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 Abstract 

 
Figure 1: Calligraphy made with our system 

This paper presents a novel 3D brush model 
consisting of a skeleton and a surface, which is 
deformed through constrained energy minimization. The 
main advantage of our model over existing ones is in its 
ability to mimic brush flattening and bristle spreading 
due to brush bending and lateral friction exerted by the 
paper surface during the painting process. The ability to 
recreate such deformations is essential to realistic 3D 
digital painting simulations, especially in the case of 
Chinese brush painting and calligraphy. To further 
increase realism, we also model the plasticity of wetted 
brushes and the resistance exerted by pores on the 
paper surface onto the brush tip. Our implementation 
runs on a consumer-level PC in real-time and produces 
very realistic results. 

 
 

1. Introduction 
 
 Digital painting has been adopted by many artists 

due to its advantages over traditional media in terms of 
convenience, ease of experimentation, and the 
possibility of combining the effects of multiple 
traditional media in one digital painting. It is now 
possible to achieve the effects of various western 
painting media (e.g. oil or charcoal) realistically using 
commercial packages like Corel Painter [13]. In contrast, 
however good a 2D mark-making technique is, it cannot 
extend the expressiveness of Chinese brushes to the 
digital domain. In Chinese brushwork, a painter uses his 
brush in a manner similar to the way a musician uses his 
instrument to deliver harmonious rhythm – each brush 
stroke should be rendered in a continuous rhythmic 
movement so that the painted subject exhibits vigor and 
spirit [10, 18]. The artist’s intent is always to capture 
the spirit of the painted subject, rather than the accuracy 
of its outward appearance, and this is often achieved by 
the grace of a few deft strokes 1 . In the case of 
calligraphy, the brush movement is analogous to 
dancing. This kind of expressive executions is 

achievable because of the soft-yet-resilient quality of 
the brush tuft.  

Our aim is to simulate the deformation of Chinese 
brushes and the ink deposition during the painting 
process in real-time. It is expected that our 3D brush 
model, when combined with an ink-diffusion simulation 
method and a six degrees-of-freedom (DOF) input 
device, can be a tool for creating digital Chinese 
brushwork. The benefits of such a tool include the 
following: 

• Create electronic art more naturally and with 
spontaneity – users paint and draw with a virtual 
brush rather than edit control points, allowing 
individual user style to be naturally embedded in 
the art pieces. 

• Render oriental font with aesthetic quality of real 
calligraphy – high-resolution characters with 
more visually pleasing features can be generated. 

• Parameters can be modified to produce different 
effects – artists can easily experience the effects 
of different types of brushes and paper. 

• Non-photorealistic rendering – Chinese brush 
painting style can be applied to 3D object 
rendering. 

Our model is empirical in that we attempt to model 
only physical properties that are necessary for 
producing realistic visual results. Our emphasis is on 

                                                           
1Chinese paintings are categorized into two main types: meticulous 
and spontaneous [10]. Throughout this paper, we refer to the 
spontaneous style. 



reproducing features of Chinese brushes that are 
important in the artistic sense.  

 
2. Previous Work 

 
Earlier efforts in brushwork simulation focused on 

stroke rendering. Strassmann [19] swept a one-
dimensional texture to obtain varying shades within one 
stroke. Strokes generated by this method look artificial 
because the natural spreading of the brush bristles is not 
modeled. In [14], Pham modeled the trajectory of a 
stroke as a planar cubic B-spline, and obtained the 
width of the stroke by offsetting the knots in the spline. 
It is difficult to produce natural looking strokes by knot 
specification, and the effects of bristles spreading and 
varying shades also look artificial. The skeletal stroke 
technique [7] deformed 2D strokes to produce amazing 
results and it worked well for making illustrations. 
However, for Chinese brushwork, or watercolor-like 
painting in general, this technique requires storing a 
large sample of stroke textures to avoid appearing 
repetitive. Strokes with self-intersection or high 
curvature are also not realistic because the stroke 
textures are not generated physically. 

