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Abstract

We present a physically-based method for animating and
rendering lightning and other electric arcs. For the simula-
tion, we present the dielectric breakdown model, an elegant
formulation of electrical pattern formation. We then extend
the model to animate a sustained, ‘dancing’ electrical arc,
by using a simplified Helmholtz equation for propagating
electromagnatic waves. For rendering, we use a convolu-
tion kernel to produce results competitive with Monte Carlo
ray tracing. Lastly, we present user parameters for manipu-
lation of the simulation patterns.

1. Introduction

The forked tendrils of electrical discharge have a long
history as a dramatic tool in the visual effects industry. From
the genesis of the monster in the 1931 movie Frankenstein,
to the lightning from the Emperor’s fingers in Return of the
Jedi, to the demolition of the Coliseum by lightning in last
year’s The Core, lightning is an ubiquitous effect in science
fiction and fantasy films.

Despite the popularity of this effect, there has been rela-
tively little research into physically-based modeling of this
phenomenon. The existing research is largely empirical, es-
sentially generating a random tree-like structure that quali-
tatively resembles lightning. The previous work is also lim-
ited to brief flashes of lightning, and provides no method for
animating a dancing, sustained stream of electricity. How-
ever, modeling the fractal geometry of electrical discharge
and similar patterns has attracted much attention in physics.
To our best knowledge, our algorithm is the first rigorous,
physically-based modeling of lightning in computer graph-
ics. We also believe our approach is accurate enough that its
applications extend beyond visual effects to more physically
demanding applications, such as commercial flight simula-
tion.

Main Contributions: In this paper, we present a

physically-based algorithm to simulate lightning, and
propose a novel extension for animation of continuous elec-
trical streams. The simulation results are then rendered
using an efficient convolution technique. The result-
ing image quality rivals that of Monte Carlo ray tracing.
Lastly, we present user parameters for intuitive manipu-
lation of the simulation. Our approach offers the follow-
ing:

o A physically-inspired approach based on the dielectric

breakdown model for electrical discharge;

e A novel animation technique for sustained electrical
streams that solves a simplified Helmholtz equation for
propagating electromagnetic waves;

e A fast, accurate rendering method that uses a convolu-
tion kernel to describe light scattering in participating
media;

e A parameterization that enables simple artistic control
of the simulation.

Organization: The rest of the paper is organized as fol-
lows. A brief survey of related work is presented in Sec. 2.
In Sec. 3, we briefly summarize the physics of lightning for-
mation. We present the original dielectric breakdown model
as well as our proposed extension in Sec. 4. A efficient ren-
dering method is present in Sec. 5. User parameters are pre-
sented in Sec. 6, followed by implementation details and
discussion in Sec. 7. Finally, conclusions and possible di-
rections for future work are given in Sec. 8.

2. Previous Work

Reed and Wyvill present a lightning model based on the
empirical observation that most lightning branches deviate
by an average of 16 degrees from parent branches [14]. A
set of randomly rotated line segments are then generated
with their angles normally distributed around 16 degrees.
In subsequent work, modifications are made to this random
line segment model. Glassner [6] performs a second pass



on the segments to add “tortuosity”, and Kruszewski [9] re-
places the normal distribution with a more easily controlled
randomized binary tree.

Notably, Sosorbaram et al. [16] use the dielectric break-
down model (DBM) to guide the growth of a random line
segment tree with a local approximation of the potential
field. But, their approach does not appear to implement full
DBM, as it does not solve the full Laplace equation.

Electric discharges are neither solid, liquid, or gas, but
instead are the fourth phase of matter, plasma. It is a light
source with no resolvable surface, so traditional rendering
techniques are not directly applicable. To address this prob-
lem, Reed and Wyvill [14] describe a ray tracing extension
for both a lightning bolt and its surrounding glow. Alterna-
tively, [16] proposes rendering 3D textures. Dobashi, Ya-
mamoto, and Nishita [4] provide the most rigorous treat-
ment of the problem by first presenting the associated vol-
ume rendering integral, and then presenting an efficient, ap-
proximate solution.

In electrical engineering, there are three popular mod-
els of electric discharge: gas dynamics [5], electromagnet-
ics [1], and distributed circuits [2]. However, none of these
are directly applicable to visual simulation, as they respec-
tively approximate the electricity as a cylinder of plasma, a
thin antenna, and two plates in a circuit.

