small subdomains more often. The accumulated
waiting time will also be more important due to the exponential number of DMA requests
and processing overhead of the DDR asynchronous services.



4.4. Local and remote copy-index management

In this section, we present generic analytic formulæ to process dynamically copy in-
dexing, subdomain size computation and halo cutoff management depending on geometric
position of the subdomain. Adding a ghost layer surrounding the computational domain is a
common technique to simplify the implementation of the streaming step at boundary cells,
see e.g. [7]. However, we choose not to use this approach in our work, mainly to minimize
global memory allocations and avoid wasting bandwidth/storage in moving ghost cells.

However, in our 3D decomposition algorithm, this decision requires careful calculation
of copy parameters from subdomain indexes. It is important to note that as the pre-collision
cuboid S embeds two additional halo layers for each dimension (Fd), its computational
space begins at (1, 1, 1) and ends at (Fx − 2, Fy − 2, Fz − 2) included. When fetching
a non-boundary subdomain (main block + halo) from global memory to S, the arrival
point of data at the local buffer is set to (0, 0, 0), and the remote point is computed as
the global beginning position of the subdomain minus one (back-off) in each dimension
((md × Cd)− 1).

As ghost layers are not used in our implementation, a boundary subdomain can have up
to three missing sides, depending on its location (see Fig. 8). Consequently, the halo layer
of these missing sides needs to be pruned from the copied cuboid. The remote read-point
and local write-point must also be adjusted as well. In order to generalize the solution,
we introduce here three parameters associated respectively to these three adjustments:
halo_cutoff, remote_offset and local_offset.

We present in the following, generic formulæ which determines copied positions and
halo cutoffs of a given 3D cuboid subdomain (mx,my,mz), generalized from the 2D
representation of Fig. 8.

const A = (Ax, Ay, Az) = (0, 0, 0)

R = (Rx, Ry, Rz)

= (mx × Cx, my × Cy, mz × Cz)

Bad = Ad + local offset(md,Md)

Brd = Rd + remote offset(md,Md)

Sd = Fd + halo cutoff(md,Md)

(3)

The point A = (Ax, Ay, Az) = (0, 0, 0) is the start point of the local buffer. The point R =
(Rx, Ry, Rz) = (mx×Cx, my×Cy, mz×Cz) is the start point of the remote subdomain,
without its halo layers. The fetched cuboid S is sized at Sd = Fd + halo cutoff(md,Md).
It is read from the remote position Brd = Rd + remote offset(md,Md) and written to the
local position Bad = Ad + local offset(md,Md). The collision is performed on the main
block of S and the result is then written to S ′ for the propagation step. However, managing



copied parameters of S ′ is simpler than on S. Since S ′ contains exactly the main block of
the subdomain, updated data from a collision can be written to (0, 0, 0), which is also the
local copied position for sending to remote memory R = (Rx, Ry, Rz). The parameters
halo_cutoff, remote_offset and local_offset are implemented as macros
with rules in Tab. 1.

0 1

2 3

4

A
B

R

Sx

Sy

Sx = Fx

mx

my

Figure 8. Local/Remote copied index in 2D (in lattice node) with A: begin of the local buffer = (0,0); R: begin of the remote main block cuboid (without
halo); B: begin of the copied cuboid (S), represented by: Ba: index of S on local memory (from A) and Br: index of S on global memory (from R).

TABLE 1. COPIED INDEX OFFSET AND HALO CUTOFF OF A SUBDOMAIN.

local offset remote offset halo cutoff
(from point A) (from point R) (from Fd)

md = 0 1 0 −1
0 <md &&

md < Md − 1
0 −1 0

md = Md − 1 0 −1 −1

These position computations can also be applied on other implementations which use
ghost layer, by setting all remote_offset to −1, i.e. allowing to jump out of the
computational domain, and all local_offset, halo_cutoff to zero, i.e. imposing
to copy extended subdomain Fd to Ad, instead of copying Sd to Bad.