 

To produce more realistic brush strokes, later 
research efforts incorporated physics into the brush 
models. Wong et al. [22] modeled a calligraphy brush as 
an inverted cone, with the footprint controlled by user-
adjustable parameters. Using the theory of elasticity, 
Lee [11] modeled a brush as a collection of rods with 
homogeneous elasticity along the entire length. Saito et 
al. [17] used a Bezier spine curve and a set of discs 
centered along the curve to model a brush. 
Unfortunately, all these models are too simplistic to 
produce the effects of some commonly used painting 
techniques. For example, the cone model ignores the 
brush tip when a brush is pressed down, and thus fails to 
produce slanted-brush strokes  (in which the tip travels 
along one side of a stroke rather than staying in the 
middle) in painting and calligraphy [10]. The splitting 
of bristles is also not adequately simulated in these 
systems and thus cannot produce realistic brush 
footprints. 

In the recent work of Baxter et al. [3], a western 
brush was modeled as a simple spring-mass system. 
Using an approximated implicit integration method, 
they were able to produce a real-time system for doing 
acrylic-like painting. Like other previous techniques, no 
attention is paid to brush spreading or splitting. Thus, 
their system cannot be applied to produce oriental 
brushwork since the brush spreading plays an important 
part in such painting process. 

 
3. Introduction to Chinese Brushes 

 
To design an effective brush model, we must first 

understand thoroughly the properties that Chinese 
brushes exhibit. Chinese brushes are made from animal 
hairs. The anatomy of a typical brush [18] is shown in 
Figure 2. A layer of shorter hairs called mantle is placed 

inside the brush body, and the empty space created by 
the shorten hairs serve as a reservoir for ink. Some 
special-purpose brushes may have different hair layer 
arrangements made with different types of hairs. 
According to the type of hair used, Chinese brushes can 
be generally classified into three main types, namely, 
hard, soft and combination, each of which has different 
stiffness and degree of absorbent. For example, a 
combination brush has a hard kernel, but softer and 
more absorbent hairs in the outer layer. The kernel can 
also be waxed to give extra stiffness. Since the type of 
brush can affect the output considerably, a good brush 
model should be flexible enough to accommodate these 
variants of brush characteristics.  
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Figure 2: Anatomy of a typical brush 

A good brush is said to be elastic – it bends when 
some external force is applied to it and restores to its 
original shape when the force is removed. However, 
practically all brushes, especially soft ones, are inelastic 
to a certain degree when moisten. The tip of a brush is 
less stiff than its root for two reasons: natural animal 
hair is thinner at its tip, and less hairs reach the tip due 
to their different lengths. Therefore, we should also 
model variable stiffness along the length of a hair tuft.  

A brush forms a single tuft and runs into a fine tip 
when it is moisten because the attraction force of water 
molecules is large enough to pull all the bristles 
together. It becomes bushy only when it is dry or worn 
away after long use. The same brush can be used to 
draw both fine and bold lines by applying different 
pressures and holding at different angles. As the brush 
gradually dries up while ink is being deposited onto the 
paper, the attraction force of water molecules reduces 
and the tip of the tuft starts to split into two or more 
tips. This characteristic, together with lessen ink loading, 
provides the condition for producing the flying-white 
effect [10], in which white areas appear in the stroke. In 
addition, whenever the artist desires, the tip can be 
deliberately split to produce multiple lines in a single 
stroke. We observe that a small number (at most five) of 
tufts suffice for most painting process; treating the 
brush as more tufts is necessary only when applying 
special painting techniques, such as the split-brush 
technique [10] for painting hair-like objects.  

 
4. Brush Model 

 
The ultimate way to producing realistic dynamics of 

a brush tuft is to physically simulate each and every 
bristle, which is simply not practical. So, the challenge 
we face is how to collectively simulate the bristles so 
that the simulation can be done in real-time, and yet the 
model is flexible enough to yield the effects expected by 



Ni-1

Ni

Ni+1

Lateral line of N i

Ni+2

(initial orientation)

 
Figure 4: Notations for our geometric model 

artists. The idea of collective modeling has also been 
proposed for human hair modeling [8, 16, 20].  

 With the properties described earlier in mind, we 
design a brush model consisting of three components: 
brush geometry, brush dynamics, and ink loading and 
depositing. The details are presented in the following 
sub-sections.  

