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Abstract 

This paper proposes three new ideas and one revision 
about image metrics and their applications. Of most im- 
portance is the multiresolution ‘shape metric ’, which 
measures distances according to images’ content shape 
information. Accompanied with it is a feature/non-feature 
image characterization philosophy. The second eflort is 
the modijication of an existing ‘color metric’, whose dis- 
tance computation is dominated by color distribution of 
images. The third idea is on analyzing image querying 
behavior of the general public, so as to propose and de- 
sign (a versatile ‘power metric’, which holds the proper- 
ties of both the ‘shape metric’ and the ‘color metric’, for 
dealing with various kinds of hand-drawn queries. Fi- 
nally, afer  applying the ‘shape metric’ to vdeo shot 
boundary detection, a multiresolution scene change de- 
tection algorithm is proposed. For now, we have imple- 
mented these metrics on a personal computer for two 
applications, one is for image database management with 
content-based indexing and the other is for video shot 
boundary detection. Experiments show that the speed and 
the accuracy of both image retrieval and scene change 
deteclion are quite well. 

fiid that a better way to find a particular image on the 
Web is to provide content-based image retrieval(or in- 
dexing) and to maintain such a database periodically with 
a spider program. To date, however, there are only a few 
content-based image database systems that have already 
been developed, let alone applications on the Web. Our 
goal is to develop a system that can be extended for con- 
tent-based image search on the Web. 

For our purpose, we design our image metrics with the 
feature extraction method in wavelet transform domain 
due to the fact that multiresolution analysis on images 
provides a good way to characterize images, to find the 
signature of images, and to catch the most significant 
information of them. Moreover, for properly designing 
these metrics, we had observed that in user hand-drawn 
image querying systems, a user may behave as an impres- 
sionist and emphasize on the color distribution in his 
query images while another one may like to give a sketch 
and draw the shape of her figure in monochrome. This 
makes us design our image metrics according to these two 
criteria. Therefore, the result includes three metrics. 
Shape metric computes the distance between images by 
their content shape information while color metric does 
by the color distribution information. Yet another one, the 
power metric, which is adjustable and is a mixture of the 
above two, counts on both kinds of information. 

I. Introduction 
1.2 Overview 

1.1 NIotivation and Objective 

As !he need of data mining on the Web grows, various 
kinds of search engines are developed. Search engines 
responsible for keyword indexing are now available and 
the telchnology is reliable. Of course, one may use the 
same itechnology to built a search engine that is responsi- 
ble for image searching by keywords. But if that were 
true, tl’le search engine would be very difficult to use, due 
to the fact that properties of images may not be suitably 
coded. There is no standard rule in the world for image 
naming. Besides, different image producers may give 
different names to the same image. 

If we examine on this problem more closely, we will 

In section 2, we will have theoretical discussions about 
the proposed metrics. Image metric concepts and some 
metrics that were proposed previously are discussed in 
section 2.1 and 2.2. Then we give in brief the definitions 
of our metrics and explain how they operate in section 2.3 
without telling why. Section 2.4 reveals some observa- 
tions about the user behavior on producing a query image. 
Then section 2.5 explores the proposed metrics whereas 
2.6 unveils the mechanism of the shape metric in more 
detail. 

The system implementation of the proposed metrics is 
to be introduced in section 3 in short. Section 4 will show 
the experiments, benchmarks, and results about the met- 

105 
0-818(5-8028-8/97 $10.00 0 1997 IEEE 

http://csie.ntu.edu


rics and the system. After that, we will move to the con- 
clusion, discussion, and future work in section 5. 

1I.Proposed Adjustable Metric 

2.1 Overview 

To measure the distance between two images, we need 
a conceptual ruler or, a metric. For image search, the 
metric is used to compute the distance between the two 
characteristics of the query image and some target image 
in database. These distances are then sorted in order to 
form a queue that each queue member represents one 
image in database. 

In our metric system, both the shape metric Ls and the 
color metric Lc are fixed. Only the power metric Lp, 
which is a mixture of the above two, behaves like a flexi- 
ble amoeba and can be changed on demand. However, it 
copes with all kinds of hand-drawn query images. 

2.2 Existing Metrics 

Some previous image metrics are intuitive and straight- 
forward. In the area of machine and robot vision, given 
two image planes A and B, probably the most obvious 
metrics used to measure the distance or error between the 
two images are the pixel difference metrics. These metrics 
in image processing usually cost a lot of time, especially 
the L2 metric. 

