
HAL Id: inria-00606742
https://inria.hal.science/inria-00606742

Submitted on 22 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

View Dependent Layered Projective Texture Maps
Alex Reche, George Drettakis

To cite this version:
Alex Reche, George Drettakis. View Dependent Layered Projective Texture Maps. 11th Pacific
Conference on Computer Graphics and Applications (PG’03), Oct 2003, Canmore, Canada. pp.492-
496, �10.1109/PCCGA.2003.1238301�. �inria-00606742�

https://inria.hal.science/inria-00606742
https://hal.archives-ouvertes.fr


View-Dependent Layered Projective Texture Maps

Alex Reche-Martinez1,2 and George Drettakis1

1REVES/INRIA Sophia-Antipolis,
http://www-sop.inria.fr/reves

{Alex.Reche,George.Drettakis}@sophia.inria.fr

2Centre Scientifique et Technique du Bâtiment,
http://www.cstb.fr

Abstract

Capturing and rendering of real scenes in an immersive
virtual environment is still a challenging task. We present
a novel workflow, using high-quality, view-dependent pro-
jective texturing at low texture memory cost, while reinforc-
ing artist’s control over image quality. Photographs of a
real scene are first used to create a 3D model with standard
tools. Our method automatically orders geometry into op-
timized visibility layers for each photograph. These layers
are subsequently used to create standard 2D image-editing
layers, enabling artists to fill in missing texture using stan-
dard techniques such as clone brushing. The result of this
preprocess is used by our novel layered projective texture
rendering algorithm, which has low texture memory con-
sumption, high interactive image quality and avoids the
need for subdividing geometry for visibility. We show re-
sults of our implementation on a real-world project.

1. Introduction

Recent developments in modeling from images and other
real-world capture techniques (e.g., laser scanning, stereo-
based methods), have resulted in an increasing interest in
the creation and display of 3D models in realistic computer
graphics and virtual environments. The visual quality of
such environments can be very high, thanks to the richness
of the textures extracted from high-resolution digital pho-
tography and the quality of the reconstructed 3D geometry.

The applications are numerous. Urban planning and
environmental impact studies, archaeology and education,
training, design but also film production or computer games
are just a few cases where these highly-realistic virtual en-
vironments can be used.

Modeling-from-images approaches have been largely
based on pioneering work in Computer Vision [15, 4].
Image-based modelling and rendering methods have also
been developed (e.g., [9, 5]), which are an alternative
method to capture and display real world scenes. Debevec

et al’s [2] Facade approach, and the follow-up interactive
version [3], use a view-dependent rendering algorithm. The
textures used in display are blended from multiple views. In
the interactive case, projective textures are used, requiring a
geometric visibility pre-process (subdivision of polygons).

In practice, several commercial modeling-from-images
products have been since developed and are used for
real world projects1. All of these products however
have adopted standard, rather than projective texture map-
ping for display: each polygon has an associated tex-
ture, which is extracted from the input photographs by
applying inverse camera projection. The output can thus
be directly viewed with a traditional rendering system.
This choice also allows artists to intervene at various
stages of the process, using standard image-editing tools
(such as Adobe PhotoshopTM(http://www.adobe.com), or
GIMP (http://www.gimp.org)), to fill in missing textures or
remove undesirable objects etc., or standard modeling tools
to edit geometry.

In this paper, we adopt a view-dependent display model,
by blending textures taken from different input photographs
corresponding to different viewpoints, thus achieving high
quality. We strive to stay compatible with standard render-
ing systems typically in the context of a scene-graph based
approach. We develop a new projective texture render-
ing approach, which does not require subdivision of poly-
gons. We automatically generate image-layers, reducing
texture memory requirements compared to texture extrac-
tion approaches. The image-layers can be used in a standard
image-editing workflow, permitting artists to tightly control
final image quality.

We have implemented our system, and we show results
from a reconstructed 3D model of a real-world project,
which is the construction of the Nice Tramway in France.

