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Abstract 
A new mesh simplification scheme that uses the face con-

striction process is presented. By introducing a statistical 
measure that can distinguish triangles having vertices of 
high local roughness from triangles in flat regions into our 
weight-ordering equation, along with other heuristics, our 
scheme can better preserve visually important features in the 
original mesh. To improve the shape quality of triangles, we 
adopt non-linear face area sensitivity in the weight ordering. 
Learning and feedback mechanism is also utilized to en-
hance user controllability. The computations are simple, 
making our scheme time-effective and easy to implement. In 
addition to comparing our scheme with other mesh simpli-
fication algorithms empirically, we compare their perform-
ances by establishing a unifying ground among three basic 
simplification processes – decimate vertex, collapse edge, 
and constrict face. This unification allows us to analyze the 
intrinsic merits and demerits of simplification algorithms to 
help users make better selections. 

Keywords: mesh, mesh simplification, face constriction, 
feature-preserving 

1. Introduction 
Much of graphics workstation business requires high detailed 
models whose complexity is increasing far more rapidly than 
the performance of the graphics subsystems [28]. Today, by 
using precise laser range scanners, it is possible to obtain 
models so complex, like the David sculpture model [23], that 
no current graphics system can handle them. As models get 
ever larger, they get more difficult to store, transfer, render, 
and modify. One of the best solutions is to represent the 
complex details in multiple levels: multiresolution models 
[15] offer various versions of a model at different resolutions 
according to the user requirements. 

In this paper, we propose an effective geometric mesh 
simplification scheme for constructing multiresolution 
meshes. The basic simplification process of our scheme is the 
face constriction process (FCP), whereby a triangle in the 
mesh is constricted to a new vertex (Figure 2). The advan-
tages of our scheme include good preservation of visually 
important features in the mesh, computation efficiency, and 
simplicity of implementation. By including a statistical 
measure of local roughness, non-linear sensitivity of triangle 
area in our weight-ordering computation, and other heuristics, 

our scheme can better retain distinctive features, such as 
boundaries, feature-lines, and high frequency details. To 
improve user controllability, we employ the learning and 
feedback mechanism to make use of parameter values that 
are returned from previous simplification runs for normaliz-
ing the different factors influencing the ordering weight. 

In addition to performing visual comparison of our sim-
plification results with the output of other algorithms, we also 
analyze the intrinsic characteristics of three basic simplifica-
tion processes adopted by these algorithms, and obtain a 
unifying ground for comparing them in terms of speed and 
error introduced. Such comparison allows users to expedi-
ently select an appropriate class of simplification algorithms 
that suits the needs of their applications.  

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work and presents the three basic 
geometric simplification processes adopted by most simpli-
fication algorithms.  In Section 3, we introduce some nota-
tions to formally describe the basic simplification process we 
employ, the face constriction process, and present a system-
atic procedure for checking the validity of a FCP.  Section 4 
presents our simplification scheme  the ordering weight 
computation and the placement of the new vertex.  Section 5 
shows some experimental results of our algorithm, contrast-
ing them with results of other algorithms. In Section 6, we 
discuss the intrinsic relationships of the three basic simplifi-
cation processes and compare the algorithms that adopt them. 
Finally, summary and future work are presented in Section 7. 

2. Related work 
Not losing generality, the target objects of our research are 
triangular meshes, as they are most common and other po-
lygonal models can be converted to them through local tri-
angulations.  Existing mesh simplification algorithms can be 
broadly classified into geometric-based, and appearance 
-based.  Most of the latter can in fact be extended from the 
former by incorporating visual or appearance criteria [2,18,21, 
3,19,10,6].  Hence, our research focuses only on geomet-
ric-based simplification algorithms. These algorithms utilize 
three different basic simplification processes: 
� Vertex Decimation Process (VDP) -- a vertex and its sur-

rounding region are deleted, and the resulting hole is 
re-triangulated (Figure 1(a)). Most earlier simplification 
methods are based on this process [30,31,4].  Schroeder et 
al. [30] use the distance from a vertex to the average plane 
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of its surrounding vertices to order the VDPs. 
� Edge Collapse Process (ECP) -- an edge is collapsed into a 

new vertex, and its two adjacent triangles are deleted 
(Figure 1(b)). This process is the most common one and 
has been extensively researched [20,18, 12,9,25]. Garland 
and Heckbert’s elegant algorithm [9] introduces the quad-
ric error metrics (QEM) to evaluate an ECP. Optimal new 
vertex placement is achievable under such metrics.  

� Face Constriction Process (FCP) -- a face is constricted 
and its adjacent faces are immerged (e.g. Figure 2).  This 
process is a little more complex than the previous two, and 
there is little research on it. Hamann [14] and Gieng et al. 
[11] approximate the underlying surface in the neighbor-
hood of a candidate triangle to obtain curvature estimation 
for computing the ordering weight. 
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Figure 1: (a) Vertex Decimation Process: a vertex is de-
leted and its surrounding hole is re-triangulated; (b) Edge 
Collapse Process: an edge is collapsed into a new vertex. 

There are other algorithms that cannot be included in this 
taxonomy, such as the algorithms of Rossignac et al. [29] and 
Lindstrom [24]. A more general survey of mesh simplifica-
tion algorithms can be found in [16]. 