Recent researchers solve these problems by some fea- 
ture extraction techniques or some fast metria[ 1][3][4] 
[ 5 ] .  Some people find the similarity between images by 
histogram-based or DCT-intensity-based approaches. 
These might be suitable for those query images that were 
scanned but not so proper for hand-painted or drawn 
query. Others try to find a metric that counts primarily 
those types of differences that a human would use for 
discriminating images, but give less weight to the types of 
errors that a human might ignore for this task. Fortunately, 
such an image metric, associated with the multiresolution 
signal decomposition, has been proposed in [3] with their 
experiments in image querying. In the articles, that pro- 
posed metric is called the Le metric. However, as we shall 
discuss, this metric deals with ‘painted query’ in major 
but may not cope with all the drawing behaviors of those 
who want to query. 

2.3 Proposed Metrics 

2.3.1 Metric Definitions 

Conceptually, our metric Lp is a dynamic mixture of Ls 
and Lc, where Ls is the ShapeMetric and Lc the Color- 

Metric. Mathematically and globally, our Lp metric is 
defined as: 

where Ls is defined by: 

(2.1) 
or equally, 

while Lc is defined by: 

(3) 
13J 

From the above definition, note that each one of A’ and 
B’ is some plane of the transform domain image (they are 
the transform domain images of source images A and B). 
We will use the word plane, or channel, to represent dif- 
ferent domains of an image rather than use the word do- 
main directly to avoid the ambiguity. In our system, after 
we have performed multiresolution 2-D Haar wavelet 
decomposition on an image, we can get the transform 
domain image of it. For each image plane, the transform 
domain representation of it contains one DC value in the 
upper-leftmost pixel(Plane[Ol[O]) and the other pixel 
values(Plane[i]lj] where i j  # 0) are treated as coeflcients 
after transformation. These transform domain coefficients, 
together with the DC value, are more significant and may 
give more information to us than our source domain im- 
age pixels. 

We adopted the standard Haar basis to be our decom- 
position basis for performing multiresolution wavelet 
transfomation. Although Ham Transform has poor com- 
pression ratio in signd coding[7], it is very fast and has 
been proved to be a good image feature extraction trans- 
form[2][3]. As we know, two-dimensional Haar trans- 
form(2-D HT) is an orthogonal transfoxm and is separa- 
bZe.[7] This means that we can perform a 2-D Haar trans- 
form on a 2-D image in two phases, with each phase be- 
ing composed of l-D Haar transforms. 

The second point worth mentioning is that both A“ and A”‘ are the truncated and quantized version of A‘, 
which has been transformed, and so is it to B” and B”. 
What differs is the number of quantization levels. Coeffi- 
cient values in A” are of three quantization levels (-1, 0, 
1) for the computation of Lc as was suggested in [31, 
whereas those in A”’ are of two levels (0, 1) for the 
computation of the Ls metric, as we shall discuss in the 
next sub-section. Besides, only metric Lc involves the DC 
value, which is proportional to the average density of the 
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source image plane, in the original transform domain 
plane. Ls considers nothing about DC values. 

Third, the shape metric Ls is slightly different in con- 
text, but is very different in semantics from the color 
metric Lc, which is derived from the Le that we had re- 
ferred to. We will make this point clearer in section 2.6. 
The fourth and the last, our final L‘ is evidently a metric 
of mixture. Although there are no individual research 
outside our system made to prove the discriminating ca- 
pability of the metric Ls, which is responsible for finding 
shape-like images, we can see the ability of this metric in 
our query experiments by setting the parameter *i of L‘ 
mebk and in our scene change detection experiment 
where the Ls metric is applied. 

