
Non-Photorealistic Real-Time Rendering of Characteristic Faces

Thomas Luft Oliver Deussen

Department of Computer and Information Science
University of Constance, Germany
{luft, deussen}@inf.uni-konstanz.de

Abstract

We propose a system for real-time sketching of human
faces. On the basis of a three-dimensional description of
a face model, characteristic line strokes are extracted and
represented in an artistic way. In order to enrich the results
with details that cannot be determined analytically from the
model, surface and anchor strokes are supplemented inter-
actively and are maintained during animation. Because of
the real-time ability of our rendering pipeline the system is
suitable for interactive facial animation. Thus, interesting
areas of application within the range of the virtual avatars
are possible.

1 Introduction

Non-photorealistic computer graphics was established
during the past few years as an independent research area.
Currently there are various algorithms that are concerned
with the off-line rendering of images and that simulate artis-
tic results. Since the creation of an animation sequence that
appears hand-drawn is a very complex developing process
for an artist who has to draw every single frame by hand, for
us an interesting area is the rendering of non-photorealistic
animations and especially real-time graphics.

Aiming at a more efficient real-time rendering, this work
deals particularly with the representation of face details that
cannot be extracted from the geometry due to detail-limited
modelling, but that are an important part of characteristic
face drawings. Therefore we provide two types of lines:
surface strokesthat are applied as complete lines onto the
object surface, andanchor strokesthat are designated by
anchor points on the object surface and then continued by
control points positioned in 3D-space. Thus, characteris-
tic details, such as eyes, hair, folds, and accessories can be
represented in our face drawings (cf. figure 1).

For the creation of sketchy line drawings, which are
strongly stylized, complex software routines are necessary.

Figure 1. An example of a female head created
by our system.

We present a set of algorithms and optimizations that allow
the real-time rendering of scenes with moderate size. The
suitability of the approach is demonstrated by a set of sam-
ple drawings.

Highly detailed line drawings of faces provide interest-
ing perspectives for several areas of application. Especially

http://www.informatik.uni-trier.de/~ley/db/conf/pg/pg2004.html
http://www.ub.uni-konstanz.de/kops/volltexte/2007/2805/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-28055

the real-time ability allows the creation of interactive face
animation and therefore, it can be applied in chat or mes-
sage systems or for the automatic generation of bearing lan-
guage. Also within the range of learning software for chil-
dren this form of representation is preferable, since at this
age the acceptance of avatars depends strongly on their vi-
sual appearance.

2 Related Work

The creation of line drawings on basis of a 3D descrip-
tion of geometry was treated by many authors in the last
years. Methodically image space and object space methods
can be differentiated.

Image space methods can easily be computed in real-
time with modern graphics hardware using pixel shaders
and multi-pass rendering [16] or procedural geometry gen-
eration [19]. These procedures create simple line drawings
without line stylization apart from line width and opacity
variations. The reason for these limitations is the hidden
surface removal on the hardware side, which principally
works also for the culling of hidden lines, however partly
overwrites strongly stylized lines.

For the analytic line rendering in object space various ap-
proaches were introduced that supply high-quality results,
e.g. [10, 20, 24]. In [15] an object space method is pre-
sented that was optimized for the real-time rendering of
scenes of moderate complexity. Also hybrid combinations
of an analytic computation of the lines and a hidden line
removal in image space were implemented for real-time
rendering [11, 17]. In [4] the production of hand-drawn-
looking animated faces is shown. However, their work is
limited to two-dimensional data.

In this work we also use a hybrid approach for line ren-
dering. In order to achieve a characteristic face representa-
tion, our approach is enhanced by the options of adding de-
tails interactively using surface strokes and anchor strokes.
We introduce methods for their construction, application,
and their integration into the hidden line removal algorithm.