3. FCP:Formal definition and validity checking 
The simplification algorithms of Hamann [14] and Gieng et al. 
[11] both adopt the FCP as their basic simplification process.  
Gieng et al. [11] use the constriction process shown in Figure 
2, which results in a triangle being degenerated into a vertex, 
and three adjacent triangles being degenerated into three 
edges. Hence, it has the advantage of maintaining the topol-
ogy of the original mesh.  In contrast, Hamann’s algorithm 
constricts faces through decimation. It deletes the candidate 
triangle and all the surrounding triangles, and then 
re-triangulates the remaining hole, without introducing any 
new vertex. This decimation procedure thus changes the 
topology of the mesh more drastically and, in general, attains 
a lower simplification quality (see the subset vertex place-
ment example in Figure 16). For this reason, we utilize the 
former constriction process. For triangular meshes, this FCP 
deletes four triangles a time, assuming manifold and 
non-boundary conditions. 

FCP

 
Figure 2: The Face Constriction Process. The dark- 

shadowed triangle is constricted into a new vertex. Its three 
adjacent triangles become degenerated and are deleted. 

3.1 Definitions and notations 
To facilitate the presentation of a systematic FCP validity 
checking procedure and subsequent discussion of our specific 
simplification scheme, we first introduce some definitions 
and notations. Let T denote a candidate triangle in a regular 
triangular mesh M. 

Definition 1: The surrounding triangles of T are defined 
as the set ST={Ti |Ti≠T, Ti∈M, Ti shares at least a vertex of 
T}.   

Analogously, the surrounding triangles of a vertex V are 
defined as the set SV of all triangles containing V. Hereafter, 
the term surrounding triangles refer to the surrounding trian-
gles of a triangle, unless otherwise specified to be those of a 
vertex. 

Definition 2: The triangles in ST that share an edge of T are 
called immerging triangles, denoted by the set IT.  

Definition 3: The surrounding triangles of T that are not 
immerging triangles are called encircling triangles, i.e., ET = 
ST – IT. 

Definition 4: The encircling vertices of T are defined as 
EVT = {v | v is a vertex of some triangle in ST and is not a 
vertex of T}; 

As an illustration, the dark-shadowed triangle in Figure 2 is 
the candidate triangle T of a FCP. Except for T, all the trian-
gles inside the polygon with thicken boundary are in ST. The 
three light-shadowed triangles are in IT. All clear triangles 
inside the thicken polygon are in ET, and the vertices on the 
thicken edges are in EVT.  

With these definitions, we can now describe precisely the 
effect of a FCP: 
� the candidate triangle T is constricted into a new vertex NV, 

and T is deleted from M; 
� the immerging triangles IT are degenerated into edges, and 

the triangles are deleted from M; 
� NV is connected to the encircling vertices EVT. 

Since the placement of NV is related to the mesh geometry 
and specific weight-ordering computation, we will discuss it 
with respect to our simplification scheme in Section 4. 

3.2 Validity checking of a FCP 
In earlier discussion, we assume that the mesh model is 
regular; however, many meshes in practice are non-manifold 
or include boundaries. To ensure that our simplification 
scheme also works well for such irregular input triangular 
meshes, we perform a systematic validity checking on can-
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didate triangles of all FCPs.  
Given a candidate triangle T of a potential FCP, we identify 

the FCP as illegal, by checking in the given order, if it satis-
fies any of the following conditions: 

1. being non-manifold; 
2. lie on the boundary; 
3. contain a cycle or a hidden cycle; 
4. cause triangle folding. 

If any of these tests is positive, the checking procedure ter-
minates and T is not constricted.  The rationale of this test is 
that T in such regions would contain features that are im-
portant, both to the geometric and visual properties of the 
mesh, and thus should be preserved. Gieng et al. [11] discuss 
such checking loosely, and ignore the non-manifold condi-
tion; here we present a systematic procedure by classifying 
the surrounding triangles of T based on our terminology.  

The non-manifold condition is as follows. If any triangle in 
IT contains an edge that has more than two adjacent triangles 
(or more than one in the case of boundary edges) (Figure 3(a)) 
or if some vertex in T has more than one ring of surrounding 
triangles (Figure 3(b)), then this FCP satisfies the 
non-manifold condition.  

   
(a)     (b) 

Figure 3: Non-manifold FCP: (a) one edge has three ad-
jacent triangles; (b) a vertex has two rings of surrounding 
triangles. 

We test the next two conditions as described in [11]. Using 
our terminology, if some edges of the triangles in IT are on the 
boundary (see Figure 4(a), (b)), then the FCP satisfies the 
boundary condition.  To check the second condition, if a 
triangle in IT is part of a cycle, which is a group of three mu-
tually adjacent triangles (e.g. the yellow region in Figure 
5(a)), then the FCP is said to contain a cycle; applying the 
FCP would lead to superposition of the remaining two trian-
gles in the cycle. In addition, if a vertex in IT , but not in T, has 
valence four (Figure 5(b)), then the FCP is said to contain a 
hidden cycle; performing such a FCP would introduce a new 
cycle, which is undesirable. Note that if T is part of a cycle, 
the FCP is considered legal. 

   
(a)     (b) 

Figure 4: Boundary FCP: (a) surrounding triangles are 
connected; (b) surrounding triangles are disconnected. 
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(a)                (b) 

Figure 5: FCPs containing a cycle or a hidden cycle: (a) 
surrounding triangles have a cycle; (b) surrounding triangles 
have a hidden cycle -- the triangle has a vertex of valence 4 
which is reduced to valence 3 after the FCP, resulting in a 
cycle. 