A longer technical report describing the de-
tails and more results of this work can be found at
http://www.inria.fr/reves/publications/data/2003/RD03/.

1E.g., www.realviz.com, www.canoma.com, www.photomodeler.com.



2. Related Previous Work

In their original paper [2], Debevec et al. presented the
first modeling-from-images system Facade. The idea of
view-dependent texture mapping (VDTM) was presented,
but the rendering approach is clearly off-line and uses
model-based stereo to obtain very impressive visual results.
This work was transposed to an interactive rendering con-
text [3] in which polygons partially visible in one of the
input images are subdivided. This method has the advan-
tage of being completely automatic; the flip side of this is
the lack of quality control in a traditional content-creation
workflow. In particular, for surfaces which do not receive
a projective texture, simple color interpolation is used for
hole-filling, producing visual errors. Subdivision of input
geometry could also be problematic in some contexts, due
to numerical imprecision. The method we will present can
be seen as an extension of this approach, by addressing
these two issues.

Image-based modeling and rendering solutions have
been developed since the mid-nineties. The Lightfield[9]
and Lumigraph[5] algorithms are based on relatively dense
sampling of images, so that pure (Lightfield) or geometry-
assisted (Lumigraph) image interpolation suffices to render
an image. The size of the data sets required for these ap-
proaches (gigabytes of image data), makes them very hard
to use for realistic projects.

View-based rendering [12] or surface light fields [16]
improve the basic methods. The Unstructured Lumigraph
[1], can be seen as a compromise between the lumigraph
and VDTM. Blending criteria are more sophisticated than
VDTM, and the geometric model can be almost arbitrarily
coarse. Another IBMR approach are layered depth images
(LDI)[13], which add depth to a multi-layer image, result-
ing in high-quality renderings. All of these methods require
special-purpose rendering algorithms, and in some cases are
hard to integrate in a traditional scene-graph like rendering
systems. For LDI’s the results are dependent on the quality
and availability of depth information.

Our algorithm for layer construction is based on a hard-
ware visibility ordering algorithm by Krishnan et al.[8]. A
more complete, software solution has been presented by
Snyder and Lengyel [14]. Visibility cycles are resolved in
the algorithm by Newell et al. [10]. Our work is also re-
lated to the Tour Into the Picture[6], where layers are built
manually, and a single view is used. The work of Oh et
al.[11], is also related in what concerns the integration of
3D information and image editing.

3. Overview

We assume that we have constructed a 3D model
from images with calibrated cameras (we use REALVIZ

Figure 1. Row 1 left: The geometric configu-
ration of the scenes and the cameras. Row
1 right: The input image corresponding to c1.
Row 2: the corresponding 3D geometry. Row
3 left: Resulting image-layers after geome-
try sorting. Row 3 right: Image-layers after
editing (clone brushing, etc.). Row 4: Visual-
isation of the layers.

ImageModelerTM in our examples).
Our goal is to achieve projective texture mapping, with-

out the need to subdivide input geometry. In Fig. 1. the
scene has three objects,A, B andC and we consider 3 views,
camerasc1,c2 andc3. When using the previous projective
texture mapping algorithm[3], even for such a simple scene,
objectsA andB must be subdivided. For viewc1, B will be
cut into theB1, B2 (see Fig. 1 second row). When moving
from c1 to c2, objectB2 will have the image fromc1 as a
projective texture, and then will blend the images fromc1

andc2. ObjectB1 however, will always be displayed with
the image ofc2, since it is invisible fromc1.

Instead of doing this, we create layered images, orimage
layers, by first constructingvisibility layers. For a given
camera or view, a visibility layer is a set of surfaces for
which no pair is mutually occluded. In the example of
Fig. 1, and for camerac1, there are three layers, the first con-



tainingA andC, the second containingB, which is partially
hidden byA and the third the background. We then create an
image layer, corresponding to each geometry layer (Fig. 1
third row). The first layer corresponds to the portions of the
image fromc1 covered by the pixels corresponding toA and
C, and the second image layer corresponds to objectB.