5. Results and discussions

5.1. Pipelined 3D LBM stencil on MPPA

We implement the pipelined 3D LBM algorithm on the MPPA-Bostan platform using
the POSIX programming model and asynchronous 3D primitives from the MPPA Asyn-
chronous One-Sided library. By default, MPPA-256 cores are set to run at 400 MHz and
LP-DDR3 frequency is configured at 1066 MHz, i.e ∼8.5 GB/s peak per DDR. Note that
MPPA embeds two DDR interfaces (North and South) and the current OpenCL runtime
only uses one DDR and exposes 1 GB of available global device memory, while the MPPA
Asynchronous One-Sided library exposes both single and double DDR modes. Different
cubic cavity sizes, varying from 64 to 224 are used in our tests, with some exceptions.



Problem sizes larger than 160 can not be run in OpenCL on MPPA due to the 1 GB device
memory limit. Local work-group size in OPAL OpenCL is always set to 32 × 1 × 1, as it
delivers the best performance in most of the cases.

In single-DDR mode (POSIX and OpenCL), both LatticeEven and LatticeOdd are al-
located on the North DDR. In double-DDR mode (POSIX-only), the LatticeEven buffer
is allocated on the North DDR and the LatticeOdd is on the South DDR. The effective
throughput of the double-DDR mode can be considered as twice as one of the single-
DDR mode, thus 2× performance is expected. We present here results of the OPAL kernel
rewritten with our new POSIX pipelined algorithm on the MPPA-256, called OPAL async,
in 3-depth and 4-depth pipelines and following the local two-lattice method (S and S ′) on
various cavity sizes. These tests are further run in both single- and double-DDR modes.
All these runs are checked for correctness against the original OPAL code on GPU.

As one can notice in Fig. 9, the OPAL async algorithm outperforms the OpenCL version
by more than 30% on the single-DDR mode (from 12 MLUPS to 16±1 MLUPS). We also
see that the configuration with less HBW (3-depth, 36% HBW) delivers higher perfor-
mance than the 4-depth configuration (43% HBW). While consuming memory bandwidth,
halo cells are copied because of the read-dependency between neighbors. This does not
contribute to the final performance. Fig. 9 shows that the less memory bandwidth halo
cells take up, the more performance we obtain. This leads to think that the HBW of 2D/3D
stencil computations aimed to reach Exascale, like weather forecast, ocean simulation and
CFD, should be lessened on future clustered many-core processors. For this to happen,
these many-core chips should embed bigger local memory on each compute unit to tear
down the useless part of halo exchange due to domain decomposition. Finally, Fig. 9 also
shows the expected 2× performance speedup by using two DDRs compared to the single-
DDR mode.

5.2. Performance extrapolation

For a better understanding of the benefit of our streaming algorithm, we modified the
OPAL async code to be able to work with arbitrary values of pipeline-depth. Different
pipeline depths were then tried out (1, 2, 4, 6, 8) to see if increasing the number of
asynchronous buffers can improve the performance. The block size is thus reduced to
8 × 8 × 8 so that up to eight subdomains can be stored in the local memory. Moreover,
instead of using all the 16 compute clusters, we now vary this number of clusters and set
the domain size to 1283 to study the strong scalability of the algorithm. We consider using
only the double-DDR mode this time to obtain the best performance.

In Fig. 10, as expected, the 1-depth code (blue line) is slower than other version with
communication-computation overlapping. However, we obtain exactly the same perfor-
mance as the double-buffering case when using more than two buffers (4, 6, 8). The
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Figure 9. OPAL async vs. OPAL OpenCL on MPPA for duration = 1000 steps.

performance line scales from 1 cluster to 8 clusters, then reaches almost a stable value
of between 20-22 MLUPS from 8 clusters to 16 clusters. To explain this, we added the
sustained throughput of 3D transfer (red line) from the Kalray unit test dedicated to 3D
asynchronous copy. This test only does some ping-pong copies to the DDR and does not
perform any calculation (Arithmetic Intensity (AI) = 0 flops/byte). We observe that the
native 3D copy reaches the maximum throughput with as few as four clusters (6GB/s),
then remains the same for higher numbers of clusters (which is the same trend as the per-
formance of OPAL async.). Four clusters are thus enough to saturate the DDR bandwidth.
Unlike the 3D unit test, our LBM code performs real computation on the copied data. Its
AI is about 350/(2 ∗ 19 ∗ 4) = 2.3 flops/byte, which means that each CC spends more
time working on a 3D data block. This explains in Fig. 10 the MLUPS performance which
reaches its upper bound for 8 clusters, instead of 4 clusters of the 3D unit test.