Finally, we test if the FCP would lead to triangle folding 
(Figure 6).  Gieng et al. [11] detect this situation by checking 
whether or not the vertices in EVT form a star polygon. Their 
method can produce good results, but it also incurs high 
computation cost.  Hence, we utilize the method used by 
Ronfard et al. [27] and Garland et al. [9]. We compare the 
differences between the normal vectors of the encircling 
triangles before and after the FCP. If the differences are larger 
than a threshold, we consider it as resulting in triangle folding. 
Although this test is stricter than that of [11], it is much faster.  
And we have found it to work well in practice.  

FCP

 
Figure 6: Triangle folding of a FCP.  The light blue and 

dark blue triangles are folded after the FCP. 

4. Mesh simplification scheme 
The general framework of our scheme is as follows: 
1) Compute the ordering weights of triangles in the mesh. 
2) Insert all triangles into a heap ordered by the computed 
weights, with the minimum-weight triangle at the top. 
3) Remove the top triangle from the heap, test if its FCP is 
illegal based on the discussions in Section 3.2. If so, assign 
the maximum cost to this triangle and insert it to the bottom 
of the heap; otherwise, constrict the triangle, compute the 
weights of its encircling triangles (i.e. triangles modified by 
the FCP), and update the heap.  
4) Repeat step 3, until it meets the user-specified terminating 
condition, such as reaching the targeted number of triangles 
or the minimum weight in the heap. 

The remaining issues to resolve are how to compute the 
ordering weight of a candidate triangle and where to place the 
new vertex. The following two sub-sections address them.  

4.1 Ordering weight computation 
After applying a FCP, an error is introduced into the resulting 
simplified model. We must establish a cost measurement for 
the FCPs to obtain an ordering of the processes that mini-
mizes the simplification error. Given a triangle T, we propose 
to compute the ordering weight of its FCP as follows: 
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W(T) = BFn(A(T)) ·(wb ·G(T) + (1-wb) ·V(T)), 
where G(T) is the weighted sum of the average dihedral 
angles of the surrounding triangles of T’s vertices, V(T) is the 
valence of the new vertex, and wb is a parameter within [0,1]; 
A(T) is the triangle area and the balancing function BFn(x) = 
xn introduces a non-linear area sensitivity to the weight. The 
equation for computing V(T) is simple: V(T) = (V1 + V2 + V3) 
– 9, where V1, V2, V3  are the valences of T’s vertices. The 
exact equation for computing G(T) will be given shortly. In 
essence, the V(T) term favors constricting a triangle that 
produces a low-valence new vertex so that triangles of good 
shape quality are resulted, and the G(T) term favors triangles 
in the flat regions that have no vertices contributing to any 
high-curvature features in the mesh; their relative importance 
is controlled by the parameter wb. This ordering equation 
essentially assigns a small weight to a triangle that has a 
small area and flat neighborhood with no high-curvature 
features, and that would result in a low-valence new vertex 
when constricted.  
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(a)       (b) 

Figure 7: (a) Computing the dihedral angle. (b) The 
neighborhood of triangle T for computing G(T). 

The term G(T) is defined in terms of dihedral angles be-
tween triangles.  Given two adjacent triangles T1 and T2 that 
share an edge E, as shown in Figure 7(a), their dihedral angle 
is the inclination angle a within [0, 180].  In practice, we use 
G=1−N1 ·N2, where N1 and N2 are the normal vectors of the 
two triangles, such that a large inclination angle (a flat region) 
corresponds to a low value of G.  

To formulate G(T), we illustrate with the candidate triangle 
T in Figure 7(b). The vertices of T are P1, P2, P3. For each 
vertex, we determine the dihedral angles between pairs of 
surrounding triangles of that vertex, and compute their mean 
and variance.  For example, vertex P1 has surrounding trian-
gles T, T1 to T4; we compute five dihedral angles between T1T, 
TT4, T4T3, T3T2, and T2T1 to obtain the mean dihedral angle G1 
and the variance VAR1 of these angles. Analogously, we can 
compute G2, G3, VAR2, VAR3. We can now define G(T) as 
follows: 
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332211)(
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To illustrate the significance of the variance terms, we show 
that the mean terms alone are not adequate. Although low 
values of G1, G2, and G3 often reflect flatness in T’s 
neighborhood, they alone cannot exclude triangles that have 
some vertices contributing to high frequency details. Figure 8 
illustrates, using a 2D example, a problem that arises when 
only the mean values are considered. The two meshes have 
the same mean value and would be concluded as having the 

same weight by most simplification schemes. But, obviously, 
the bottom mesh has a high frequency detail and should be 
constricted later. Since the variance terms can reflect the 
roughness of a vertex neighborhood, the mean values are 
weighted by the variances in our formulation.  Large vari-
ances lead to a large G(T), thus disfavoring constricting T and 
retaining the rough feature in the model. Most existing sim-
plification algorithms [30,4,9,11] do not deal with such a 
factor, even though these high frequency details are surely 
visually important and should be preserved as much as pos-
sible. 

 
Figure 8:Two meshes, shown in 2D, have the same mean 

dihedral angle, but the variance of the bottom mesh is bigger, 
reflecting the local vertex roughness. 