2.1 Line Drawings of Faces

As for other objects, a very characteristic line type for a
face is its silhouette line. For each frame, the computation
must be executed indepently, since these lines are viewpoint
dependent. In [15] a method is described that uses the local
coherency of silhouettes for small viewpoint changes, and
with which a better performance than using a brute force
approach can be achieved. The ”srf-method” introduced by
Gooch [7] is a stable and usefull method for the silhouette
computation of triangulated nurbs surfaces. The procedure
can also be used for faces, since faces consist of typically
smooth surfaces. Another approach by DeCarlo [5] extends

Figure 2. Drawing of a male head using silhou-
ette strokes combined with supplemented de-
tail strokes (male A).

the silhouettes of an object by so called suggestive contours.
This type of lines is located at the zero set of the radial
curvature of a surface and become silhouettes when viewed
from a nearby viewpoint.

In addition to silhouettes there are so called ”feature
lines” needed to convey the special expressions of a face.
Examples of feature lines are creases and boundaries that
represent geometrical and topological discontinuity of the
triangular mesh. Boundaries typically represent a part of
the silhouette. Thus, it is important to draw this kind of
line. Ridges and valleys are based on maximum and mini-
mum curvatures in principal directions of the object surface.
Cap and pit edges are based on concave and convex regions
of the mesh and are used in the rendering system of Sousa
[23]. However, finding feature lines geometrically on basis
of the mesh slope or other operators often leads to unwanted
results and too many or too less lines.

Our system uses the ”srf-method” [7] for the silhouette
computation. For producing characteristic and lively face
drawings, as is desirable for facial animation, automatically
generated lines are not sufficient, as mentioned above. On
the one hand it is desirable to emphasize special details of
a face that are not contained in the geometry data; however,

on the other hand the real-time ability limits the modelling
complexity for a face. As an example, complex hair should
not be contained in the geometry data but can be sketched
with a few strokes.

In the photorealistic representation, details that were not
modelled are replicated by means of textures. To pro-
vide comparable results for non-photorealistic rendering,
our system uses two types of lines: surface strokes and an-
chor strokes. These types of lines allow imitating details,
like eyes, folds, hair or even glasses and other accessory,
without these details having to be modelled beforehand (cf.
figure 2). The surface strokes were inspired by Kalnins et al.
[13] who introduced decal strokes which allow the user to
draw onto the surface directly. Anchor strokes that are used
for sketching hair were inspired by the graphtal strokes in-
troduced by Kowalski et al. [14]. Contrary to our system,
these strokes are not based on individual lines, but on polyg-
onal primitives.

3 NPR Pipeline

To render and animate a complex face in real-time we
have developed a non-photorealistic rendering pipeline. It
consists of a preprocessing step that allows the efficient
search of silhouettes. Here, the possible deformation of the
model for facial animations is taken into consideration. In
the next step, the computation of silhouettes as well as sur-
face and anchor strokes is performed; a hidden line removal
algorithm determines visible parts of the lines, and finally
the produced lines are rendered in an artistic way.

3.1 Preprocessing

During the preprocessing step a data structure is ap-
plied that supports the efficient search of silhouettes in ob-
ject space and the computation of the added detail strokes.
Therefore, information about the topology of the triangular
mesh such as adjacent triangles or surface normals needs
to be stored. As a result of the object plasticity some re-
strictions arise with regard to using algorithms that would
otherwise allow a more efficient silhouette searching, e.g.
the gauss map [2, 7] or the normal-cone hierarchy [22].

Another task is to provide consistent surface normals
when deforming the model during an animation. Thus,
our system computes triangle and vertex normals on-the-fly.
The vertex normals are calculated as a sum of all adjacent
triangle normals. We recognized that best results for the sil-
houette computation are achieved if the vertex and triangle
normals are not normalized.

The determination of boundary lines is also executed
during the preprocessing step, because these lines are bound
to the geometrical topology of the object and so they are
view-independent. Only a list of concatenated control

points is stored and rendered during the runtime using the
actual coordinates of the mesh vertices.

3.2 Silhouette Computation

As mentioned above, our system uses here the srf-
method of Gooch [7]. This procedure creates a piecewise
linear silhouette approximation of a triangulated smooth
surface. The silhouette edges are linearly interpolated be-
tween the mesh vertices using the dot product of the vertex
normals and the view vector at the vertices. The algorithm
creates either silhouette rings or partial silhouettes, begin-
ning and ending at a boundary edge. Thereby artefacts are
avoided, which occur with the computation of silhouettes
based on triangle edges [11, 17].