2.3.2 Two-Level Feature/Non-feature Quantization 

Here we list the quantization method mentioned in the 
previous discussion. The two-level quantization plane 
A’”’ for the computation of Ls is obtained from quantiz- 
ing the transformed plane A’ by the following formula. 
A’”’ : A’” [ i] [ j ] = 

~ s s e ~ ~ ( ~ ; m k ~ ~ ~ ( ~ b s ( ~ ’ [ j ] [ j ] ) ) )  <MI) (4) 
Here Assert() is like the function that we use in pro- 

gramming languages. It evaluates the enclosed boolean 
expression then returns 1 if the expression is true or 0 
otherwise. Rankof() is for selecting feature coefficients to 
be quantized as 1. This computation requires a sorting on 
coefficients in A’ . In the evaluation, transform domain 
coefficient with the largest magnitude has rank 1-st. A 
transform domain pixel whose rank is greater than k will 
become 0, which represents a non-feature coefficient, in 
the feature plane A” . Note that the result feature plane is 
binary and it, in fact, can be obtained from A” by a non- 
standard “quantization” in integer domain as the follow- 
ing, 

( 5 )  
After the process, those transform domain coefficients 

with larger magnitudes, no matter they are positive or 
negative, are kept as 1. This speeds up the computation of 
distance measuring by our image metric L’, which in- 
volves a boolean non-equal test and will be discussed in 
the following paragraphs. 

A”’ : A”’[i][j] = (A”[i][j]l  

2.4 User Behaviors on Image Querying 

2.4.1 Classifications of Query Behavior 

Consider if a subject without any training is asked for 
the first time to paint a query image, what the query im- 
age will be like? Correctly answering this question will 

have great influence on the design of our metrics. 
Now we start to analyze the behavior of those who 

want to query for a particular image. One may paint or 
draw the query by looking at the printed or thumbnail 
version of that image. One can also do this from his im- 
pression of that image. In the former case, which is called 
painted-querying in tradition, one may investigate a 
thumbnail list of database images and select one from 
them that he wants to query for, or he may look at the 
printed image on books, on newspapers, or the oil paint- 
ings on wall. In the latter case, often called memory- 
querying, one may have visited a fine art museum. 
Somewhat attracted by some painting, he may want to 
acquire a digital version after coming back home. 

2.4.2 Paint or Draw: How a Query Image is Pro- 
duced? 

Some researchers classified the querying behaviors into 
painted-querying and memory-querying, both kind of 
them were discussed in the previous section. They would 
often like to find different metrics for these two kinds of 
querying, ignoring the fact that the major difference lying 
behind the query behavior is his drawing or painting 
process instead of what he takes as his drawing reference. 
What we should argue here is that, in fact, no matter 
which kind of image one has used as his reference to 
paint his query, the key point is how he paint Uae query. 
That is, does he paint or draw the query? Or, does he 
draw with paint? 

Do not be confused with the two words ‘paint’ and 
‘draw’. Here we just use the two words to classify the 
drawing behaviors. Painting a query means to us6 some 
or more colors to compose a figure. That is just what the 
impressionists do. Blurring the focus and emphasis on 
color distribution and on light presentation make the pic- 
ture looks similar in different resolutions. On the contrary, 
drawing a query means to use a pen or pencil of one or a 
few colors(often the same color in various gray-scales) to 
sketch the borders or shapes of things in image. One may 
draw a query if he forgets the exact colors used in the 
picture to search for. Some people are color blinds or are 
just weak in distinguishing colors, which is exactly the 
case of the writer of this paper. Such kind of drawing 
query may help. Or sometimes there are images that are 
mainly composed of text. Drawing querying also plays a 
role for finding them. 

Now the meaning of a ‘draw with paint’ query is thus 
well defined. This kind of query is the image that carries 
not only all or partial shape information but also all or 
partial color information that the user wants to express. 
Figure 1 demonstrates the two major kinds of queries 
classified by us. 

Our purpose is to cope with all these situations. In our 
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adjustable and dynamic metric Lp, the two extremes are 
Ls and Lc. The L‘ can degenerate as Ls or Lc to meet the 
case that the query image is a pure drawn query or a pure 
painted one. It can also be a mixture of Ls and Lc by some 
percentage that can be used to deal with those ‘drawn 
with paint’ query images. 

2.5 Exploring the Proposed Metrics 

2.5.1 The Adjustable Metric Lp 

In equation (l), ,? is just a floating value ranging from 
0 to 1 that controls the percentage of the two solutes in 
our metric system, which are Ls and Lc. When it is reset 
to 0, the L‘ becomes Lc and discriminates images only by 
the color distribution information of them. Conversely, if 
it is set to 1, Lp becomes Ls and distinguishes images 
merely by the shape of the content objects. 

Also, in our system, a user can adjust /z to a percent- 
age value whichever he wants between 0 and 1 if his 
query is ‘drawn with paint’. In this case, the user can tune 
a slider bar, which represents current ,? , to any percent- 
age value depending on how much shape information his 
query image carries against color information. 