We construct geometric visibility layers by adapting the
hardware-based algorithm of [8], and then create standard
image-editing (i.e., Adobe PhotoshopTM or GIMP) layers,
which will be used as projective textures.

The artist then edits the image layer, e.g., to fill in miss-
ing texture (Fig. 1, 3rd row, right). The corresponding com-
pact image layer are used as projective textures for the ap-
propriate polygons of the reconstructed 3D model, avoiding
the need for geometry subdivision. This is shown in the last
row of Fig. 1. Because the layers and image-editing have
resolved visibility the viewer can move around freely.

4. Creating Visibility and Image Layers

The first step is to create a set of images with calibrated
cameras, and a corresponding coarse 3D model of the scene.
We use REALVIZ ImageModelerTM for this step. Our goal
is to create a set of layers for each input image of the set,
which will be subsequently used as projective textures for
display. These layers have the following property: for any
object in the first layer, no other object in the scene occludes
it; for the second layer, once the objects of the first layer
have been removed, the same property applies, and so on for
each layer. Once these layers have been created, we can use
projective texture mapping without the need to subdivide
geometry, since we create a separate projective texture map
for each layer.

As mentioned previously, we tightly integrate the cre-
ation of these layers with a standard image editing program,
so that an artist can fill in the missing parts of a given layer
use standard techniques such as clone brushing etc.

To create these image layers, we first perform a visibil-
ity sort in 3D, to create what we callvisibility layers, which
are groups of polygons. We then create what we callim-
age layers, which are true image-editing-programme lay-
ers, usable in an image-editing programme such as Adobe
PhotoshopTMor GIMP.

For the first step, we adapt an existing visibility sorting
algorithm to create the visibility layers. The second step is
achieved by projecting the visibility layers into the image
space to create image-editing 2D layers, that are optimized
to minimize the amount of texture wasted, and which then
creates standard image-editing 2D layers, so that an artist
can subsequently edit the result.

4.1. Visibility Layers

To compute the visibility layers we adapt the visibility
algorithm of [8]. Initially, we render the entire scene into
an item buffer, i.e., we use a unique identifier for each ob-
ject in the scene. We then read this buffer to create an initial
working set of potentially visible polygons, which thus con-
tains all objects with at least one visible item buffer pixel
containing its id.

The algorithm then iteratively constructs a set of visibil-
ity layers. For each iteration, the item-buffer of the working
set is rendered into the color and the stencil buffer, and the
z-test inverted (GL_LESS). For each pixel with a stencil
value greater than 1, the object corresponding to the item-
buffer value of the pixel is partially hidden, and thus the
object is removed from the working set. The working set
is then rendered iteratively, until the stencil buffer contains
values less than or equal to 1. The remaining objects are in-
serted into the current visibility layer, and removed from the
working set. The current layer is saved, then set to empty,
and the iteration continues.

The output of this algorithm is a set of visibility layers.
In each visibility layer we have a set of polygons, which are
used to build layered images.

In our implementation we have optimized this process
hierarchically thanks to the structure of the scene which is
provided by the image modelling programme. In partic-
ular, the scene provided by ImageModelerTM is organised
into objects which contain a set of faces or polygons. Ini-
tially, identifiers are given to objects rather than faces, and
the algorithm is performed on objects, rapidly eliminating
large objects. When we can no longer proceed with objects,
we split them into their constituent polygons. In our ex-
amples this is enough to resolve the visibility in the scene.
Nonetheless, cycles could occur, even at the level of indi-
vidual polygons/triangles, and in this case we would need
to identify the cycles and cut the geometry using an algo-
rithm such as that of Newell et al. [10].