During the silhouette determination a set of silhouette
edges is produced. The search and the concatenation of
these silhouette edges is performed under consideration of
the triangular mesh topology. Thus, long connected par-
tial silhouettes and silhouette rings can be found in an effi-
cient way. In addition, the connection of silhouette edges of
different objects and/or disconnected triangles is avoided,
as it could happen by regarding only the image plane [17].
Finally, the control points are thinned out by summarizing
those points whose Euclidean distance fall below a certain
threshold value.

3.3 Hidden Line Removal

For the hidden line removal we use a depth buffer ap-
proach as presented in [11]. The depth buffer is sampled
along the extracted lines and then the values are compared
with those of the extracted lines. As a result, information
about covered line portions are received. In order to avoid
covering artefacts due to significant quantization errors of
the depth map near the silhouettes, the 8-neighbourhood of
a pixel is taken into consideration as proposed in [11].

In extension of this approach, we introduce two thresh-
old values that indicate the shortest visible and invisible
segments. If the length of a visible line segment falls be-
low the first threshold it is treated as invisible and it is not
drawn. Furthermore, short invisible segments below the
second threshold are turned visible. As a result artefacts
as the appearance of very small lines can be avoided. How-
ever, using a high threshold value, unintended covering may
occur. For example, a row of actual short segments would
be summarized and treated as one long covered segment.

Another problem occurs as the result of significant dif-
ferences between the approximated silhouette and the orig-
inal triangular mesh. As described above, the silhou-
ette edges are interpolated within their associated triangles.
There are some silhouette edges that lie on triangles facing
away from the viewer. These triangles are causing covering

Figure 3. Properly distortion of surface strokes when deforming the underlying 3D model (male B).

artefacts, since their depth values are above those of the ad-
jacent front faces. These artefacts are avoided by a sufficient
fine triangulation or by a adaptive subdivision in regions of
the silhouette.

Currently the hidden line removal is the bottle neck of
the system, since reading back the depth buffer is a limiting
factor for the frame rate. Nevertheless, frame rates above
30 fps can be produced on our reference system using a
GeforceFX 5800 graphics board and a depth buffer resolu-
tion of 512 × 512 pixels (cf. table 1). A software routine
for the rendering of the depth buffer may achieve a better
performance on computer systems with other graphics hard-
ware. This always depends on the topology and complexity
of the mesh.

3.4 Line Generator

Finally the visible line sections are rendered by a line
generator that was particularly designed for creating artistic
strokes. The line path is described by the control points
of the silhouette edges and approximated using cubic B-
Splines. Each line possesses a certain opacity and width
that can be changed continuously or stochastically along the
path. Furthermore, a texture can be applied to emphasize
the appearance of a particular drawing tool. The reproduc-
tion of the artistic line style is performed via the combina-
tion of different, mathematically described effects. This al-
lows a higher degree of freedom and modelling abilitiy than
approaches on the basis of example strokes given by the
user [6, 9]. Each effect gives specific attributes to change
the line style. For example, the effectfragmentcreates sev-
eral scattert duplicates of the line path, so that the sketchy
appearance of the silhouette in figure 3 can be achieved. An-
other effectinaccuracyused for almost every line style cre-
ates stochastic jittering of the line path, opacity, and width.

For all stochastic influences, a Perlin noise function is
used [18]. Thus, the conditions for a frame-to-frame coher-

ent representation are achieved and the effects are fully con-
trollable. The frame-to-frame coherence plays a substantial
role when viewing animated line drawings. To keep and/or
to produce frame-to-frame coherent animations is not trivial
especially for stylized line drawings. In [3, 12] algorithms
are introduced maintaining the temporal and arc-length co-
herence of silhouettes. This is especially difficult due to
topological changes of the silhouettes when animating the
model or changing the viewpoint. Currently our system
maintains temporal coherence for silhouettes only by the
determinism of the used algorithms, while surface and an-
chor strokes are typically frame-to-frame coherent due to
their static definition.