2.5.2 Color Metric Lc 

Now let’s go further to the discussion of Ls and Lc. Our 
Lc is modified from Le, which also emphasizes on color 
distribution of query images. The major difference is on 
weight assignment. 

Both in Le and in our Lc, a specified weight is multi- 
plied to the DC difference and other weights are used as 
multipliers to those differences on truncated, quantized 
coefficients. Conceptually, these weights will form a 
weight table. The weight table derived from the formula 
of LQ, which is in level-of-pixel manner can be depicted 
in Figure 3 .  But here we assign the weights according to 
level-ofresolution criteria rather than level-of-pixel. Ob- 
viously, our L“ uses the former but Le is according to the 
latter. 

2.5.3 Level-of-Resolution Weight Assignment 

As Figure 4(a) shows, we should refresh the weight ta- 
ble of Le with level of resolution shown in bold lines and 
re-assign values to the new table of Lc by averaging the 
original pixel weights in the same block. In this scheme, 
pixels are gathered into blocks and blocks of the same 
resolution level are assigned equal weights. This makes 
sense. The relation between the weight table entry wZj 
with respect to transform domain pixel location (ij) and 
the weight that should be assigned to that table entry can 
be formulated in the following equation: 

w. . = W,J, where 

n = Llw, (max( i, j ))A 
We would not like to re-experiment on obtaining the 

weights again because the weight table of Le has been 
experimented enough and proved to perform well. The 
result weight table of our Lc is as Figure 4(b) demon- 
strates. So far, we get our metric Lc from LQ by taking the 
same formula but assigning weights in different ways. 
What remains is the shape metric Ls whose weight as- 
signment is, surely, in level-of-resolution manner, too. 

1.J 

(6) 

2.5.4 The Novel Shape Metric I? 

Matching shapes of image contents has been a problem 
in robot and machine vision for a long time. Most re- 
searchers try to solve this problem by finding edge- 
detection algorithms, which may include sharpening 
edges, applying filters, enhancing contrast, convex-hull 
linking, and so on. This probably misleads a few people. 
Some people might believe that the shape-matching 
problem is equal to the edge-detection problem and think 
that the only way for finding shape-like images is to de- 
tect the edges efficiently first. 

If we were designing our metric Ls by this way, it 
would not be so appropriate due to the extra computation 
time needed for edge detection and there is no time over- 
lap between performing multiresolution signal processing 
for L“ and performing edge detection for Ls. Thus we 
won’t try to find the solution in this way. Again, we use 
the abstraction ability of multiresolution signal decompo- 
sition. We just benefit from those truncated, quantized 
transform domain coefficients that has been computed 
during previous processes and at the same time has been 
used by Lc metric. This really utilizes the computation 
power and kills two birds with one stone. 

2.6 Inside Ls 

The idea of Ls is simple from the equation. As we have 
mentioned, though the equation (2.2) for Ls is like the 
right-hand-side of the operand ‘+’ in Lc, the two metrics 
are by no means the same. To compare the Ls metric with 
Lc, consider the truncated and quantized coefficients A” 
in equation (3) and equation (2.2), which was written so 
from the regular form (2.1) for comparison. Since there 
are only three levels in A”, only a few cases are possible 
for a given pixel. For clear realization of Lc, Ls and their 
difference, let’s consider a specified pixel location (ij) on 
two associated transformed plane A ”  and B”. We can 
enumerate these cases and discuss how they will effect on 
the result distance computed by two metrics Lc and Ls: 

(1) I f  A”[il[jl=I and B”[i][j]=I or A”[i][j]=-I and 
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B”[i][j]=-1 or A”[i][j]=O or B”[i][j]=O, this pixel means the 
same thing on both planes and contributes nothing to both met- 
ric. 

(2) If A”[i][j]=l and B”[i][j]=O or A”[i][j]=O and 
B”[i][j]=I or A”[i][j]=-I and B”[i][j]=O or A”[i][J]=O and 
B”[i][j]=-l, then the pixel on one plane means there is a feature 
but that on another doesn’t. In both metric, these points contrib- 
utes to the distance exactly the weight value associated with its 
locartion on the weight table. 