3. The Physics of Electric Discharge

We classify the physics literature into two categories.
The first deals with the physical, experimentally observed
properties of lightning and related electrical patterns. A
good survey of this approach is given by Rakov and Uman
[13]. The second is a more qualitative approach that char-
acterizes the geometric, fractal properties of electric dis-
charge. A good survey of this approach is given by Vicsek
[17].

3.1. Physical Properties

Electrical discharge occurs when a large charge differ-
ence exists between two objects. For lightning, the case
is usually that the bottom of a cloud has a strong nega-
tive charge and the ground possesses a relatively positive
charge. Electrons possess negative charge, the charge differ-
ence is then equalized when electrons are transferred from
the cloud to the ground in the form of lightning. This case
is referred to as ‘downward negative lightning’. While other
types can exist, downward negative lightning accounts for
90 percent of all cloud-to-ground lightning. For illustrative
purposes, we will show here how to simulate this most com-
mon type of lightning. But, it should be noted that we can
handle the other types of lightning by trivially manipulat-
ing the charge configuration.

Lightning is actually composed of several bolts, or
‘strokes’ in rapid succession. The first stroke is referred
to as the stepped leader. The subsequent strokes, called
dart leaders, tend to follow the general path of the pre-
vious leaders, and do not exhibit as much branching as
the stepped leader. We note that the random line seg-
ment approach of previous work in computer graphics
does not provide a clear method of simulating dart lead-
ers. But, such a method is crucial for simulating sustained
electric arcs, which are essentially stepped leaders fol-
lowed by a large number of dart leaders.

Lightning is initiated in clouds by an event known as the
initial breakdown. During the initial breakdown, the con-
ductivity in a small column of air jumps several orders of
magnitude, effectively transforming the column from an in-
sulator (or dielectric) to a conductor. Charge then flows into
the newly conductive air. Another breakdown then occurs
somewhere along the perimeter of the newly charged air.
This chain of events repeats, forming a thin, tortuous path
through the air, until the charge reaches the ground.

3.2. Geometric Properties

The physical processes that give rise to the breakdown
are still not well understood. However, a great deal of
progress has been made in characterizing the geometric
shape that the breakdown ultimately produces. Electric dis-
charge has been observed to have a fractal dimension of ap-
proximately 1.7 [11]. Many disparate natural phenomena
share this same fractal dimension, including ice crystals,
lichen, and fracture patterns. Collectively, all the patterns
that share these fractal properties are known as Laplacian
growth phenomena.

There are three techniques for simulating Laplacian
growth: Diffusion Limited Aggregation [18], the Dielec-
tric Breakdown Model [11], and Hastings-Levitov confor-
mal mapping [8]. All three produce qualitatively similar re-
sults. We elect to use the Dielectric Breakdown Model here
because it gives the closest correspondence to the phys-
ical system being simulated and allows the addition of
natural, physically intuitive user controls.

4. The Dielectric Breakdown Model

The Dielectric Breakdown Model, or DBM, was first de-
scribed by Niemeyer, Pietronero, and Wiesmann [11], and is
also sometimes referred to as the 7 model. We first present
the model described in the original paper, and then propose
a modification to simulate dart leaders and sustained elec-
tric arcs.
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(a) Original configuration (b) Lightning configuration

Figure 1. Different charge configurations for
simulation. Grey: ¢ = 0; Black: ¢ =1

4.1. The Laplacian Growth Model

The original charge configuration from [11] is shown in
Figure 1(a). Over a 2D grid, the quantity ¢, the electrical
potential at each point, is tracked. First, a negative charge is
placed at the center by setting ¢ = 0 at the center grid cell.
Then, a circle of positive charge is constructed around the
center charge by setting a surrounding circle to ¢ = 1. The
potential at the remaining grid cells are then set by solv-
ing the Laplace equation (Eqn. 1) over the grid, with the
center charge and the surrounding circle treated as bound-
ary conditions. The grid boundaries are also set to ¢ = 0.