 
4.1 Brush Geometry 

 
The representation of the brush geometry is closely 

related to how we model the brush dynamics. Like some 
previous models [3, 4], we employ a layered structure.  
The geometry consists of two layers, namely the 
skeleton and the surface.  

 
4.1.1 Brush Skeleton. The skeleton consists of a spine 
and some lateral nodes. Figure 3 shows our geometric 
model for a brush tuft. We represent the spine as a 
connected sequence of line segments of decreasing 
lengths towards the tip. Since the brush root is usually 
much stiffer than the tip, it bends much less; in fact, 
usually only the tip and the belly are used to paint. 
Therefore, for modeling efficiency, progressively 
shorter segments are used towards the brush tip so as to 
dedicate higher resolution to the tip. The highest node 
attached directly to the brush handle is called the root 
node. Each joint between two adjacent spine segments 
has two DOF’s in the polar coordinate system (see 
Figure 4). Suppose the spine has n + 1 nodes, 
N0,N1,…,Nn, with N0  as the root node. We denote the 
positions of the nodes by O = (O0 , O1 ,…,On). The 
differential changes in the orientation of the segments 
are denoted by θ = (θ1,θ2 ,…,θ n) and φ = (φ1 , φ2  ,…,φ n). 
We refer to θ  as the bend-angles, and φ  the turn-angles, 
since θi  is the angle between the ith spine segment and 
its previous segment, and φ i gives the angle of rotation 
of the ith segment about its previous segment. We refer 
to (θ , φ ) as the state of the spine. A local Cartesian 
frame is defined for each node, by rotating the frame of 
the previous node by the turn- and bend-angles. The 
spine is responsible for the general motion of the whole 
tuft. 

In addition to the brush spine, we introduce some 
lateral nodes to further model the tuft deformation. Each 
spine node has two lateral nodes attached to it. To 

constrain the movement of a lateral node associated to a 
spine node Ni , we define the joint-bisecting plane of Ni 
as the plane passing through Oi, bisecting the angle 
between the two adjacent spine segments and 
perpendicular to the plane spanned by the segments. 
The lateral node is then constrained to move along a 
line passing through Oi on the joint-bisecting plane. We 
call this line the lateral line of Ni. Initially, the lateral 
line is set to be normal to the two adjacent spine 
segments; during simulation it has one rotational DOF 
on the joint-bisecting plane.  

The two lateral nodes attached to a spine node 
represent two groups of bristles on both sides of the 
spine. We observe that this configuration can effectively 
capture the essence of tuft deformation for the following 
reasons. Since the brush interacts with only a planar 
painting surface, the brush footprint is largely 
determined by tuft flattening, controlled by bending and 
lateral drag (e.g., when doing slanted-brush strokes). 
With the lateral lines having one DOF, the non-
penetration constraints in our dynamic model tend to 
keep the lateral lines of those spine nodes that touch the 
paper to be parallel to the paper. Consequently, when 
the brush is pressed against the paper, the loci of the 
lateral nodes would lie on the painting surface, and thus 
effectively model horizontal deformation and the lateral 
spreading of the bristles. 

 
4.1.2 Brush Surface. The brush surface is obtained by 
sweeping a varying elliptic cross section along the spine.  
For moistened and unbent brushes, the cross sections 
are assumed to be circles throughout the tuft.  We pre-
define these circle radii for various types of brushes and 
call them the minimum tuft radii. In general, the cross 
section is composed of two half ellipses having a 
common minor radius, but possibly different major 
radii, as shown in Figure 5. This simple representation 
is computationally efficient and does not differ much 
from the observed reality. A cross section Ωi at a spine 
node Ni  lies on the joint-bisecting plane, and its major 
axis coincides with the lateral line of Ni. To generate the 
brush surface, we derive the cross sections between 
spine nodes by interpolating Oi, the frame axes and radii 
of Ωi  using cubic spline.  
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Node 0 (root node)
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Lateral Nodes

 
Figure 3: Geometric model of a brush tuft 

 



 