Lastly, we consider the issue of normalizing G(T) and V(T). 
Since the ranges of G(T) and V(T) are different (G(T) ranges 
between 0 and 2, while V(T) is an arbitrary integer), when 
they form a convex sum in W(T), it is difficult for the user to 
select the value of wb that corresponds to a desired relative 
importance. To overcome this problem, we should normalize 
them to [0, 1] to improve the controllability of our scheme; 
that is, 

G(T) = (G(T)－Gmin) / (Gmax －Gmin),  
V(T) = (V(T)－Vmin) / (Vmax－Vmin), 

where Gmin, Gmax, Vmin, Vmax are the extrema of G(T) and V(T) 
in the mesh. However, for complex meshes, it is not easy to 
obtain these extrema, and most existing algorithms either 
ignore them or determine them empirically. Here, we intro-
duce the learning and feedback mechanism to refine these 
extrema. The first time we simplify a model, we initialize the 
maxima and the minima to arbitrary small and large values, 
respectively, and update them during the simplification.  The 
final-adjusted extrema are used as inputting parameters the 
next time we simplify the same model.  

4.2 New vertex placement 
After constricting a candidate triangle T, its three vertices are 
merged into a new vertex NV. Several methods exist for 
defining the position of NV, for example, letting it be the 
position of one of T’s vertices (subset), midpoint of one of T’s 
edges, or the center of T (average). These simple methods 
may be easy to compute, but produce low quality results (see 
Figure 16).  Inspired by the ‘piercing’ step in normal meshes 
[13], we propose the following placement method.  The idea 
is to select a point in T as the origin O, then shoots a ray from 
O in the direction of the normal vector of T to intersect with 
the original mesh, and let the intersection be the position of 
NV. This approach has the advantage that the new vertices 
always lie on the original mesh. 

The selection of the origin O should be dependent on the 
neighborhood of the triangle. As mentioned earlier, the three 
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variances of the dihedral angles, VAR1, VAR2, VAR3, reflect 
the roughness around the three vertices P1, P2, P3 of T. 
Therefore, we let the origin be at the position PO given by: 

321

332211
0 VARVARVAR

VARPVARPVARPP
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⋅+⋅+⋅
=  

Computing the ray’s intersections with all the triangles in 
the original mesh would be extremely time-consuming. 
Hence, for each triangle, we maintain a list of indices of 
related triangles in the original mesh.  Initially, the list of each 
triangle contains only index to that triangle. After performing 
an FCP involving a triangle T, we append T and IT’s lists to 
ET’s list. In this way, for each triangle in a simplified mesh, 
we can record those original triangles that are related to it, 
thus keeping the history information.  For each constricted 
triangle T, we only need to check the intersections of a ray 
with triangles in the history list of T and ST. If no intersection 
exists, we use O as the new vertex. 

5. Experimental results and comparisons 
To evaluate the quality of the output of our simplification 
scheme, we use the error measurement introduced by Gar-
land and Heckbert [9]; that is, given an original mesh model 
M and a simplified one Ms, the error between them is com-
puted as: 
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+
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nn
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where MV and MVs are the vertex sets of M and Ms respec-
tively, n and ns are the sizes of the respective sets, and d(v，
M) represents the minimal distance from v to the closest 
triangle in M. For large models, this error computation can be 
very time-consuming. However, since our simplification 
scheme records the history information, we can use this in-
formation to speed up the error computation as in [7]. 

No. 
Faces 

Simplified 
% 

Running 
Time (s) 

Error 

2900 50% 3.745 1.8297e-6
1160 80% 5.218 2.0293e-5
580 90% 5.907 5.0502e-5
290 95% 6.054 2.0505e-4

Table 1: Running time and error of simplifying the cow 
model shown in Figure 18 using our scheme. 

We have applied our scheme to some mesh models that are 
classic in this field. Table 1 shows the running time and error 
of simplifying the cow model shown in Figure 18 into vari-
ous levels of detail using our scheme. Table 2 summarizes 
some typical performance of our scheme in simplifying other 
mesh models. All the experiments were carried out on a PC 
with a PIII 600MHz processor and 128MB RAM. The n in 
the function BFn(x) is set to 0.5 and wb is 0.7. The learning 
and feedback is also adopted. 

We now discuss some visual characteristics of our simpli-
fication outputs and compare them with outputs of some 
existing algorithms. In the next two subsections, we first 
discuss feature-preserving characteristics, followed by other 
geometric properties. 

Models Org. No 
of Faces

Sim. No. 
of Faces  

Sim. 
% 

Running 
Time (s)

Hypersheet 3,832 632 84% 3.12 
Cow 5,804 580 90% 5.91 

Fandisk 12,946 1,632 87% 16.82 
Bunny 69,451 9,999 86% 59.37 
Venus 100,000 5,000 95% 99.40 

Table 2: Typical run time performance of simplifying 
various mesh models. 

5.1 Feature-preserving characteristics 
Since our scheme is completely geometric-based, it is essen-
tial to employ some heuristics to preserve features during 
simplification. We consider the features of a model as those 
that are both geometrically and visually important to human 
perception. Specifically, our scheme can preserve the fol-
lowing features. 