The line generator uses OpenGL quad strips for render-
ing stylized strokes that are generated along the underlying
path. The opacity of the lines is achieved using an OpenGL
blending function. In order to avoid blending artefacts at
strong curvatures, each line has a constant depth value, and
a blending function is used that only blends pixels with dif-
ferent depth values. According to the painter’s algorithm
the depth values of each line are increased by a small frac-
tion.

4 Surface Strokes

Providing lines on the object surface allows the repre-
sentation of various details of the object that are hard and
tediuous to achieve by geometric modelling. Our system al-
lows the user to directly draw lines on the faces similarly to
[13] while preventing distortion artefacts that appear when
using textures [8] in combination with perspective projec-
tion. Furthermore, in our approach the produced lines are
resolution independent.

The control points of our lines are described by barycen-
tric coordinates within the associated triangles. Only during
the rendering, the Cartesian coordinates of the points are
computed. The advantage of this method is that the points

(a) generated geometry for occlusion

(b) final image with halo effect

Figure 4. Using procedural geometry for oc-
clusion and halo effect of glasses that were
constructed with anchor strokes.

are properly moved during a deformation of the geometry
and thus, the surface strokes are automatically deformed as
well (cf. figure 3).

To compute the image space coordinates of the control
points we use the already projected 2D coordinates of the
mesh vertices. Thereby, the additional perspective projec-
tion of all barycentric surface points is avoided. Addition-
ally, the actual depth value is determined for the hidden line
removal, which is performed with the same algorithm that is
used for the silhouettes and boundaries. With a small depth
offset, the lines are shifted outward of the surface during the
depth test. Thus, further covering artefacts are decreased.

There are several alternatives for the production of sur-
face strokes. In our system an editor is integrated, which
allows interactive drawing with a mouse or a pen onto the
object surface. Another possibility is the extraction of edges
from the original textures of the object using filters, e.g.
[21]. The mapping of the texture coordinates onto the object
surface can then be executed in the preprocessing step.

5 Anchor Strokes

The second additional type of strokes that is very impor-
tant for our faces are anchor strokes. The underlying draw-
ing pathes use only one surface point (the anchor) which is
also described by barycentric coordinates within the associ-

(a) an example torus with fur. (b) worst case: All anchor
strokes in the front are drawn
first (28.5 fps).

(c) a compromise: Anchor
strokes that have a stochasti-
cally distributed arrangement
(28.5 fps).

(d) anchor strokes that are
sorted by depth (18.5 fps).

Figure 5. Anchor strokes are rendered using
a compromise between sorting effort and vi-
sual quality.

ated triangle. Further control points are defined by vectors
relatively to the corresponding anchor point. This way lines
can be described freely in space, but are anchored on the
surface of the object. An advantage of this approach is a
proper movement of the anchor strokes and their orienta-
tion when the object is being deformed. In our system they
are used for hair, beard, and pendants.

The hidden line removal introduced for silhouettes and
boundaries can also be used. However, the hidden line re-
moval for anchor strokes is an asynchron one. That means
that anchor strokes can be occluded by other objects but
they can’t occlude other lines since they can’t be rendered
into the depth buffer. In order to achieve occlusion and line
halos [1] when covering other lines, a procedural geometry
creation along the anchor strokes is integrated into the depth
buffer before the hidden line removal is performed (cf. fig-
ure 4). Thus, the generated geometry covers lines that are
positioned behind. The geometry is a simple quad strip par-
allel to the projection plane. Again, a small depth offset is
used to avoid covering artefacts with the associated anchor
line.

In order to achieve a correct blending of the semitrans-
parent strokes, it is important to sort the lines by their depth
values according to the painters algorithm. To increase per-
formance triangles with associated anchor points are sum-
marized. These triangles are then sorted using an average
depth value. Due to the similarity and the potentially high

(a) details are drawn onto the drawing planes (b) drawing planes are hidden and not rendered into the depth buffer

Figure 6. Using invisible drawing planes to create accessory.

number of lines (in case of hairs) the effort of sorting can
be omitted in many cases without having remarkable visual
disadvantages. Therefore we use a stochastically distributed
arrangement of our lines (cf. figure 5).