Vg =0. 1)

The Laplace equation produces a linear system that must
then be solved. For information on solving the Laplace
equation and the related Poisson equation, the reader is re-
ferred to [3]. In our implementation, we solved the sys-
tem using conjugate gradient with a diagonal preconditioner
[15]. Once the Laplace equation has been solved, we con-
struct a list of all the grid cells that are adjacent to a nega-
tive charge (¢ = 0). One of these grid cells is then randomly
chosen as a growth site (i.e. the site of the next breakdown).
The chosen cell is set to ¢ = 0 and is treated as part of the
boundary condition in subsequent iterations. The probabil-
ity of a grid cell being chosen is weighted according to its
potential. The weight function is given in Eqn 2.
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where 7 is a cell in the list of adjacent cells, and n is the total
number of cells in the list. The 7 term is a user parameter
that will be discussed in section 6.

Subsequent iterations proceed by solving the Laplace
equation again over the 2D domain, and again selecting a
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Figure 2. Simulation results from different
charge configurations. 2(a) is result of con-
figuration from Figure 1(a). 2(b) - 2(d) are con-
figurations from 1(b) with various 7.

growth site according to Eqn 2. The iterations are repeated
until the user obtains the desired results. The technique gen-
eralizes trivially to three dimensions by simply solving the
3D Laplace equation.

The classic configuration produces a radial discharge, as
shown in Figure 2(a). In order to produce lightning-like pat-
terns, we instead use the initial configuration shown in Fig-
ure 1(b). We start with a small amount of negative charge
at the top of the 3D domain, representing an initial branch
of lightning. The bottom edge of the domain represents the
ground, and is thus set to positive charge. The remaining
grid edges are again set to ¢ = 0. The results of running the
simulation on this initial configuration with different n are
shown in Figures 2(b) - 2(d).

4.2. A Poisson Growth Model

Once we have formed an initial stepped leader, we would
like to have a method for generating subsequent dart leaders
that follow the same general path. Since the path changes
slightly with each successive dart leader, a large number of



dart leaders will produce the ‘dancing’ effect present in a
sustained electric arc.

We hypothesize that the reason that a dart leader follows
the same general path as a stepped leader is because there
exists residual positive charge along the old leader chan-
nel that attracts the new dart leader. In order to simulate this
behavior, we need a method of introducing residual charge
into the simulation.

While DBM can simulate many different kinds of natu-
ral phenomena, we observe that for the case of electricity,
the Laplace equation can be viewed as a special case of the
Helmbholtz equation for propagating electromagnetic waves
(Eqn 3).

<V2 + (%)2> ¢ = —4mp 3)

where w is angular velocity, ¢ is the speed of light, and p
is charge density. The Helmholtz equation is derived di-
rectly from the Maxwell equations for electricity and mag-
netism, so it provides a clean connection between fractal
growth and classical physics. The Laplace equation can be
viewed as the case where the charge density is equal to zero
and the relativistic (%)2 term is ignored. As lightning bolts
have a linear velocity that already approaches the speed of
light, the angular component should be negligible. So, if we
continue to ignore the relativistic term but re-introduce the
charge density term, the electromagnetic Poisson equation
is obtained:

V2 = —4np. 4)

If we now solve this equation in place of the Laplace equa-
tion, we can produce the desired dart leader behavior. The
value of p is determined by a second grid of values in space
that is initially set to zero. This essentially reduces Eqn. 4 to
the Laplace equation for the initial iteration. After we gen-
erate our first bolt, we deposit charge along the leader chan-
nel by setting p in the cells along the channel to a positive
value. When generating subsequent bolts, the new p values
will automatically attract the new bolt to the old path. Af-
ter each new bolt is generated, we clear the previous p field
and repopulate it with charges along the new leader chan-
nel.

Fortunately, because the Poisson and Laplace equations
are very similar, the only implementation overhead required
for our modified model is a minor change to the residual cal-
culation in the conjugate gradient solver. It is worth noting
that a similar model has been proposed in the physics liter-
ature [12] which also accounts for inhomogeneous dielec-
tric permittivities. Our model was developed independently.
For efficient visual rendering, we choose to ignore inhomo-
geneity and treat air as a homogeneous media.