5.1.1 Preserving boundaries 
We consider those FCPs that satisfy the boundary and 
non-manifold conditions to be illegal; hence our scheme 
naturally preserves boundary features. Figure 9 shows an 
example of simplifying a hypersheet model. We can see that 
the boundaries are preserved precisely, albeit at the expense 
of requiring more faces.  Some recent works [1,3,9,25] can 
simplify boundaries while still maintaining reasonably good 
boundary quality. We hope to improve our boundary pre-
serving heuristics in our ongoing work. 

5.1.2 Preserving feature-lines 
Feature-lines [22] are sharp edges whose two adjacent faces 
have a dihedral angle of less than some threshold [17, 18]. 
These lines reflect the overall geometry appearance of a 
model and are visually important. Because we use dihedral 
angles as the main part of the weight-ordering computation, 
our scheme can automatically preserve these feature-lines 
without any additional aids. Figure 19 shows an example 
where most feature-lines are exactly preserved. 

Some other algorithms [17,18,22] can produce similar re-
sults, but they require the feature lines to be tagged and han-
dled by special codes, thus increasing the memory require-
ment, running time, and implementation complexity.  

5.1.3 Preserving high frequency details 
The measurement of vertex local roughness in the ordering 
weight equation, along with non-linear face area sensitivity 
and triangle folding testing, enable better preservation of high 
frequency details in the mesh. In Figure 10, we compare our 
result with that of Garland and Heckbert’s QEM [9]. Notice 
that the eye and nose regions in our simplified mesh are better 
preserved.  

Another example of preserving such details is shown in 
Figure 20, which compares the results produced with and 
without our proposed heuristics. The examples show that 
preserving high frequency details is necessary in simplifica-
tion and can be achieved by our scheme. To the best of our 
knowledge, no other current algorithms have such capability. 
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Figure 9: Preserving boundaries. The original hypersheet 

mesh of 3832 faces (left), and a simplified mesh of 632 faces 
(right). 

 
Figure 10: Comparison with QEM. The original model of 

5,804 faces (left), and simplified models of 2,000 faces using 
our scheme (middle) and QEM (right). 

5.2 Comparisons and additional features 
We now compare our output with that of Gieng et al [11] 
since their method uses the same FCP as its basic simplifica-
tion process.  

 
Figure 11: Comparison with Gieng et al’s scheme. The 

original model of 5,804 faces (top), simplified models of 
1,500 faces using our method (bottom-left) and Gieng et al’s 
(bottom-right). 

As their paper does not include results on running time or 
error, we implemented their algorithm to facilitate compari-
son. Figure 11 shows two simplified models of 1,500 faces, 
produced by our scheme and by Gieng el al’s. It can be ob-
served that the new ideas introduced in our scheme, in par-
ticular the flatness and the vertex local roughness considera-
tions, non-linear area sensitivity, and the piercing vertex 
placement, are able to produce better quality output that 
preserves the distinctive features in the mesh, e.g. the hind leg 
and foreleg regions. Preservation of these important visual 

features also causes the silhouette of our simplified models to 
remain relatively little changed, e.g. at the neck region. Our 
scheme also performs better in terms of running time and 
error. This is due to the use of simple dihedral angle compu-
tation, which only needs a dot product, compared with the 
complex curvature estimation and least square solutions 
required by the algorithm in [11].  The running time and error 
of our scheme and those of Gieng et al’s for producing the 
two models in Figure 11 are respectively 4.873s and 17.405s, 
1.0354e-005 and 2.3531e-005.  

In addition to the above general comments, we now 
summarize some additional properties of our scheme: 

 
Figure 12: Example of automatic adaptive simplification. 

Two identical bunny models simplified to 9,999 faces using 
our algorithm. The top model is flat shaded, and the bottom is 
smooth shaded. 
� Since our scheme uses the dihedral angles, which can 

reflect flatness, as the main component for ordering the 
weight, it automatically achieves adaptive simplification. 
This effect can be observed in Figure 12; the high curva-
ture regions at the neck of the bunny and the brim of its ear 
has denser and smaller triangles, while the flatter regions 
at its back have relatively large triangles. 

 
Figure 13: Visual effects of different values of n. The 

original mesh (bottom-right) and simplified meshes of 800 
faces obtained with n equals 0.5 (top-left), 1.0 (top-right), 
and 5.0 (bottom-left). 
� The non-linear area sensitivity conforms to the character-

istic of human vision, and thus further ensures good shape 
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quality triangles. Figure 14 plots the errors of simplifying 
the cow model with different values of n and wb. For 
n=0.5, although the error increases rapidly for very low 
and very large values of wb, it is the smallest for most 
values of wb∈[0,1]. The linear sensitivity of n=1.0, which 
is used by most algorithms, produces larger errors and 
fluctuates with different wb values. Similar problems oc-
cur with n=5.0. Figure 13 shows the simplified meshes 
produced using different values of n and the same wb=0.7.  
Observe that for n=0.5, the simplified mesh has triangles 
of good shapes, compared with n=1.0 and 5.0 where many 
triangles are long and narrow. Hence, in our implementa-
tion, n is set to 0.5. 
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Figure 14: Effects of different values of n in BFn(x). The 

graph plots the errors of simplifying the cow model to 580 
faces using n=0.5, 1.0, 5.0 and wb varied from 0.2 to 1.0. 
� The learning and feedback mechanism adopted for nor-

