
Automatic Loop Parallelization:
An Abstract Interpretation Approach

Laura Ricci
Department of Computer Science, University of Pisa

Corso Italia 40 - Pisa
email: ricci@di.unipi.it

Abstract

This paper presents an abstract interpretation to support
the automatic parallelization of iterative constructs. The
analysis approximates the range of values of any array sub-
script by integrating an interval analysis with one returning
a set of simple linear restraints among program variables.
To reduce the complexity of the analysis, a general method-
ology has been adopted that defines two different abstract
domains, i.e. the interval domain and the bisector domain.
The domains are then combined through the reduced prod-
uct operator. A static tool implementing the analysis has
been automatically generated through PAG. The results of
the analysis of some kernel loops of the Perfect Club Bench-
mark are shown.

1. Introduction

The parallelization of sequential loops has been deeply
investigated in the last decade. The basic analysis to im-
plement this transformation is the dependencies analysis,
which detects if several iterations of a loop refer to the same
memory location and at least one modifies it. The prob-
lem is particularly challenging when array locations are re-
ferred within a loop body. An exact solution to this problem
can be defined by solving a system of linear Diophantine
equations. The proposals based upon this approach [10] are
generally considered too computationally expensive to be
practical. Hence, compilers generally exploit an approxi-
mate method which computes a safe approximation of the
solution. One of the most widely used, even in commer-
cial compiler, is the Banerjee test [10]. At first, this method
computes, for each array reference R of a loop nest, an ap-
proximation of the range of values accessed by R, then it
intersects different ranges to check if they overlap. If no
overlap is detected, no dependency exists in the loop nest. A
range is computed through a set of inequalities, the Baner-

jiee inequalities, returning the bounds of linear functions.
The basic method has been extended to triangular or trape-
zoidal loops as well. In this case, the relations among loop
indexes are exploited to restrict the range of values of the
array subscript. The Banerjee test requires that both loop
bounds and array subscripts are defined as linear functions
of loop index variables. This implies that a subscript in-
cludes neither other variables but indexes nor any nonlin-
ear expression. However nonlinear expressions or symbolic
variables often appear in scientific programs, for instance in
the Perfect Club Benchmark [11] .

Several proposals [12, 9] aim to generalize the Baner-
jee test. The range test [12] computes and compares sym-
bolic ranges including both non linear terms and variables
whose value is unknown at compile time. The test requires
a symbolic analysis collecting equalities and/or inequalities
between program variables. This information is exploited to
detect loop carried dependencies for any loop L in a loop
nest.

Each of these proposals is based upon a complex sym-
bolic calculus implemented by an ad hoc algorithm.

This paper shows that a proper methodology can reduce
the complexity of these analyses. We exploit the abstract in-
terpretation framework [5, 6] to define a symbolic analysis
for loop parallelization. A first advantage of this approach
is that it reduces the complexity of the analysis through a
modular definition, supported by a set of proper abstract op-
erators. Furthermore, no ad hoc algorithm to implement the
analysis has to be defined, because an analyzer can be auto-
matically deduced from the specification of the analysis.

According to [5, 6], an abstract analysis can be defined
through a set of simple abstract domains. Then the domains
are systematically combined. In our case, two distinct do-
mains are defined that describe, respectively, the numeri-
cal constraints of the variables and their symbolic relations.
This is a noticeable difference with respect to existing anal-
ysis that introduce a single domain describing both prop-
erties. In our analysis, numerical constraints are described
through the abstract domain of the intervals introduced in

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’02)
0-7695-1730-7/02 $17.00 © 2002 IEEE

[5]. The analysis defines a new domain, the bisectors do-
main [2], describing a set of simple linear relations be-
tween variables. The interval and the bisector domain are
systematically combined through the reduced product oper-
ator [6], which computes the Cartesian product of the two
domains, then “reduces” each resulting element. The re-
duction exploits the information returned by either domain
to improve that returned by the other one. In this way, when
analyzing a statement, the analysis exploits the information
returned by analysis of the previous statements on both do-
mains. Furthermore, each abstract operator exploits the in-
tervals to compute the relations and the other way round.
This improves the accuracy with respect to an analysis that
considers two domains, but does not integrate them.

The analysis has been implemented through PAG [1], an
automatic analyzer generator. The abstract domains, the ab-
stract operators and the reduced product are defined through
a proper specification language.

The paper is organized as follows. Section 2 shows the
definition of the abstract domains and of their reduced prod-
uct. Section 3 introduces the abstract operators. In Section
4 the analysis is applied to some kernel loops of the Perfect
Club Benchmarks. Section 5 describes the implementation
in PAG. Section 6 presents related works. Finally Section
7 presents some conclusions.

2. The Abstract Domains

An abstract interpretation approximates program prop-
erties by evaluating a program on a simpler and computer
representable domain of descriptions of “concrete” program
states. This abstract domain exhibits a structure, i.e. an or-
dering, which is somehow present in the richer structure as-
sociated to the program execution. The relation between the
concrete and the abstract domain is defined through a pair
of functions, the abstraction function � and the concretiza-
tion function
 that defines a Galois Connection [5]. The
abstract interpreter, defined through a set of abstract opera-
tors corresponding to the instructions of the language, “ex-
ecutes” the program on the abstract domains. In this paper
we discuss the abstract domain and the abstract operators
defined for the dependency analysis. [7] shows The Galois
Connection and the correctness of the analysis.