5. Rendering

For the rendering of electricity, we borrow the method of
Narasimhan and Nayar [10]. In the paper, analytical mod-
els are obtained that reduce the rendering of certain types
of participating media to a 2D convolution. The results are
competitive with expensive Monte Carlo techniques such
as photon mapping, but run in seconds instead of hours. We
will first summarize the pertinent formulae from [10], then
describe how we use it to generate a convolution kernel, and
finally show how we render electricity.

5.1. Atmospheric Point Spread Function

The convolution kernel produced by the method of [10]
is called an Atmospheric Point Spread Function, hereon re-
ferred to as an APSF. The APSF is a series expansion of
the Henyey-Greenstein phase function, a popular function
for describing the scattering of light in participating media.
The basis functions used are Legendre polynomials, whose
series form are shown in Eqn. 5.

(2i—=1)-z-Li 1(x) = ((( —1) - Li_(x))
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In order the evaluate the series, the following base cases are
also necessary: Lo(z) = 1, Li(z) = =. The full APSF,
I(T, ), is then given in Eqn. 6.

Li (1‘) =

(T, 1) = (gm(T) + gmi1(T) L)) (6)
m=0
where
gm(T) = e PmT-omT @)
. 72n+11 (8)
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Again a base case is necessary: go(T") = 0. The variable
q is the scattering parameter from the Henyey-Greenstein
phase function. Increasing g from O to 1 increases the den-
sity of the medium, and can be thought of as transitioning
the weather from clear skies to rain. The optical thickness,
T, is equal to Ro, where R is the radial distance from the
viewer, and o is the extinction coefficient of air. Finally p is
the cosine of the radial direction € from the source.

5.2. Generating a Convolution Kernel

The APSF is a three dimensional function that describes
how much light is reaching any point in space around a
point light source. If we can determine how a single point
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Figure 3. Pinhole camera geometry for gener-
ating APSF kernel

light spreads out on the image plane, we can then use this
point spread function as a convolution kernel to render a
light source of arbitrary shape.

Assume we want to generate an n X n resolution convo-
lution kernel of physical size M x M. We sample the APSF
according to the geometry in Figure 3. In this figure, we as-
sume a pinhole camera model where £ = 0.025 meters,
about the width of an eyeball. We also assume the light-
ning stroke is two kilometers away: D = 2000. We treat R
as a user parameter that allows control over the width of the
‘glow’ around the stroke.

In order to compute the value I(7T', 1) at each point on
the kernel, we need to determine a value y at each sample.
If we assume the point light source projects onto the center
of the kernel, the p value at kernel sample (x, y) follows by
trigonometry (Eqns. 10 - 12).

_ (z—2)xM (y—2)xM
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If "’“‘Ty > %, then we are outside the desired width of the
glow, and the kernel value should be set to zero. The APSF
only drops off to zero at infinity, so in practice, the small-
est non-zero value of the kernel must be subtracted from the
other non-zero values of the kernel to prevent the silhouette
of the kernel from appearing in the final image.

We are making a simplifying assumption here that all
parts of the lightning bolt are exactly two kilometers away.
While this is not strictly true, unless the bolt spans a very
large physical domain, we believe it is a reasonable approx-
imation. If the user would like to perform a fly-by of the
bolt, the distance constantly changes, and several different
depth-dependent kernels must be computed. However, even
in this case, the time required to generate several different

kernels is still orders of magnitude less than using a Monte
Carlo renderer.

5.3. Rendering Electricity

Even for large electric discharges like lightning, the
plasma channel is only several centimeters in diameter [13].
We hypothesize that humans perceive that the stroke is
thicker because the the brighter portions of glow exceed
the range perceptible by the human visual system, so they
bleach together into what looks like a thicker bolt.

With this hypothesis in mind, we model the plasma chan-
nel as a series of thin line segments. We then apply the
APSF kernel to a 2D rendering of these line segments to
simulate the glow. If the brightness of the plasma channel
is set correctly, the APSF should produce luminance val-
ues that exceed the range of the display device, creating the
expected thick bolt. In this way, we can remain physically
consistent while avoiding the need for a complex geomet-
ric representation of plasma.

We proceed in three stages. First, we construct a graph
from the simulation. We then assign different luminance
values to each graph edge, as some parts of a lightning
stroke are brighter than others. Finally, we render the graph
edges as line segments and apply the APSF.