(3) We have discussed seven cases of the nine possible ones. 
There are still two cases possible and these cases makes the two 
metrics greatly different. Consider A”[i][j]=I and B”[i][j]=-l 
or A”[i][j]=-l and B”[i][j]=l. In Lc, the absolute value of 
A ” [ i ] [ j ] - B ” [ i ] [ ~ ’ ]  will be 2. Such a pixel contributes 
double of the weight to the metric distance. This implies that 
there are much dissimilarities on the two planes at this location, 
because the 1 in one plane means a large positive transform 
domain value and the -1 in another means a very negative one. 
This makes sense for the metric Lc from this point of view. But 

in L?, IA”[j][j]l-IB”[j][i]l will become 0, let alone the 

absolute value of it. This implies that, in Ls, this pixel means the 
same thing on both planes, instead of great dissimilarity. How 
this could happen?? 

If we inspect our signal decomposition process, which 
is the Haar transform, by a magnifying glass, we will find 
something surprising. This function, as we have men- 
tioned, performs 1-D Haar decomposition on a sequence 
of discrete signals. 

Suppose we are going to decompose a 1-D signal sig- 
n a  1 [ 3 by Haar transform, we can see that, in fact, the 
transform can be divided into Zog,S passes, depending on 
the signal size S.  The first pass deals with the whole sig- 
nal, repacks the signal, and then halves it into two parts. 
The second pass deals with the left-half that we are inter- 
ested in, while the third does with the left-half of the left- 
half, whose size is a quarter of the original Signal [ 1 , 
andL so forth. During each step in a pass, the algorithm 
jus1 takes a pair of adjacent signal values, calculates their 
sum and difference, normalizes the results by a constant 
factor, and redistributes these values into two locations in 
two halves(or bands), to form a new signal. 

The right half of the repacked signal stores the infor- 
maltion about differences of nearby signal values. These 
values, in 2-D, hold high frequency information repre- 
senting the edge appearances of the original image. 

Turn back to our Ls right now. Consider there is a 
transformed plane pixel truncated and quantized as 1, and 
a pixel in the same location as -1 on another transformed 
plane. In our reasoning just discussed, at the specified 
location, there must be shape edges on both planes. Fur- 
thermore, there is exactly a negative gradient in the for- 
mer plane and there is exactly a positive gradient in the 
latter. This implies that here, in Ls, we treat both positive 
andl negative-gradient edges as the same. A pixel location 

with great positive value in one transformed plane but 
with great negative value in another should contribute 
nothing to L‘ metric! 

In the Ls metric, in fact, no matter the edge is of posi- 
tive or negative gradient, it is merely ‘an edge’ from our 
point of view. This reflects the fact that there are only two 
meaningful quantization levels in Ls but three in Lc. 

Still two points worth noting are that we do not accu- 
mulate the DC difference to our shape distance measure- 
ment and that we only count on only Y-planes in Ls met- 
ric. The first point is obvious since our ShapeMetric Ls is 
a pure shape metric and it should not take any informa- 
tion about average intensities of each color channel. The 
second point is derived from the fact that human-sensible 
edges can be shown in gray-scaled Y-plane of an image 
and it, at the same time, saves a certain amount of com- 
putation time as well. Experimental results also shows 
that taking I, Q planes into account helps nothing. As we 
will see in the following chapters, our searching time is 
proportional to how much couples of Ls and Lc are com- 
puted, that is, how much database entries there are. While 
the growth of image database can not be avoided, this 
time saving on Ls becomes extremely critical. 

We shall give an illustration to show the query by 
shape in Figure 2. Here we draw a query image by its 
content shape and want to search for that image in our 
database. If we purely use our Lc metric, which is a color- 
based one improved from traditional Le, we will get 
nothing but that image whose color distribution is alike. 

2.7 Image Conversion Policy 

In our model, there are at least two requirements on im- 
ages for 2-D multiresolution signal processing. First, the 
image should be square. Second, the width and height of 
the image should be power of 2. Since not all of the col- 
lected images are both square and power-of-2 sized, some 
conversion step must be taken before feeding image data 
into the Haar transform filter. To achieve this, different 
conversion strategies are adopted in our model for differ- 
ent components. 