 The radii of Ωi at a spine node Ni are determined by 
the positions and the effective radii of its two lateral 
nodes. For intersection checking during dynamics 
simulation, the spine and lateral nodes are assigned 
effective radii to model the thickness of the bristle 
groups they represent. For a spine node, since it is 
sufficient to assume that the bristle group has circular 
cross section (elliptic shape would be taken care of by 
the lateral nodes), it is assigned an effective radius rsp; 
for a lateral node, to better model the flattening, we 
assume that the bristle group forms an ellipse and assign 
to it the major and minor effective radii (see Figure 5). 
All these effective radii are set as fractions of the minor 
radius of Ωi from the previous time frame. Let a and b 
be the distances between the lateral nodes and the spine 
node as shown in Figure 5. The major radii for Ωi are 
then taken as (a + rleft) and (b + rright), where rleft and 
rright are the major effective radii of the lateral nodes. By 
the conservation of cross section area, we compute the 
minor radius, c, as follows: 

rightleft rrba
rc

+++
=

22  

where r is the minimal tuft radius at the spine node .  
 With a single tuft, it is not possible to model bristle 

splitting geometrically. To achieve brush footprints with 
bristle-splitting effect, we use an alpha map to make 
part of the brush surface transparent, as shown in Figure 
6(b). The alpha map for the tuft surface can be 
generated dynamically by patching white tuft-like 

shapes of various lengths and widths onto a black image. 
Currently, our implementation uses a static map. 
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Figure 5: Tuft cross section 
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Figure 6: Bristle splitting for a single tuft 

 
4.2 Brush Dynamics  

 
One way to model the brush dynamics is to use bend 

and stretch springs at the spine joints, assign point 
masses to the nodes, and use Newtonian physics to 
setup the motion equations for the nodes. However, 
since bristles have very little inertia relative to the 
forces applied onto them, by the Newton’s second law, 
large accelerations could result. Exerted by its own 
internal spring forces, a brush tuft also behaves as a 
highly damped system. Given the stiff nature of the 
dynamic system, it is difficult to produce a tractable 
real-time system for the brushes by solving second-
order differential equations derived from Newton’s 
second law. Baxter et al. [3] cope with the instability 
difficulty by adding large damping and employing an 
approximated implicit integrator [6], which is reported 
to be more stable and faster, but much less accurate, 
than the large step integrator presented in [2]. However, 
the approximated integrator has the drawback of having 
to model the brush internal forces using only stretch 
springs rather than bend springs, which model non-
stretchable bristles more naturally. 

An alternative to modeling the brush dynamics is to 
use energy minimization to determine the steady state of 
the brush at a given time step. An energy function is set 
up for the system and its steady state is determined by 
finding a local energy minimum numerically. In 
previous cloth simulation work, energy-based methods 
have generally been used to simulate static scenes [12]. 
However, since brushes are in equilibrium almost all the 
time during the painting process, energy minimization is 
also a viable approach for simulating brush dynamics; it 
was employed by Saito et al.[17].  Therefore, to avoid 
solving stiff differential equations [21], we employ the 
energy minimization approach for our brush simulation. 
 
4.2.1 Energy Minimization Problem. We formulate 
the brush dynamics system as a static constrained 
minimization problem [1]. The energy function takes 
into account the frictional and deformation energies.  
We use Sequential Quadratic Programming (SQP) to 
solve the constrained energy minimization problem 
because of its fast convergence. We first describe our 
energy minimization algorithm, and then give the 
details of our energy function formulation in Section 
4.2.2. 

In general, the initial estimates are crucial for 
solving minimization problems. Fortunately, for our 
simulation, the state of the previous frame serves as a 
very good initial estimate. Suppose the positions of the 
spine nodes are Oi =(Oi0 , Oi1 ,…, Oin) and the spine state 
is (θ i , φ i ) for the current frame.  Further suppose that 
the new position tracked by the input device is p1 for the 
next frame. We determine the new node positions Of = 
(Of0,Of1,…,Ofn) and the new spine state (θ f , φ f ) in the 



po

p1 po

p1

Figure 7: Two possible scenarios for 
determining the positions of the spine nodes 

after moving the brush from p0 to p1 

Deformation Energy. The tuft deformation energy 
Edeform has two components, Espine and Elateral, which 
account for the bending of the tuft spine and the lateral 
deformation of the tuft respectively. In our brush model, 
each spine joint has two DOF’s, namely the bend-angle 
and the turn-angle. We impose a bend spring at a spine 
joint for each DOF to model the bending force of the 
tuft. The energy stored in a bend spring is expressed as 