Another precise way to interpret the performance of 20-22 MLUPS is to apply the
performance estimation formula presented by McIntosh-Smith et al. [3]:

P =
B × 109

19× 2× 4× 106
(MLUPS) (4)

in which B is the effective memory bandwidth in GB/s. In order to take into account the ad-
ditional cost of halo copy in our decomposition algorithm, we multiply P by (1−HBW ),
the effective part of bandwidth (main block) which generates the real performance:

Ph =
6.0× 109

19× 2× 4× 106
× 83

103
= 20.2MLUPS (5)

This estimation Ph, shows that there is seemingly a little performance gain to perform
asynchronous transfers on clustered many-core processors (here MPPA as an example)



as for today. This is not because the streaming algorithm is not good, but because the
overlapping gain time is too small compared to the lengthy waiting time for data due
to the DDR3 bottleneck. This also demonstrates the memory-bound property of general
stencil computations and leads to think that newer memory technologies, such as DDR4
and others, will be a performance boost on these architectures.

Notice that the scale-down of the 3D throughput versus the peak 17GB/s of two DDRs
is caused by the fact that strided copies (2D/3D) must read data from a lot of different DDR
memory banks. Furthermore, these copies can unavoidably suffer bad alignments due to
the access pattern of application (Q = 19 floats), thus bear an efficiency factor of 3D
transfer compared to the linear copy. For instance, on the current MPPA Bostan platform,
if the linear transfer factor is normalized at 1, the 3D factor lies often in between 0.35 and
0.42, depending on the copy layout (size of each contiguous block, alignment of strides
and dataset).
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Figure 10. Performance extrapolation of OPAL async on 8× 8× 8 subdomains with the first eight clusters correlation represented by a gray line for 1000
timesteps and cavity size 128.

A correlation, computed by the lm function in R, from 1 to 8 clusters gives the per-
formance expectation of our streaming algorithm if we were not bounded by the memory
bandwidth (gray line). These results confirm that our pipelined LBM algorithm is strongly
scalable, but is quickly memory-bound on MPPA and that its performance heavily depends
on the hardware memory bandwidth. Our results also show that the imbalance between
computing power and data throughput is one of the largest drawbacks of actual clustered
many-core processors, and demonstrate the interest of future high-bandwidth memory
technologies.



6. Conclusions

We introduced a decomposition approach for generic 3D stencil problems with formu-
lations for calculating dynamically copied position indexes, subdomain addresses, subdo-
main size and halo cells. These analytic results work with or without using ghost layers
and are also usable for 2D problems. Based on this decomposition, our new pipelined 3D
LBM code outperforms the original OpenCL version by 33 %, by overlapping computation
and communication.

We expected that anticipating data requests by asynchronous memory transfers would
improve effective throughput and that we could overcome the memory bound of the studied
LBM kernel, by introducing enough pipeline depth to hide the global memory access
latency. In practice, performance results are still bound by memory bandwidth and increas-
ing the number of buffers (pipeline depth) does not improve performance, as the DDR3
memory is already fully loaded. Moreover, reducing subdomain size to increase pipeline
depth induces significant bandwidth consumption for halo copy. Furthermore, the impact
of HBW on small local memories was also identified as a governing factor of performance
in our algorithm. We found out that the best strategy is to have cubic subdomains as large
as possible and that the double-buffering scheme is enough on the current generation of
MPPA processor. We furthermore presented comprehensive linear-programming equations
which give the best trade-off between these structuring parameters.

In the future, we plan to study a new LBM propagation method which performs in-
place lattice update (one-step one-lattice). Such a method will reduce by half the local
memory requirement, thus increase the subdomain size, trim down halo bandwidth and
improve performance. Porting async_work_group_copy_{2D|3D} primitives to the
next OpenCL specification is also under consideration, as this would considerably improve
the exploitation of local memory on clustered many-core processors.
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