Area sampling has been a major technique used to pre- 
vent the aliasing effect[6][11]. In our query system, we 
would use the concept supported from area sampling. 
Suppose our source image size is WxH, the sampled im- 
age size is SxS. Then our S can be computed from: 

(7) 

Taking the advantage of that our area-sampled image 
size is ‘the nearest 2 power size’ of the original one, we 
have devised a fast algorithm for computing it.1131 

s = ~ a w ( 2 , l l o g ,  (min( w,~))]) 

111. A Snapshot of Our System 
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The result is a system Querystore I1 Plus built on Win- 
dows 95, as was shown in Figure 5. There are currently 
two components in the system, PowerIQ(Power Image 
Querying) for image database management with content- 
based querying and SmartSCD(Smart Scene Change De- 
tection) for video shot boundary detection. The PowerIQ 
not only supports normal primitives of image database 
manipulation, such as image registration, deletion, on-line 
browsing, listing, and modification, but is capable of 
content-based image querying either by shape, by color, 
or, by both. Moreover, it provides the user a free-for- 
adjust metric and a comfortable query environment. An- 
other component, SmartSCD, applies the shape metric 
and detects scene changes in video efficiently[l][2]. 

1V.Experiments and Results 

4.1 Metric System Parametrization 

There are several parameters controlling our metric 
system. The key parameter 2 of our metric Lp can be 
adjusted dynamically while the system is running and 
should not be fixed. Thus our purpose is to look for the 
weight table WS for shape metric Ls and the WC for 
color metric Lc. Besides, for both sub-metric, the number 
of topmost feature points to be considered(that is, how 
many transform domain coefficients with large magni- 
tudes should be selected after quantization) for both sub- 
metric is also a problem. Here we are going to give only 6 
different weights for each channel according to level of 
resolution(Figure 4(a)). 

As we have mentioned, our Lc is an improved version 
of Le, which takes 60 transform domain coefficients and 
its level-of-pixel weight assignment formula(by a func- 
tion called bin()) is modified to form our WC weight 
table(Figure 4(b)). Our Lc inherits its truncation(60 coef- 
ficients are considered) and quantization process (three 
levels) and uses our new level-of-resolution weight table. 
Thus our Lc performs well for ‘painted‘ queries that em- 
phasize on color distributions and at least as well as LQ 
does. What follows is finding the parameters for our 
shape metric Ls. 

4.2 Derivation of the Weight Table for Metric L” 

As we have discussed, the quantization process for Ls 
results in only two quantization levels. Then we must f i d  
out how many coefficients left after truncation, which is 
an integer t, are proper for our Ls metric and we should 
take an experiment for constructing the weight table WS 
for L’. 

To make this experiment, 10 subjects were asked to 

‘draw’ 30 shape-based query images and to Indicate 
which image he was searching for. Then we s m  from 
t=60 to t=300(t must greater than 60 because the nature of 
shape-based images), taking 10 as a step unit. For each t, 
we train the weight table WS by the concept of prugres- 
sive refinement. For illustration, provided that we want to 
set up WS with its elements greater 0.0 and less than 20.0, 
and suppose we divide the range into four sub-ranges. We 
assign the weight of the multiresolution level 0 block@C) 
in WS(WSLo) as 0.0, level l(WSLl), 2(WSLz), 3(WSL3), 
4(WSu) and 5(WSL5) as 2.5. Then we exhaustively iter- 
ate a 5-nested loop(which takes 45 times) by incrementing 
WSL1, WSLZ, ,.. , WSLs by 5.0 in each loop, and evaluate 
‘the sum of rankings of the database images in relation to 
those queries’. Ideally, if all of the query images hit the 
topmost target(each time the first one in Targetview is 
exactly what the user searches for and the ranking of the 
image in that position is l), the sum of their rankings will 
be 30 and this is the lower bound. After the above loops, 
suppose we get a best weight table whose ‘the sum of 
rankings’ is the smallest with (WSLO,WSL~, WSLZ, WSW, 
WSU, WSLs)=(O.O, 7.5, 12.5, 7.5, 2.5, 2.5). Then we 
iterate the 5-nested loop again starting with (WSLo,WSL1, 

0.625, 0.625). But this time the step amount is 1.25 to 
search for WSLl in [5.0,10.01, WSLZ in [10.0,15.01, WSL~ 
in [5.0,10.0], and so on. Therefore we will find a better 
approximation of weight table WS by (WSu,WSLl, WSLz, 
WSL~, WSU, WSu) again. 

For each t, we find the best total ranking and the asso- 
ciated weight table by iterating the 5-nested loop three 
times(3 training depth). The value on weight table is 
of precision 0.3125. As a result, we find that t=110 with 
the weight table shown in Figure 6 performs best. 