( ) m
bend θκθ =BendEnergy  

where κbend is the spring coefficient, m ≥ 2 to account 
for the non-linearity of real bristles. Setting m = 3 works 
well in our implementation.  

When the brush is wet, the attractive force between 
the water and bristle molecules holds the bristles 
together. When the brush is bended by an external force, 
work is done against the friction caused by the 
molecular attractive force. Some energy is transformed 
to the internal (heat) energy of the water and bristle 
molecules. To account for this phenomenon, we also 
introduce an energy term on the change of bend- and 
turn-angles in the same form as that for bend springs. 
The final spine deformation energy, Espine, is defined as 
a weighted sum of bend spring energies for the bend- 
and turn-angles and energies on the angle changes. 

following steps (circled numbers in Figure 7 correspond 
to these steps):  

1. Set Of0 = p1 and initialize (θ f , φ f ) = (θ i , φ i ). 
2. Determine if any spine node penetrates the 

paper, and set minimization constraints for such 
nodes to be above the paper. Optionally, obtain 
a better initial estimate by updating (θ f, φ f ) so 
that no nodes penetrate the paper. 

3. Solve the constrained energy minimization 
problem for the state (θ f, φ f ) and update the 
node positions O f  accordingly. 

The lateral nodes are to be dragged with friction 
against the paper and their positional deviations from 
their rest positions contribute to the deformation energy 
of the tuft. For both the spine nodes and the lateral 
nodes, the frictional work is calculated by assuming that 
the nodes constrained to be above the paper (i.e. those 
penetrating the paper initially) are dragged from their 
contact positions to their final positions, with the 
contact positions taken as the positions where the nodes 
first touch the paper (determined by interpolation, 
shown as dotted line in Figure 7). We refer to this 
displacement as the dragging vector of the node. When 
checking if a node penetrates the paper, we consider a 
spine node as non-penetrating only if it is at least rsp 
above the paper since the node represents a tuft with 
thickness; a lateral node is non-penetrating only if the 
ellipse representing the bristle group is above the paper. 
Thus, part of the generated brush surface will actually 
penetrate the paper plane and it determines the brush 
footprint for ink depositing. For efficiency, only the 
lateral nodes of alternating spine nodes are fed into the 
dynamics simulation; the positions of the other lateral 
nodes are determined by interpolation.  

The lateral nodes, apart from being dragged by 
frictional force against the paper, are subject to two 
sources of spring forces: stretch springs along the lateral 
lines, and bend springs connecting consecutive lateral 
nodes along the tuft. We define Elateral as a weighted 
sum of the energies of these stretch and bend springs. 
The stretch springs account for the attraction force of 
water molecules that pulls the lateral nodes towards the 
spine and thus the spring coefficient is a function of the 
wetness. The energy function for a stretch spring is in 
the form:  

( ) (( )) m
stretchstretch srdκdE θθ +−=,  

where κstretch is the spring coefficient, d is the distance 
of the lateral node from its spine node,  r  is the minimal 
tuft radius of the spine node, and s is a linear function of 
the bend-angle θ  at the associated spine node. 
Empirically, κstretch can be a simple linear function of the 
current wetness. 

The bend springs are added to the lateral nodes to 
account for the bending of the bristle groups represented 
by the nodes. The energy of such a bend spring is a 
function of the angle between two line segments, each 
connecting the associated lateral node to one of its two 
adjacent lateral nodes (shown as βi’s in Figure 8). For 
modeling stiffer brushes, this energy term would have a 
larger weighting with respect to that of the stretch 
springs in its contribution to Elateral . 