malizing the two factors G(T) and V(T) improves the con-
trollability of our scheme. Figure 15 shows the error 
curves of simplifying the cow model with and without 
using the mechanism and with various wb values. It is 
observed that, although they have similar minimum error, 
the one that adopts the mechanism is clearly flatter, fa-
cilitating the user to select a proper wb in applications. 
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Figure 15: Effects of the learning and feedback (L&F) 

mechanism. The curve plots the errors of simplifying the cow 
model to 580 faces with and without L&F mechanism, and 
wb varied from 0.2 to 1.0. 
� Our vertex placement method of finding the intersection of 

a ray with the original mesh further improves the quality of 
the simplification output. Compared with the subset 
(chooses the position of one of T’s vertices) and average 
vertex placement methods, the piercing placement method 
produces models of better visual appearance and low error. 
Figure 16 shows the results of our simplification schemes 
using the three vertex placement methods. Comparing the 

highlight areas in the original and simplified models, our 
vertex placement appears to be the most effective. 

 
Figure 16: Effects of vertex placement methods. The 

original cow model of 5804 faces (bottom-right), and sim-
plified models of 1,000 faces obtained using our simplifica-
tion scheme and employing the subset (top-left), average 
(top-right), and piercing (bottom-left) vertex placements, 
with errors 3.2302e-005 (regarded as 100%), 2.8326e-005 
(87.7%) and 2.4127e-005 (74.7%) respectively. 

6. Analytical comparisons of mesh simplifica-
tion algorithms 
After evaluating our simplification scheme empirically in the 
last section, we now compare it with other algorithms ana-
lytically. As mentioned earlier, most mesh simplification 
algorithms can be classified into three classes according to 
the basic simplification process they adopt.  They are 
VDP-based, ECP-based and FCP-based simplification algo-
rithms. Since their target elements are vertices, edges and 
faces, which are inter-connected in a mesh, we attempt to find 
a common ground for comparison. 

ECPECPECPECP ECPECPECPECP

FCPFCPFCPFCP
 

Figure 17: Relationship between FCP and ECP. The 
leftmost mesh is simplified to the rightmost mesh by col-
lapsing two edges successively. The result can also be 
achieved directly by one FCP. 

We first compare VDP and ECP. Although a VDP deletes a 
vertex and re-triangulates the resulting hole, it can be viewed 
as collapsing an edge that is connected to the vertex into its 
other endpoint in a given triangulation. Hence, we can con-
sider a VDP as an endpoint ECP. Analogously, we can find 
the intrinsic relationship between FCP and ECP. As shown in 
Figure 17, if two successive ECPs involve two edges from 
the same triangle, the result is the same as a FCP.  That is, we 
can consider a FCP as two successive ECPs. 

 Based on their intrinsic relationships, we conclude that all 
the three processes can be unified using ECP. We therefore 
consider ECP to be the fundamental process.  A significant 
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practical benefit of this unification is that different error 
measurements and implementations of a simplification 
scheme that adopts one basic process can be employed by 
another scheme that adopts another basic process. For ex-
ample, although the basic process of QEM [9] and its ex-
perimental implementation QSlim [8] is ECP, we can easily 
apply their quadric error metrics to a VDP-based algorithm 
by assigning the Q matrix to every vertex. Similarly, we can 
introduce the Q matrices to all the vertices of a triangle to 
evaluate the error of a FCP. As another example, Garland [7] 
used the QEM in an FCP-based simplification scheme, and 
QSlim [8] offers two almost identical implementations of 
ECP and FCP using QEM. 

Although the three basic processes have a unifying ground, 
they are distinctive in their advantages and suitability for 
different applications. We now analyze the three classes of 
simplification algorithms in terms of speed and error based 
on the established unifying ground. The comparison can aid 
users in making a better selection of simplification algo-
rithms.  We note that Garland [7] has compared empirically 
the running time and error of his QEM-based ECP and FCP 
algorithms, but did not offer detailed explanations for their 
differences in performance.  
� Speed 

It is often complex to analyze the speed of different mesh 
simplification algorithms because they may adopt different 
basic processes. Even if they use the same process, their 
process-ordering methods and implementations (such as data 
structures, algorithm frameworks, query methods, sorting 
methods) may differ, thus making analytical comparisons 
non-trivial. Almost all researchers present only the absolute 
speed of their algorithms, such as the running time, as we 
have done in Section 5. Lindstrom et al. [26] evaluated the 
absolute speed of many simplification algorithms. However, 
such absolute speed evaluation only partially reflects the 
advantages of an algorithm and not its intrinsic properties. 
Due to the unifying nature of the basic processes, which 
implies that the same implementations and ordering methods 
can be used by different schemes adopting different basic 
processes, we can omit these factors and only evaluate the 
relative speeds of the basic processes per se. 

The VDP and the ECP delete two triangles from the mesh, 
while the FCP deletes four. Hence, the unification allows us 
to conclude that FCP is the fastest. Next, comparing the VDP 
and ECP processes, we conclude that the former is faster 
because it does not have to compute new vertex placement 
while the latter does. Thus we conclude that SPEEDFCP > 
SPEEDVDP > SPEEDECP. This conclusion is consistent with 
the results in Section 6.1 of [7]. 
� Error 

To compare the errors of the different classes of algorithms, 
we presume that they adopt the same ordering formulae and 
implementations.  As the VDP does not introduce new ver-
tices, its error is larger than ECP and FCP. On the other hand, 
a FCP is equivalent to two successive ECP applied to two 
edges from the same triangle. Since the chances that two 
successive ECPs being applied to two edges of the same 
triangle are low in an ECP-based algorithm, and the FCP is 
likely to delete some edges that have larger weights than the 

collapsed edges of the two ECPs, we conclude that the error 
of the FCP is larger than that of ECP.  Hence, our conclusion 
is ERRORVDP > ERRORFCP > ERRORECP. 