WSu, WSL~, WSu, WSL5)=(0.0, 5.625, 10.625, 5.625, 

4 3  System Benchmark 

Our system was developed on Microsoft Windows 95 
and can be executed from any PC. On such a platform, 
the amount of times needed for performing each of our 
processing steps individually were tested and summarized 
in Figure 7. 

4.4 Experimental Results 

For the validation of our metric syst 
users were invited to paint 33 query images. He or she 
painted or drew their query images and at the same time 
answer our question “how much percentage of shape 
information does your query carry against color distribu- 
tion information”. We adjust our Lp according to his an- 
swer and search against the database. The result is as 
Figure 8 shows. In this table, the reader can see that the 
query behavior is going to be toward the two extremes. 
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That is, the query image either tends to emphasize on 
colior distribution, or does on shape expression. 

V. Conclusion and Future Works 

5.11 Conclusion and Discussion 

13y making a survey on human behaviors of image que- 
rying, we have found that the major difference lying be- 
hind the query behavior is users' drawing or painting 
process. We have argued that the key point is how he 
produces the query. Thus we classify the query images 
into three main classes, drawn query, painted query, or 
both. To cope with all these situations, we devise an ad- 
justable metric Lp which is a mixture of the two metrics 
Ls and Lc. 

We have set up our color metric Lc for dealing with 
those painted queries. We assign the weight values on our 
weight table in a reasonable 'level-of-resolution' manner. 
Since there is another existing metric L ~ ,  also multireso- 
lution-based but in 'level-of-pixel' manner, that had been 
well tested for painted queries, we decide to obtain our Lc 
by reshuffling the weight table of Le into an improved 
'level-of-resolution' one. 

'ben we analyze those drawn query images and find 
that the key features of a drawn query are the shape edges. 
Unilike most previous approaches that is primarily by 
edge detection, we decide to match the shapes of two 
images in multiresolution transform domain. We also 
probe into the signal repacking process of wavelet de- 
coimposition and reveal that no matter the edge is of posi- 
tive or negative gradient, it is merely 'an edge' from our 
point of view. Therefore we propose a shape metric Ls 
with its two-level quantization feature extraction method- 
ology. In the meanwhile, experiments by simulation are 
maide to find out the proper weight table values for Ls, 
which are also organized in level-of-resolution, and to 
find proper numbers of coefficients to be kept as feature 
points. 

Computation of each result metric takes just fractions 
of a second. Each Ls measurement cost only 0.00084 
second while Lc is 0.00102. Thus each Lp takes 0.00187 
in total to compute the distance between a pair of images. 
Therefore the metric computation time for searching 
against a 1000-images database is merely 0.84 second for 
Ls, 1.02 for Lc, or 1.87 for Lp. 

'Yet another point worth mentioning is that the. L' met- 
ric has been successfully applied to video scene change 
detection[ 1][2]. Unlike most previous detection operators, 
the L" metric not only detects scene change in multireso- 
lution transform domain, but also avoids regarding some 
shape-invariant video effects, such as fade-out or flash, as 
scene changes. We have now integrated this part into our 

system. 

5.2 Future Work 

Here we list some topics for our future research: 

Automatic Metric Adjustment. In our current system, 
the adjustable parameter ,I are free to adjust by the user. The 
user can adjust i t  if one is not satisfied with current querying 
result and can adjust it toward any possible direction. We are 
going to let our system automatically find a 2 .  To achieve this, 
several ideas may be considered. First, we could study the histo- 
gram of the query image. Therefore we would try to identify 
which class of query image does it belong to by the histogram. 
If the query image was a drawn one, often by two or a few high 
contrast colors, there would be only two or a few numbers of 
peaks in its histogram. We could classify the query image ac- 
cording to this clue. Alternatively, the systemmight also interact 
with the user each time before querying by bringing out the 
dialog for ,I adjustment. By this way, users could pre-set ,I 
by his feeling of how much shape against color information did 
his query image carry. Yet another way is to provide candida- 
ture querying. Each time before the querying result is shown, 
the system computes the querying results by pure Ls and Lc. If 
either Ls or Lc is discriminate enough for current query image, 
the distances from the query image to the lS'-ranked target im- 
age and to the 2""dranked one should differ greatly. Thus we can 
select either Ls or Lc to be our default metric for this querying. 