 
4.2.2 Energy Functions. In our energy function 
formulation, we include only those components that 
have significant effects on the dynamic behavior. We 
exclude the potential energy of the tufts due to gravity 
since the brush mass is small. The twisting energy of the 
bristles and the kinetic energy of the tuft are also 
neglected due to their small contribution. We define the 
energy function as E  =  Edeform + Efrict , where E is the 
total energy, Edeform the tuft deformation energy and Efrict 
the frictional work done by dragging the brush against 
the paper surface.  

Spine nodes

Lateral nodes
β0 β1

 
Figure 8: Bend springs for lateral nodes  

 



Frictional Energy. We formulate the frictional energy 
of a brush dragged against a painting surface as follows: )min(wherek αθρρθθ ,,)(BendEnergy 3 ′=−=  

 The plasticity value α may be automatically adjusted 
according to the current wetness of the brush. We 
observe that this simple method improves the realism of 
the brush significantly over previous brush models, 
giving the plasticity that users of real brushes expect. 
Brush plasticity affects the rhythmic movement artists 
make and is reflected on the ink traces. Figure 9 shows 
the ink traces of the same brush movement with 
different values of α (in radian).  

∑ ⋅=

nodes
 contacting
∆xFE frict µ  

where µ is the frictional coefficient, F is the normal 
force that a contacting node exerts on the paper, and ∆x 
is the dragging vector of the node defined in Section 
4.2.1. A node is said to be a contacting node if it 
corresponds to an active constraint or if its normal force 
F in the previous frame is non-zero. Suppose Nj is the 
contacting node with the smallest index. The normal 
force F for Nj can be taken as the sum of the vertical 
components of the spring forces at all the nodes Ni’s for 
i < j. For the rest of the contacting nodes, F is taken as 
the vertical component of the spring force at its previous 
node. However, since the tuft spine is represented as 
discrete nodes, the normal force function would not be 
smooth when a node switches between contacting and 
non-contacting. In order to avoid drastic discontinuity in 
the frictional energy function so that the optimization 
would converge, we distribute part of F at Nj to its 
upper neighbor Nj-1 according to the paper-touching 
proportion of the tuft segment between Nj and Nj-1. For 
a lateral node, we set its F as a fraction of the normal 
force of the associated spine node. 

 In real-life Chinese painting, re-shaping the brush 
tip to a sharp point is often necessary before drawing a 
new stroke.  If desired, the plasticity can be set to zero 
so that tip re-shaping is eliminated altogether. Clearly, 
we can include a feature in our implementation such 
that pressing a key reverts the brush to its original shape. 
 

 
α = 0.00         α = 0.05         α = 0.08          α = 0.10 

Figure 9: Ink traces of the same brush motion 
with different brush plasticity values 

Since the bristles forming the tuft are generally 
aligned, the tuft surface appears corrugated. This makes 
the tuft experiences a larger friction when it is dragged 
sideway. To account for this anisotropic resistance, we 
also modulate the frictional energy with the direction of 
the dragging: 4.2.4 Pore Resistance. Most types of painting paper are 

full of pores. When we slant the brush and bring its tip 
into contact with the paper, the pores act like a fence 
impeding sliding. If the brush is then pushed against the 
paper in the direction towards where the tip is pointing, 
these pores continue to exert large resistance. Setting up 
a frictional energy function to account for this behavior 
would give rise to a steep function, making the 
optimization harder to converge. Thus, we model this 
resistance by adding one extra constraint in the 
minimization problem as a moving blocking plane. The 
blocking plane is normal to the projected spine segment 
of the brush tip onto the paper surface. The distance 
between the plane and the brush tip is a function of the 
height of the tip above the paper and the angle the tip 
makes with the paper. When the tip is in contact with 
the paper, the distance between the blocking plane and 
the tip is very small, and thus the constraint prevents the 
tip from sliding. An additional lead space between the 
blocking plane and the brush tip is also introduced as a 
user-defined parameter to adjust the blocking effect.  

( )∑ ⋅−+⋅⋅=

nodes
 contacting

)1( perpfparffrict FE ∆x∆x κκµ  

where ∆xpar and ∆xperp are the components of ∆x 
parallel and perpendicular to the tip spine projected onto 
the paper, respectively, and κf ∈[0,1] is the weighting 
value for ∆xpar  and ∆xperp . 