With the above discussion, we summarize our comparisons 
of the three classes of simplification algorithms in Table 3. 

Simplification Algorithms Speed Error 
The VDP-based simplification Fast Largest 
The ECP-based simplification Slowest Smallest 
The FCP-based simplification Fastest Small 

Table 3: Comparisons of three classes of simplification 
algorithms.  

Our comparisons enable users to better select a simplifica-
tion scheme to suit the needs of their applications.  For ex-
ample, the ECP-based simplification has the smallest error 
and produces the best quality results, so it can be used in 
applications where the accuracy of the mesh is of paramount 
importance. The FCP-based simplification is the fastest, 
hence it can be applied in speed critical conditions. With the 
unifying ground, we can distinguish the intrinsic properties of 
individual basic processes from the absolute speed results 
given in [26].  By removing these intrinsic factors, the results 
in [26] can also reflect the advantages of different ordering 
methods and implementations. Hence, after selecting the 
basic process based on our comparisons, the user can choose 
a reasonable ordering method and implementation according 
to the evaluation of [26] to optimize their final application. 

7. Summary and Future Work 
In this paper, we have introduced an effective fea-
ture-preserving mesh simplification scheme that adopts the 
basic face constriction process proposed by Gieng et al. [11].  
In formulating the weight-ordering equation, we borrow a 
statistical idea to introduce terms involving the mean and 
variance of dihedral angles, which can detect flat neighbor-
hoods that are free from rough features. Along with other 
heuristics, like FCP validity checking, the weight ordering 
equation enables our scheme to be effective in preserving 
features of high geometric and visual importance, such as 
boundaries, feature-lines and high frequency details. The 
computations are simple, making our scheme time-effective 
and easy to implement. Together with favoring constricting 
triangles that give rise to low-valence new vertices, the 
weight ordering incorporates non-linear area sensitivity to 
further ensure good triangle shapes in the output. We also 
introduce the learning and feedback mechanism to normalize 
the ordering factors, which enhances user controllability.  By 
making use of the history information when computing the 
new vertex placement, our simplified models is able to retain 
as much original details as possible. 

For analytic comparison of various algorithms that adopt 
different basic processes, we have unified three basic sim-
plification processes, the Vertex Decimation Process (VDP), 
the Edge Collapse Process (ECP) and the Face Constriction 
Process (FCP), by showing their intrinsic relationships. 
Based on this unification, we discuss the differences among 
the three basic processes and describe their merits and de-
merits. 
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There are several directions for future work: 
� Since a FCP is fundamentally ECP, we can extend our 

scheme to construct progressive mesh representations [18] 
for mesh models.  This will allow our scheme to perform 
multiresolution modeling. 

� Permit more types of triangles, such as those having their 
surrounding triangles on the boundary, to be constricted to 
achieve higher simplification rate. 

� Include some appearance criteria involving visual attrib-
utes like color, texture and viewing parameters into our 
scheme to perform appearance preserving and view-de-
pendent simplification. 

� Apply our scheme to simplify large-scale and complex 
environments such as those in virtual reality applications 
to speed up rendering while ensuring high fidelity. 

Acknowledgements 
This research was supported by the Natural Science Founda-
tion of China (Project Number 69902004) and the Hong 
Kong Research Grant Council (AOE 98/99.EG01). The 
mesh models in our paper are courtesy of the Stanford Uni-
versity Computer Graphics Laboratory, the Computer 
Graphics Group in University of Washington, Michael Gar-
land and Hugues Hoppe. We are particularly grateful to Dr 
Hujun Bao for his valuable comments and suggestions. 

References 
1. C. Bajaj, D. Schikore, Error-bounded Reduction of Triangle 

Meshes with Multivariate Data, SPIE, 2656, 34–45, 1996 
2. A. Certain, J. Popovic, T. DeRose, etc, Interactive Multireso-

lution Surface Viewing, Computer Graphics (SIGGRAPH’96 
Proceedings), 91–98, 1996 

3. J. Cohen, D. Manocha, M. Olano, Simplifying Polygonal 
Models Using Successive Mappings, Proceedings of IEEE 
Visualization’97, 395–402, 1997 

4. J. Cohen, A. Varshney, D. Manocha, etc, Simplification En-
velopes, Computer Graphics (SIGGRAPH’96 Proceedings), 
119-128, 1996 

5. M. Eck, T. DeRose, T. Duchamp, etc, Multiresolution Analy-
sis of Arbitrary Meshes, Computer Graphics (SIGGRAPH’95 
Proceedings), 173–182, 1995 

6. J. El-Sana, Y. J. Chiang, External Memory View-Dependent 
Simplification, Computer Graphics Forum, 19(3), 2000, 
EG2000 Proceedings 

7. M. Garland, Quadric-Based Polygonal Surface Simplification, 
PhD thesis, School of CS, CMU, 1999 

8. M. Garland, QSlim v2.0, http://www.uiuc.edu/~garland/ 
CMU/quadrics/qslim.html, 1999 

9. M. Garland, P. Heckbert, Surface Simplification Using Quad-
ric Error Metrics, Computer Graphics (SIGGRAPH’97 Pro-
ceedings), 209-216, 1997 