Further Metric Parameter Training. As we have indi- 
cated, the training depth of our current Ls metric is 3. That is, 
the precision of our current metric is 0.3125. There are two 
ways to improve our weight table further. The fist  way is to 
train more deeply and get a better precision of our weight table. 
The second way is to consider more than one weight table in 
each training. As we have mentioned, we use 'the sum of rank- 
ings' to be our criteria for evaluating our weight table. We can 
set a threshold to filter these 'sum of rankings' and get more 
than only one weight table. A weight table that performs not so 
good in depth n may perform well after training in depth (n+l). 
That is, we give second chances to this kind of weight tables. 

Finding Hardware Solution for Ls. As we can see, 
since the featurelnon-feature characterization philosophy of Ls is 
binary, the storage can be very small if we save the feature plane 
in our image database bit-wisely. Not only the feature plane 
extracted from the transformed plane are in binary form, but the 
computation of Ls involves boolean non-equal tests. This im- 
plies that, Ls distance measuring would be even faster and might 
be extremely fast if we have the dedicated hardware for compu- 
tation. The hardware can, of course, take two bit-wise stored 
feature planes A"' and B'", perform the non-equal tests 
simultaneously, and output the binary results to another feature 
plane, say C" . Then c" is used to mask another hard-wired 

plane, which represents the weight table. Taking an accu- 
mulation on the values of masked D" plane, we can obtain the 
distance easily. The entire process can surely be done in just a 
few clock cycles. Since the time overhead for transformation 
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and quantization is fixed and the growth of the image database 
can not be avoided, this acceleration becomes critical. Total 
distance measuring time for searching against a database with 
10,000 images by Ls takes 8.4 second in current system but will 
be less than 1 second with hardware support. 
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(b) 
Figure 1: Two kinds of query images that a user tends to 
use. (a) a painted query image and its search target (b) a 
drawn query image and its target 

(b) 
Figure 2: Search(bottom4eft image) against our image 
database by a shape-based drawn query image (a) by 
color metric LC, which shows incorrect result, which is listed 
in the topleft corner (b) by shape metric LS, which shows 
correct result, top-left corner 
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Figure 3: Level of pixel weight assignment: the weight 
assignment of Lo is done by the level of pixels method; in 
the figure, pixel locations in the same block bounded by 
bold border lines are assigned a fixed weight. For example, 

wL5 1 
. . . . . .  _.__ ~ __.. . . ._r.. . . . . . .  . . . . . .  .- ....... . . ..-._ 

WLI w,, 
WLZ 

WL3 

I WL5 

Figure 4(a): Assigning weights by the 
level of resolution method, blocks of 
pixels in the same resolution level are 
assigned equal weight; both our sub- 
metrics LS and LC apply this assign- 
ment rule 

Figure 5: After we choose 
the 'Query by Content' 
item, the most content- 

similar target images will 
be browsed in Target- 

View(the upper window, 
in top left to lower right 
order) and the user can 
move the mouse around 
that window to get the 
information about that 

target image, which will 
appear in InfoView(the 

lower-right window). 
The query image is 

shown in QueryView(the 
lower-left window).ln this 
figure, we use a shape- 
based query image to 

query against the image 
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Figure 4(b): Values assigned to our WC weight table in level of resolution manner 

Figure 6: The weight table of our shape metric LS: weight values are assigned in 'level of resolution' style, which was 
shown in Figure 5(a); we only assign five weights here because DC values(leve1 0 transform domain pixels) are not 
considered by our L', WS,, represents for the weight of level 1 coefficients, WS,, does for level 2, and so on 

platform, an ordinary Pentium PC(133 Mhz). The unit of time is in second. This table also shows the properties of each 
step. For some step, if A property is 'yes', then the time is relative to the size of the query image. If B is 'yes', the time 
amount is effected by the size of current image database. If C is 'yes', that step is optional and may be omitted in some 

Figure 8: Experimental Result: this table shows the hit rate of our testing query images drawn by 11 first-hand users; they 
are invited to paint or draw 3 query images and then asked 'how much shape information does each of your query image 
carry, or how much alike in color distribution is your query image with the target image?' The test database has 60 images 
and the result shows that our LP has a hit rate up to 88% if the top one choice is evaluated, and becomes 97% if we 
consider top 5% of candidate queue as reasonable search targets. 
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