 
4.2.3 Plasticity. As mentioned in Section 4.2.2, when a 
wet brush is deformed, work has to be done against the 
molecular friction. When the brush is released, the 
restoring spring force has to overcome the resistance of 
molecular friction in order to revert the brush into its 
original shape. Failing to revert to its original shape 
makes the brush appears plastic. We used a simple but 
effective zero-shifting method to model this plasticity. 
Suppose the bending energy for a spine segment with 
bending angle θ is k|θ|3 and α is a user-adjustable 
parameter controlling the tuft plasticity (larger α 
corresponds to more plasticity). The intuitive idea of our 
method is to shift the minimum-energy angle from zero 
to a value determined by the plasticity and the bending 
angle from the last time frame; that is, if θ’ is the 
bending angle from the previous time frame, the new 
energy function becomes 

 In Chinese calligraphy, an artist using a soft brush 
sometime uses the pore resistance to straighten the tuft 
and make its tip blade-like. Mimicking pore resistance 
in our simulation allows the reproduction of this kind of 
deformation, which is expected by artists. In addition, 
the simulated pore resistance also helps to produce the 
effect of the pushed-stroke technique employed in 
painting [10], in which the brush is slanted and pushed 
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User Input against the paper in the direction it is pointing, giving a 
‘rough’ look to the stroke (Figure 12). 

 
4.3 Ink Loading and Depositing 

 
We store the ink and moisture information at each 

tuft node. A color gradient can be loaded into the tuft by 
interpolating color values at different tuft nodes. For ink 
depositing from the brush onto the painting surface, as 
in [3], we allow the brush surface to intersect with the 
paper plane and consider the orthogonal projection of 
the penetrating portion onto the paper plane as the brush 
footprint. The footprint is obtained by rendering the 
brush surface clipped by the paper plane in orthogonal 
view using OpenGL. In this way, we can utilize the 
hardware-accelerated polygon clipping and rasterization 
and leave the CPU computation power for the physics 
simulation. After the footprint is obtained, ink is 
deposited simply by transferring ink/water values from 
the penetrating tuft surface area onto the footprint area 
on the painting surface. We can either subtract the ink 
values from the tuft or just maintain the ink level to 
allow continuous painting without reloading. As the ink 
level gradually lowers, the tuft alpha map is modified to 
reflect the consumption of ink, mimicking the effect of 
a dry brush. Currently, simple alpha blending using 
OpenGL is used for applying diluted/transparent color 
onto the painting surface. 

Figure 10: Block diagram of our proposed 
painting system 

 

 
5. Implementation Results 

 
We have implemented a painting system prototype 

based on our brush model. Our system is written in 
Object Pascal using Borland Delphi 6. It currently runs 
in real-time at 25 frames per second on a 1GHz 
Pentium-III PC with an NVIDIA GeForce2 Pro graphics 
card. The number of SQP iterations required for a 
typical time frame is below 10. In our experience, 98% 
of the time frames require less than 20 iterations. 

 
5.1 System Architecture 

 
Figure 10 shows the design of our painting system. 

There are three main modules: user input, simulation, 
and brush and stroke rendering.  The user input module 
reads the position and orientation of the input device, 
and the user-defined parameters such as ink loading, 
stiffness, and brush size. The simulation module is the 
main component of the system and it consists of three 
sub-modules. The brush-dynamics sub-module 
simulates the behavior of the bristles, i.e., the bending 
and spreading of bristles due to external forces; the ink-
flow-within-brush sub-module simulates the 
phenomenon of ink flowing from the more saturated 
parts to the less saturated parts in real brushes; the ink-
flow-on-paper sub-module simulates the ink diffusion in 
the paper fibres. We have yet to incorporate ink 
diffusion simulation in our current prototype, and thus 
the system simulates brush painting as if it is done on 
sized paper (i.e., paper treated with alum). An ink-

depositing method links the brush-dynamics sub-
module and the ink-flow-on-paper sub-module. The 
brush and stroke renderings module renders the 
appearance of the strokes and draws the brush on the 
screen to provide feedback to the user regarding its 
current state (position, orientation, bending, etc). 