10. M. Garland, P. Heckbert, Simplifying Surfaces with Color and 
Texture using Quadric Error Metrics, Proceedings of IEEE 
Visualization'98, 1998, 

11. T. S. Gieng, B. Hamann, K. I. Joy, etc, Smooth Hierarchical 
Surface Triangulations, Proceedings of IEEE Visualization’97, 
379-386, 1997 

12. A. Gueziec, Surface Simplification Inside a Tolerance Volume, 
Second Annual International Symposium on Medical Robotics 
and Computer Aided Surgery, 132-139, 1995 

13 I. Guskov, K. Vidimce, W. Sweldens, etc, Normal meshes, in 
Computer Graphics (SIGGRAPH’2000 Proceedings), 95-102,  
2000 

14. B. Hamann, A Data Reduction Scheme for Triangulated Sur-
faces, Computer Aided Geometric Design, 11, 197-214, 1994  

15. P. Heckbert, Multiresolution Surface Modeling, Siggraph97 
course notes 25, 1997 

16. P. Heckbert, M. Garland, Survey of Polygonal Surface Sim-
plification Algorithms, T.R of Dept. CS, Carnegie Mellon 
Univ., May, 1997 

17. H. Hoppe, T. DeRose, T. Duchamp, etc, Piecewise Smooth 
Surface Reconstruction, Proceedings of SIGGRAPH’94, 
Computer Graphics Proceedings, Annual Conference Series, 
295-302, 1994 

18. H. Hoppe, Progressive Meshes ， Computer Graphics 
(SIGGRAPH’96 Proceedings), 99-108, 1996 

19. H. Hoppe, View-dependent Refinement of Progressive 
Meshes, Computer Graphics (SIGGRAPH’97 Proceedings), 
189–198, 1997 

20. H. Hoppe, T. DeRose, T. Duchamp, etc, Mesh Optimization，
Computer Graphics (SIGGRAPH’93 Proceedings), 19-26, 
1993 

21. M. Hughes, A. A. Lastra, E. Saxe, Simplification of 
Global-illumination Meshes, Computer Graphics Forum, 
15(3), 339–345, 1996, Proceedings of Eurographics’96 

22. A. Lee, W. Sweldens, P. Schreoder, etc, MAPS: Multiresolu-
tion Adaptive Parameterization of Surfaces, Proceedings of 
SIGGRAPH’98, Computer Graphics Proceedings, Annual 
Conference Series, 95-104, 1998 

23. M. Levoy, K. Pulli, B. Curless, etc, The Digital Michelangelo 
Project: 3D Scanning of Large Statues, Computer Graphics 
(SIGGRAPH’ 2000 Proceedings), 131-144, 2000 

24. P. Lindstrom, Out-of-Core Simplification of Large Polygonal 
Models, Computer Graphics (SIGGRAPH’ 2000 Proceedings), 
2000 

25. P. Lindstrom, G. Turk, Fast and Memory Efficient Polygonal 
Simplification, Proceedings of IEEE Visualization’98, 
279-286, 1998 

26. P. Lindstrom, G. Turk, Evaluation of Memoryless Simplifica-
tion, IEEE Transactions on Visualization and Computer 
Graphics, 5(2), 98-115, 1999  

27. R. Ronfard, J. Rossignac, Full-range Approximation of Tri-
angulated Polyhedra, Computer Graphics Forum, 15(3), Aug. 
1996, Proc. of Eurographics ’96 

28. J. Rossignac, Geometric Simplification and Compression, in 
Siggraph97 course notes, 1997 

29. J. Rossignac, P. Borrel, Multiresolution 3D Approxi-mations 
for Rendering Complex Scenes，  Modeling in Computer 
Graphics, edited by B.Falcidieno and T.L.Kunii, 
Springer-Verlag, 455-465, 1993 

30. W. J. Schroeder, J. A. Zarge, W. E. Lorensen, Decimation of 
Triangle Meshes, Computer Graphics (SIGGRAPH’92 Pro-
ceedings), 26(2), 65-70, 1992 

31. M. Soucy, D. Laurendeau, Multiresolution Surface Modeling 
Based on Hierarchical Triangulation, Computer Vision and 
Image Understanding, 63(1), 1–14,1996 



    10 

 
Figure 18: Different levels of detail of a cow model. The 

topmost original model has 5804 faces. From left to right, top 
to bottom, the other models have 2900, 1160, 580, 290 faces 
respectively. 

 
Figure 19: Preserving feature-lines. The original fandisk 

model (top and bottom-left) of 12,946 faces is simplified to 
1,632 faces (bottom-right). The feature-lines are red. 

   

     
Figure 20: Preserving high frequency details. The left column shows the front and back views of the original venus model of 

100,000 faces; the middle and the right columns show simplified models of 5,000 faces, respectively obtained with and without 
employing the heuristics for preserving details. That is, the middle model is obtained using our scheme, and the right model is 
obtained with G(T) and the origin Po computed using only the mean values, and n in BFn(x) set to be 1.0. Although these two 
conditions give relatively similar results, we can see that our heuristics can better preserve high frequency details, for example, 
the hair regions just above the forehead, the hair waves in the front view, and the ringlet mass in the back view. 