5.3.1. Constructing the Graph We observe that the con-
struction of the lightning stroke can also be seen as the con-
struction of a directed tree. The root of the tree is repre-
sented by the initial discharge from the beginning of the
simulation. When a grid cell is added to the lightning stroke,
we create a corresponding graph node, and then search the
cell neighbors for one that is already on the stroke. Such a
neighbor must exist, as it is a necessary condition for the
grid cell to have been selected as a growth site. This neigh-
bor is then set as the parent node, and the newly added grid
cell is recorded as the child. When a grid cell adjacent to the
ground is added, we halt the simulation. In nature, growth
would end at this point because the charge now has a di-
rect conduit to the ground.

5.3.2. Assigning Wattage With our tree, we can now as-
sign a separate luminance value to each line segment. We
divide the line segments into three classes: the main chan-
nel, secondary channels, and side channels. The majority
of the charge flows through the main channel, so it should
be brightest. By inspection of photographs, it is clear that
there are dimmer but distinct secondary channels in most
strokes, and branching off from the secondary channels,
barely perceptible side channels. Locating the main chan-
nel is straightforward. The node corresponding to the grid
cell that hit the ground, along with all its ancestors, consti-
tute the main channel.



Locating the secondary and side channels is more in-
volved. Every node adjacent to the main channel that is not
on the main channel forms the root to a new tree. Within
each such tree, the charge selects a preferred path that be-
comes the bright secondary channel. There is a poverty of
theories on how this path is selected; perhaps the path that
had the largest potential differences during the breakdown
process is selected. For aesthetic effect, we set the path
with the greatest number of nodes as the secondary chan-
nel. Off of this longest secondary channel, we also add other
‘long’ paths according to a user-defined cutoff. This tech-
nique maximizes the length of the dramatic, snaking ten-
drils that surround the central channel. All the remaining
edges are now considered to be side channels.

We must now assign a wattage to each edge. While there
exists some data on the wattage of the main channel (Be-
tween 1.3 x 10% Watts / m and 3.9 x 10° Watts / m according
to [13]), we have been unable to find data on the wattage of
secondary or side channels. We have attempted to estimate
the wattages by deconvolving photographs of lightning, but
this method requires a high dynamic range image of light-
ning that can resolve the bleached portion of the stroke, as
well as the APSF values corresponding to the scene. We in-
stead used heuristic values that brought us into close quali-
tative agreement with photographs.

We rendered the line segments and convolved them with
the APSF settings given in Table 1. The resulting image was
then composited into a raytraced rendering of the remain-
ing scene objects. We do not set the main channel to the
wattage given by [13], because in the absence of tone map-
ping, this step would bleach the entire scene. The applica-
tion of tone mapping to lightning rendering is discussed in
our future work.

Figure n M q m T R
4,5,7 | 256 | 1.0 | 0.99 | 200 | 1.001 | 200
6 64 | 1.0 | 09 | 200 1.1 100

Table 1. APSF settings used: m corresponds
to the number of terms used in the Legendre
series.

6. User Controls

Our modified DBM permits user control through four pa-
rameters: an 7) variable to control the ‘branchiness’ of the
stream, a charge density field p to control the path of the
stream, a boundary condition to repel the stream, and an
overall charge configuration to control where the stroke be-
gins and ends.

The effect of the 1) variable in Eqn. 2 can be seen in Fig-
ure 2(b) - 2(d). At n = 1, dense branching is observed. As

7 increases, the density of the branching decreases. Hast-
ings observes that at n = 4, the stream transitions into a
non-fractal, one-dimensional curve [7]. So, the domain of
the 7 parameter is effectively in the range of (1,4). A phys-
ical interpretation of 7 is not entirely clear, it can perhaps
be viewed as the amount of resistance that the air offers to
the process of dielectric breakdown.

As pis a 2D field representing the image plane, the user
can ‘paint’ into it any desired charge distribution. The light-
ning stroke will then be attracted to this painted path as de-
scribed in Section 4.2.

In addition to attracting the electric arc, the user may
want to repel the arc from certain regions. For instance,
there may be an obstacle in the scene that the user does
not want the arc to intersect. This effect can be achieved
by setting the interior of the obstacle to ¢ = 0. This sets
the charge of the object to the same charge as the arc, caus-
ing the obstacle to repel the arc. However, we must then
be careful in our implementation not to add grid cells adja-
cent to the obstacle to the list of candidate growth sites in
Eqn. 2.