 
5.2 User Interface 

 
Visual feedback of the brush shape is important 

during the painting process. A bended brush would have 
different footprints when held at different angles. In our 
system, the main user window shows a perspective view 
of the 3D painting scene; the camera position and field-
of-view are adjustable by the user.  An alternative 
orthogonal view of the painting canvas, with the 
viewing direction perpendicular to the paper surface and 
every pixel corresponding to a fixed-size area of the 
paper model, is also provided. The brush is rendered 
with lighting and shadows to aid visualization. Shadows 
provide a natural aid for the user to sense how high the 
brush is above the paper. Our current system simply 
renders the shadows as two line segments. During 
painting, the brush itself can be set to transparent so as 
not to obstruct the user’s view of the painting surface. 

 Figure 11 shows the physical setup of our current 
system. To drive the virtual brush, a six-DOF input 
device is needed. The PHANTOM haptic device [15] 
not only provides six-DOF data but also the force haptic 
feedback, and thus is ideal as an input device. A more 
affordable option is to build a six-DOF device from 
some 3-DOF devices and sensors. Our current setup 
makes use of an ultrasonic device and miniature 
gyroscopes to sense the brush position and orientation 
respectively. These sensors are attached to a real brush 
or a brush-like object, which is manipulated to drive the 
virtual brush in real-time. To provide a natural interface, 
our input device can be calibrated to map a real 
supporting surface to the virtual one, so that the real 
surface also gives some tangible feeling to the user 
when the brush is pressed down. 
 As an alternative, our system also supports pressure 
and tilt sensitive graphics tablets. The sensed pressure is 
used to control the height of the brush above paper 
while the tilts the orientation of the brush. Although the 
brush height is not controlled as intuitively as using a 



 

true 3D positional device, the support for graphics tablet 
input makes our system more accessible to existing 
digital artists due to hardware availability. The graphics 
tablet is also more convenient to use since a supporting 
ground is already present without calibration. 

 
5.3 Sample Results 

 
Figures 1 and 12 to 17 show some sample painting 

and calligraphic results obtained using our system. The 
character ‘dragon’ shown in Figure 1 was written using 
the slanted-brush technique. Figure 12 shows some 
sample strokes used in Chinese painting or calligraphy. 
Figure 13 shows a sample calligraphy done in 
contemporary style, with some of the strokes exhibiting 
the flying-white effect. Figure 14 shows some rocks 
painted with traditional texturing technique. The orchid 
painting shown in Figure 15 was done in 17 strokes, 
with the character ‘orchid’ also done with our system. 
Figure 16 shows a flower painting done by loading 
color gradients onto the brush. Figure 17 shows a 
calligraphic work with more characters. For video 
demos and additional color images, please visit the web 
page: http://www.cs.ust.hk/~cpegnel/VCB/. 

 
6. Conclusion and Future Work 

 
We have presented an efficient model for simulating 

the deformation of Chinese brushes. Our model is able 
to produce more realistic tuft deformation, such as 
bristle spreading and plasticity, which is important for 
3D digital brush painting. With some modification, it is 
expected that our model can also mimic western 
watercolor or oil painting brushes.  

 We are currently adding ink diffusion [5, 9, 23] to 
our prototype to make it a complete system for 
producing Chinese brushwork. Taking into account the 
paper texture would also make the dry-brush effect 
more realistic. It would also be desirable to incorporate 
haptic input device and stereo display into our system. 
We are also interested in further investigating vectorial 
dynamics, including the use of implicit integrator [2], 
on the speed and accuracy of the simulation. Faster 
brush dynamics simulation would allow higher brush 
modeling resolution and more realistic ink/water 
simulation. 
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Figure 11: Physical setup of our system 

 
Figure 12: Sample strokes 

 

Figure 13: Calligraphy in contemporary style 

 

Figure 14: Rocks painted with texturing strokes 

 

Figure 15: Sample orchid painting  

 

Figure 16: Flowers painted with color gradients 

 

Figure 17: Calligraphy in Action Script 
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