4.2. Creating Image Layers

To create the image layers, we start with the set of visi-
bility layers. For each visibility layer, we project each con-
stituent polygon into image space, resulting in a 2D contour
for each. We then perform a simple clustering algorithm
for the set of contours. We use the fact that inOpenGL
textures have resolution of a power of 2. For a pair of con-
toursc1 andc2 we mergec1 andc2 into the same layer, if:
A12 < A1 +A2, whereAi is the area of the minimal bound-
ing box with resolution inx andy powers of two, with area
greater than the area of the bounding box of the projected
contourci . Thus each layer is potentially split into several
layers.



This results in an increase of the number of layers, but
is required to reduce the texture memory requirements of
our projective textures. This is because very distant objects
can belong to the same visibility layer, which would result
in textures with large areas of empty space, wasting texture
memory. The final set of layers is then ready for image edit-
ing in the appropriate program. These layers consist of a 2D
bounding box in image space for the image being treated.

The layers are then sent to the image-editing program
(GIMP in our case), which creates a 2D image layer corre-
sponding to the input image.

Once layers have been created in the editing program,
an artist can perform standard operations required to fill in
missing texture, remove unwanted objects etc.

5. Display

After creating the visibility layers and manually editing
the texture layers for the objects in the scene we use projec-
tive texture mapping for display.

For any viewpoint corresponding to the camera of a pho-
tograph, all we need to do is to render the geometry, and
for each object assign as a texture the corresponding layer.
To allow viewing from other viewpoints, we blend between
textures with appropriate blending factors[3].

5.1. Data Structures

As mentioned previously we have designed our approach
to fit into a typical scene-graph based rendering system. We
use OpenGL PerformerTM[7] in our implementation.

For layered projective texture mapping, the graph is
modified to contain a sub-image texture node. In addition
to the information of a “standard node” with a projective
texture material, this node contains the image coordinates
of the sub-image (xi ,yi ,wi ,hi) that will be used to compute
the correct texture projection matrix.

To render the layers, we need to apply a sheared perspec-
tive transformation. This can be directly implemented using
the OpenGL commandglFrustum with parameters:

x′min = xmin+ xi(xmax−xmin)
w x′max = xmin+ (xi+wi)(xmax−xmin)

w

y′min = ymin+ yi(ymax−ymin)
h y′max = ymin+ (yi+hi)(ymax−ymin)

h

wherexmin, xmax, ymin andymaxare the values of the frus-
tum for the projection of the original image,w andh are
width and height of the original image andxi , yi , wi andhi

correspond to the position and size of the layer in the origi-
nal image.

5.2. Rendering Multiple Views

To render multiple views, we need to further modify our
scene graph structure. We create a view-dependent projec-

tive texture node which contains a list of projective texture
nodes, associated with each (unique) geometry.

When encountering such a node during graph traversal,
the renderer chooses the blending factors for each appro-
priate texture[3], sets up the texture matrix for the nodes
with non-zero blending factors, and renders the associated
geometry in as many passes are required.

6. Results

We show an example which is a reconstructed model of
Place Massena in Nice, France. This model has been cre-
ated in the context of a virtual/augmented environment sim-
ulation of the Tramway project in Nice.

We use two input views, using input photos of resolu-
tion 2160x1440. In Fig. 2, we show intermediate synthetic
views using our method. The algorithm creates a total of be-
tween 98 and 160 (optimized) layers for each image, many
of which are very small and require no editing. The total
texture memory required is 10-12 Megabytes, depending on
the image. The algorithm to create the layers takes less than
3 minutes to complete on a Pentium IV, 1.2 Ghz. The en-
tire process of editing and cloning the layers took about two
days; using a texture extraction-based approach, with the
same scene and the same views, required three weeks.

7. Discussion and Conclusions

Compared to the initial interactive projective texture
mapping approach [3], we avoid the need to subdivide ge-
ometry for visibility, and we introduce more traditional
artist intervention to manually fill in missing textures, rather
than depending on interpolation. Thus the advantages of
our approach are that we do not increase the polygon count
of the scene, and that the approach fits well with tradi-
tional workflows, where artist’s control over image quality
is paramount. The disadvantage is that hole-filling is no
longer automatic.