The creation of anchor strokes can be performed either
by a generic function that simply creates a stochastic distri-
bution of lines with a specific length or by a modelling tool
that provides a function for the creation of these types of
objects. This is especially necessary for complex line sets
such as hair.

6 Modelling

As described above there are several ways to create sur-
face and anchor strokes using interactive techniques or pro-
fessional modelling tools. This section describes two tech-
niques for the application of detail strokes and the mod-
elling of our nonphotorealistic faces.

Comparable to bitmap textures in a photorealistic rep-
resentation, ”line textures” for non-photorealistic rendering
are provided. These ”textures” consist only of a number
of predefined line paths. During preprocessing these de-
scriptions of lines are mapped onto the surface using con-
ventional texture coordinates. During rendering our line
generator produces stylized surface strokes at the basis of
the projected line paths. These ”line textures” are a suit-
able method for representing surfaces with a homogeneous
structure without having to draw each individual line. This
technique is applicable to both surface and anchor strokes

and can be easily applied for beard and hair. Additionally,
with these textures we could provide a repository of com-
plete details such as eyebrows or eyes. Thus, the reusabilty
of non-photorealistic components is given. Similar to pho-
torealistic rendering, we are able to implement light and
view dependency of these lines to provide special effects
for the visualization.

Another application of surface and anchor strokes is the
use of so called invisible drawing planes. This technique
allows us to enhance the original scene by auxiliary objects
that are carriers of detail strokes. For each carrier object the
visibility and the occultation is adjustable and thus, the in-
fluence of these objects on the hidden line removal is fully
controllable. If an object is visible, the silhouette of this
object is drawn. If an object is covering, it is rendered into
the depth buffer before performing the hidden line removal
algorithm. Thus there are three meaningful combinations:
an object is visible and covers other objects, an object is
visible but does not cover anything or an object is invisi-
ble, but covers other objects. For example, this technique
allows the user to create lines that are positioned freely in
space, but are still anchored on an arbitrary object. This in-
visible carrier object is not rendered into the depth buffer,
since occlusion of other strokes must be avoided (cf. fig-
ure 6). Another example pertaining to accessories is shown
in figure 7. Here the carrier objects for the blossoms are
invisible, but still cover other strokes. As a result the semi-
transparent blossoms are visualized without color faults that
would otherwise be caused by the darker strokes of the hair.

(a) carrier objects used for the anchor strokes

(b) carrier objects turned invisible, but still covering other strokes, e.g.
the hair

Figure 7. Using carrier objects and anchor
strokes to create the blossoms of our female
model.

7 Performance

We tested the performance of our system with a set of
faces. The scenes were rendered on a Pentium 4 with 3GHz
and a GeForceFX5800 graphics controller. In Table 1 the
computation times of the rendering steps are compared. We
used three different models with up to 35000 triangles (#tri-
angles). A depth buffer size of512 × 512 pixels is used
for the performance test. Data preparing (prepare) includes
the calculation time of surface normals and the perspective
projection of mesh vertices.lineCompgives the computa-
tion time for silhouettes, surface strokes and anchor strokes.
#surfaceand#anchorgives the number of surface and an-
chor strokes. The time for rendering and backreading the
depth buffer is shown bydepth. The hidden line removal
(hlr) includes the sampling along the calculated lines and
the creation of interrupt information for the line generator.
Finally, the visualization of the scene using the line gener-
ator is measured (render). The number of OpenGL quads
that are rendered in a scene is shown by#quads. fpsgives

the overall frames per second for the complete scene.