Finally, we have only shown two charge configurations:
the circle in Figure 1(a), and the lightning configuration in
Figure 1(b). However, arbitrary charge configurations also
produce electric arcs. The arc can begin from any arbitrarily
shaped negative region, and terminate at a positive object.
In this way, it is possible to construct an arc between any
two objects in an arbitrary scene.

7. Implementation and Results

We have implemented our algorithm in C++. We ran sim-
ulations for several scenes on a 2.66 GHz Xeon processor.
Unless otherwise noted, all simulations were performed on
a 512 x 512 grid withn = 1 and p = % along the main
channel. The renderings were performed in POV-Ray, and
then convolved and composited using ImageMagick. Al-
though we set n = 1, the final results tend to resemble those
where 7 = 2 and 3. This is because the majority of the
growth sites are treated as side channels, and are thus very
dim. However, we found that in order to obtain long, dra-
matic, secondary channels, setting n = 1 was necessary.

Note that when implementing Eqn. 5, recursively eval-
uating the series is an exponential time operation. How-
ever, evaluating from the bottom up (i.e. in the order
Lo(z), L1 (x), L2(z) ...) is a dynamic programming solu-
tion that can be done in linear time. Using this method is
more efficient. Also, as the convolution kernel in subsec-
tion 5.2 is separable, it can be performed quickly with two
n x 1 filters instead of one n x n filter.

In Figure 4, we demonstrate how the user can repel the
bolt from arbitrary objects. The lightning must start from
the top of the Cornell Box and find a path to the floor,



while avoiding the two beams in the center. In Figure 5, we
demonstrate how the user can attract the bolt to an arbitrary
object. The magenta electrode in the center is set to a nega-
tive charge, and blue ball is set to a positive charge. As the
blue ball moves, the electric arc follows. In Figure 7, we an-
imate a dancing electric arc between two electrodes. In Fig-
ure 6, we validate our results by comparing our renderings
with a photograph. The scene was simulated on a 2563 grid.

8. Conclusion and Future Work

We have presented a physically based algorithm for the
simulation, animation, and rendering of sustained electric
arcs. We believe that our approach is the most rigorous,
physically consistent method available up to date. However,
there are several areas for refinement.

Primarily, the simulation can be very slow. For large 2D
and 3D grids, the computation time can take hours. But, it
is unclear if other Laplacian growth methods, such as DLA
or Hastings-Levitov conformal mapping, can give superior
performance while preserving the same level of control.

While our rendering method is physically consistent, it
would be more realistic to use some sort of tone mapping
operator to bring the luminance values back into the range
of the display device. No operator was used here because
we were unsure which would be appropriate. In the tone
mapping literature, a ‘bright’ object is usually daylight or a
lightbulb, so it is unclear if some of these methods would
break down in the presence of luminance values many or-
ders of magnitude brighter.

While the use of the convolution kernel generates im-
pressive results, there are still some unresolved issues. It as-
sumes the scattering medium is homogeneous, so it does
not explicitly handle the effects of either internal obstacles
or clouds. A scene requiring a volume caustic still needs
a Monte Carlo renderer. The approach described in [4] ap-
pears to be the best solution for a scene containing clouds.
While an analytical solution may also be possible for these
cases, one has not yet been found.

Finally, we have only presented one type of Lapla-
cian growth: electric arcs. Laplacian growth encompasses
many disparate phenomena, including ice formation, ma-
terial fracture, lichen growth, tree growth, liquid surface
tension, vasculature patterns, river formation, and even ur-
ban sprawl. Modeling of Laplacian growth is well worth
exploring for visual simulation of natural phenomena.
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Figure 4. Lightning dodging obstacles in a
Cornell Box. Top to bottom: The Cornell Box
setup; Lightning dodging the first obstacle;
Lightning dodging the second obstacle

Figure 5. Lightning following a blue ball. The
magenta electrode is set to negative charge,
and the blue ball to positive charge. As the
blue ball moves, the arc follows.




Figure 6. Validation Left: Photograph Right: Rendering

Figure 7. Electric arc leaping between two electrodes