Compared to texture-extraction methods, our approach
significantly reduces texture memory requirements and re-
sults in better texture quality, since inverse perspective re-
sults in large textures and quality loss due to resampling.
Informal observation of our system in use has shown that
users are less sensitive to parallax errors due to the high
quality of the projective textures.

In future work, we will be automating many aspects of
the capture and texture editing phases and we plan to inte-
grate this method in a VR setup.

8. Acknowledgements

This research was partially funded by the EU IST project
CREATE, IST-2001-34231, http://www.cs.ucl.ac.uk/create. Im-



Figure 2. Top row: two intermediate (non-input) views, using our new, layered projective texture
display. Lower row (right): Closeup of input image; (left) closeup of rendering of our system from a
different viewpoint. The quality of the texture in the synthetic view is comparable to the input image.

ageModeler was provided by REALVIZ in the context of CRE-
ATE. Thanks to A. Olivier-Mangon for his insights and image-
editing help and to F. Durand for his comments.

References

[1] C. Buehler et al. Unstructured lumigraph rendering. InSIG-
GRAPH 2001, Computer Graphics Proc., Annual Confer-
ence Series, pages 425–432, 2001.

[2] P. Debevec et al. Modeling and rendering architecture
from photographs: A hybrid geometry- and image-based ap-
proach. InProc. SIGGRAPH 96, pages 11–20, August 1996.

[3] P. Debevec et al. Efficient view-dependent image-based ren-
dering with projective texture-mapping. InRendering Tech-
niques ’98, 9th EG workshop on Rendering, Vienna, Austria,
June 1998. Springer Verlag.

[4] O. Faugeras et al. 3-d reconstruction of urban scenes from
image sequences.CVGIP: Image Understanding, 1997.

[5] S. J. Gortler et al. The lumigraph. InSIGGRAPH 96 Con-
ference Proc., Annual Conference Series, pages 43–54, Aug.
1996.

[6] Y. Horry et al. Tour into the picture. InComputer Graph-
ics Proceedings, SIGGRAPH’97, Annual Conference Series,
pages 225–232, Los Angeles, CA, August 1997. ACM.

[7] http://www.sgi.com/software/performer/.

[8] S. Krishnan et al. A Hardware-Assisted Visibility-Ordering
algorithm with applications to volume rendering. InData
Visualization 2001, pages 233–242, 2001.

[9] M. Levoy and P. Hanrahan. Light field rendering. InSIG-
GRAPH 96 Conference Proc., Annual Conference Series,
pages 31–42, Aug. 1996.

[10] M. E. Newell et al. A solution to the hidden surface problem.
In Proc. of the ACM Nat. Conf., pages 443–450, 1972.

[11] B. M. Oh et al. Image-based modeling and photo editing. In
SIGGRAPH 2001, Computer Graphics Proc., Annual Con-
ference Series, 2001.

[12] K. Pulli et al. View-based rendering: Visualizing real objects
from scanned range and color data. InRendering Techniques
’97 (Proc. of the 8th EG Workshop on Rendering) held in St.
Etienne, France, pages 23–34, 1997.

[13] J. W. Shade et al. Layered depth images. InSIGGRAPH 98
Conference Proc., volume 32 ofAnnual Conference Series,
pages 231–242, 1998.

[14] J. Snyder and J. Lengyel. Visibility sorting and compositing
without splitting for image layer decompositions. InSIG-
GRAPH 98 Conference Proc., 1998.

[15] C. J. Taylor and D. J. Kriegman. Structure and motion from
line segments in multiple images.IEEE Trans. on Pat. Anal-
ysis and Mach. Intelligence, 17(11):1021–1032, 1995.

[16] D. N. Wood et al. Surface light fields for 3D photography.
In SIGGRAPH 2000, Annual Conference Proc., pages 287–
296, 2000.