8 Conclusion and future work

We presented a system for the creation and rendering
of characteristic drawings of faces with the appearance of
hand-drawn images. The system allows the real-time ren-
dering and animation of face models with moderate com-
plexity. In addition to silhouette lines, two specific kinds of
lines are used: surface strokes and anchor strokes. These are
necessary for the non-photorealistic rendering of concrete
details such as hair, eyes, and folds of our three-dimensional
face models. Also it is much more complicated to model
these details using the underlying mesh. Thus characteris-
tic and highly detailed line drawings of faces can be pro-
vided in real-time. We presented different approaches for
the production of these two types of lines and showed their
application.

Future works aim at optimizing the system, especially
when rendering anchor strokes. Currently there are still
some efficiency problems such as with the rendering of
complex hair. Another problem is the correct dynamic rep-
resentation of hair, which requires a complex physical simu-
lation with collision detection, and which is inadequate for
our application. A highly simplified approximation using
a sphere, a smaller number of hairs, and an omitting hair-
to-hair interaction, can be applied in the field of real-time
facial animation.

The temporal frame-to-frame coherency works well with
exception of the occlusion errors and non-deterministic
changes of the silhouette topology mentioned above. Here it
is necessary to introduce particular algorithms that achieve
a temporal frame-to-frame coherence and to avoid the tem-
poral occlusion artefacts.

Another issue in future work is the modelling for non-
photorealistic rendering, the application of the introduced
carrier objects, and the detail strokes. These techniques
have a profound influence on the visual appearance and the
quality of the results that also include numerous applica-
tions besides the rendering of faces. For example, anchor
strokes are used to create the sketched trees as shown in
figure 8.

9 Acknowledgements

The female model was provided by Stefan Herz from the
Filmakademie Ludwigsburg, the Male B model is courtesy
of Marc Alexa (TU Darmstadt, Germany) and Wolfgang
Mueller (PH Ludwigsburg, Germany).

Table 1. Computation times for the different steps of the rendering pipeline.

model #triangles #surface #anchor prepare lineComp depth hlr render #quads fps

male A 32085 712 1000 5.6ms 4.0ms 14.6ms 4.9ms 12.3ms 12487 24.2
female 34964 874 4032 6.1ms 5.1ms 18.3ms 7.4ms 37.1ms 21981 13.5
male B 6818 801 0 1.0ms 0.9ms 13.5ms 1.2ms 11.2ms 6498 36.1

References

[1] A. Appel, F. J. Rohlf, and A. J. Stein. The haloed line effect
for hidden line elimination. InComputer Graphics (Pro-
ceedings of SIGGRAPH 79), volume 13, pages 151–157,
Aug. 1979.

[2] F. Benichou and G. Elber. Output sensitive extraction of
silhouettes from polygonal geometry. InPacific Graphics
’99, Oct. 1999.

[3] L. Bourdev. Rendering nonphotorealistic strokes with tem-
poral and arc-length coherence. Master’s thesis, Brown Uni-
versity, 1998.

[4] I. Buck, A. Finkelstein, C. Jacobs, A. Klein, D. H. Salesin,
J. Seims, R. Szeliski, and K. Toyama. Performance-driven
hand-drawn animation. InProceedings of the 1st interna-
tional symposium on Non-photorealistic animation and ren-
dering, pages 101–108. ACM Press, 2000.

[5] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. San-
tella. Suggestive contours for conveying shape.ACM Trans-
actions on Graphics, 22(3):848–855, July 2003.

[6] W. T. Freeman, J. B. Tenenbaum, and E. Pasztor. An
example-based approach to style translation for line draw-
ings. Technical Report TR-99-11, MERL - A Mitsubishi
Electric Research Laboratory, 1999.

[7] B. Gooch, P.-P. J. Sloan, A. Gooch, P. S. Shirley, and
R. Riesenfeld. Interactive technical illustration. In1999
ACM Symposium on Interactive 3D Graphics, pages 31–38,
Apr. 1999.

[8] P. Hanrahan and P. E. Haeberli. Direct wysiwyg painting and
texturing on 3d shapes. InComputer Graphics (Proceedings
of SIGGRAPH 90), volume 24, pages 215–223, Aug. 1990.

[9] A. Hertzmann, N. Oliver, B. Curless, and S. M. Seitz. Curve
analogies. InRendering Techniques 2002: 13th Eurograph-
ics Workshop on Rendering, pages 233–246, June 2002.

[10] A. Hertzmann and D. Zorin. Illustrating smooth surfaces. In
Proceedings of ACM SIGGRAPH 2000, Computer Graph-
ics Proceedings, Annual Conference Series, pages 517–526,
July 2000.

[11] T. Isenberg, N. Halper, and T. Strothotte. Stylizing Silhou-
ettes at Interactive Rates: From Silhouette Edges to Silhou-
ette Strokes.Computer Graphics Forum (Proceedings of Eu-
rographics), 21(3):249–258, Sept. 2002.

[12] R. D. Kalnins, P. L. Davidson, L. Markosian, and A. Finkel-
stein. Coherent stylized silhouettes.ACM Transactions on
Graphics, 22(3):856–861, July 2003.

[13] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowal-
ski, J. C. Lee, P. L. Davidson, M. Webb, J. F. Hughes, and
A. Finkelstein. Wysiwyg npr: drawing strokes directly on
3d models. InProceedings of the 29th annual conference on

Computer graphics and interactive techniques, pages 755–
762. ACM Press, 2002.

[14] M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bourdev,
R. Barzel, L. S. Holden, and J. Hughes. Art-based rendering
of fur, grass, and trees. In A. Rockwood, editor,Siggraph
1999, Computer Graphics Proceedings, pages 433–438, Los
Angeles, 1999. Addison Wesley Longman.

[15] L. Markosian, M. A. Kowalski, S. J. Trychin, L. D. Bour-
dev, D. Goldstein, and J. F. Hughes. Real-time nonpho-
torealistic rendering. InProceedings of SIGGRAPH 97,
Computer Graphics Proceedings, Annual Conference Se-
ries, pages 415–420, Aug. 1997.

[16] J. L. Mitchell, C. Brennan, and D. Card. Real-time image-
space outlining for non-photorealistic rendering. InPro-
ceedings of SIGGRAPH 2002, Sketches and Applications,
page 239, 2002.

[17] J. D. Northrup and L. Markosian. Artistic silhouettes: A hy-
brid approach. InNPAR 2000 : First International Sympo-
sium on Non Photorealistic Animation and Rendering, pages
31–38, June 2000.

[18] K. Perlin. An image synthesizer. InComputer Graphics
(Proceedings of SIGGRAPH 85), volume 19, pages 287–
296, July 1985.

[19] R. Raskar. Hardware support for non-photorealistic
rendering. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics
hardware, pages 41–47. ACM Press, 2001.

[20] C. Rössl and L. Kobbelt. Line-art rendering of 3d-models.
In 8th Pacific Conference on Computer Graphics and Appli-
cations, pages 87–96, Oct. 2000.

[21] M. A. Ruzon and C. Tomasi. Color edge detection with the
compass operator. InProceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 160–
166, June 1999.

[22] P. V. Sander, X. Gu, S. J. Gortler, H. Hoppe, and J. Snyder.
Silhouette clipping. InProceedings of ACM SIGGRAPH
2000, Computer Graphics Proceedings, Annual Conference
Series, pages 327–334, July 2000.

[23] M. Sousa and P. Prusinkiewicz. A few good lines: Sug-
gestive drawing of 3d models.Computer Graphics Forum
(Proc. of EuroGraphics ’03), 22(3):xx–xx, 2003.

[24] G. Winkenbach and D. H. Salesin. Rendering parametric
surfaces in pen and ink. InProceedings of SIGGRAPH 96,
Computer Graphics Proceedings, Annual Conference Se-
ries, pages 469–476, Aug. 1996.

Figure 8. Different views of the male and female head and another application of our anchor strokes.

	Text77: First publ. as: Paper / Pacific Conference on Computer Graphics and Applications (PG ‘04), Seoul, Korea, 2004, pp. 339-347
	Text78: Konstanzer Online-Publikations-System (KOPS)URL: http://www.ub.uni-konstanz.de/kops/volltexte/2007/2805/URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-28055