The Interval domain Int shown in Figure 1 has been in-
troduced in [5] to describe the interval of values that each
variable may assume at each point of a program. The do-
main can be easily extended to set of variables. The abstract
calculus on this domain is defined according to the interval
arithmetic. For instance, some basic operators are

[a; b] + [c; d] = [a+ c; b+ d]
[a; b]� [c; d] = [a� d; b� c]
[a; b] � [c; d] = [min(ac; ad; bc; bd); max(ac; ad; bc; bd)]

Since the abstract domain is infinite, a widening 5 and
narrowing4 are defined. In the following, we will exploit
the definitions in [5]. The analysis defined on this domain
will be referred as the interval analysis.

[-2,-2]

[-1,2][-2,1]

[0,2][-1,1][-2,0]

[1,2][0,1][-1,0][-2,-1]

[2,2][1, 1][0, 0][-1, -1][-2,-2]

Figure 1. The Intervals Domain

The intervals returned by this analysis can be exploited to
check array independence through the Banerjiee Test [10]
whenever the loop indexes define a rectangular region. As
a matter of fact, the analysis returns the same information
of the Banerjee’s inequalities. The analysis of triangular or
trapezoidal loops, or of loops including symbolic variables,
requires the definition of a new domain describing a set of
simple linear restraints between the variables.

Let us consider a program that uses two variables only.
In this case, the domain includes linear restraints which
describe one of the regions produced by cutting the plane
through bisecting lines: for this reason we call this domain
the Domain of Bisectors.

For the sake of conciseness, we will show one subset of
the domain only, that includes the restraints corresponding
to the bisecting line X = Y . The domain is shown in
Figure 2, where X?Y means that there may be any kind of
relationship between X and Y .

The specification of the complete Bisectors Domain is
given in [7] and it includes the restraints corresponding
to the bisecting line X = �Y as well. The specification
defines the domain corresponding to the two bisectors sep-
arately, and then combines them by defining their reduced
product.

The abstract domain has been extended to an arbitrary
number of variables, but, in order to reduce its complexity,
the resulting analysis returns linear restraints only. Hence,
the elements of the extended domain are a set of restraints,
where each restraint belongs to the bisector domain and it
involves only one pair of program variables.

2

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’02)
0-7695-1730-7/02 $17.00 © 2002 IEEE

X<Y X=Y X>Y

X≤Y X ≥ Y

X?Y

Figure 2. Bisectors Domain

A more refined approach combines the interval and the
bisectors domain through their Reduced Product. This ap-
proach exploits a reduction operator: for each element
(a1; a2) belonging to the Cartesian product of the original
domains, the reduction operator may refine both a 1 and a2
by considering the intersection of the concretization of a 1,
rs. a2 and by re abstracting the result through the corre-
sponding domains. The reduced domain is produced by ap-
plying this operator to each element in the Cartesian prod-
uct.

An abstract state includes, for each program point, an
element of the reduced product, i.e. a numeric interval for
each variable of the program and a set of relations between
pair of variables. The abstract state where all the intervals
are set to [�1;+1] and the relations between any pair of
variables is set to ? is associated with the initial point of the
program.

Let us consider the reduction operator. Both this opera-
tor and the abstract operators of the following section will
be defined with respect to the simplified bisector domain
shown in this section. The reduction operator

� : Bisector � Int� Int! Bisector � Int� Int

is applied to a triple (Rx;y; Ix; Iy), where Ix = [mx;Mx],
Iy = [my;My], and it may return a more precise relation
or it may restrict the bounds of the intervals. We show only
some cases of reduction. Let m = max(mx;my), M =
min(Mx;My)

�(X = Y; Ix; Iy)= ?;?;? if (Ix \ Iy) = ;
�(X = Y; Ix; Iy)= X = Y; [m;M]; [m;M] if (Ix \ Iy) 6= ;
�(X > Y; Ix; Iy)= ?;?;? if Mx � my

�(X � Y; Ix; Iy)= ?;?;? if Mx < my

�(X � Y; Ix; Iy)= X � Y; [m;Mx]; [my;M] if (Ix \ Iy) 6= ;
�(X?Y; Ix; Iy)= X > Y; Ix; Iy if mx > My

. . .

The values returned by the operator when X < Y or
X � Y can be trivially deduced from the previous cases.

Example 2.1 Consider the reduction of the abstract state

�(X > Y; [2; 50]; [20; 70])

the interval values of X and Y may be sketched as:

20 70

2 50

intx

inty

Since X > Y , all the values of X belonging to [2; 20] can
be discarded, because any value in this interval cannot be
larger than any value of Y. Furthermore the values of Y
belonging to [50; 70] can also be discarded, because any
value of Y in this interval is not lower than any value of X .
Hence,the reduction operator returns the triple

�(X > Y; [2; 50]; [20; 70]) = X > Y; [21; 50]; [20; 49]

Let us now consider the reduction of the triple:

X � Y; [17; 20]; [3; 15])

Since the intersection of the intervals is empty, any value of
X is larger than any one of Y . The reduction operator can
now return a more accurate relation between the variables
X and Y as follows
�(X � Y; [17; 20]; [3; 15]) = (X > Y; [17; 20]; [3; 15]) }

The analysis is defined through a set of abstract operators
corresponding to the constructs of the considered language.
Each operator transforms the abstract state associated with
the point of the program preceding the corresponding con-
struct (input abstract state) into a new abstract state (output
abstract state), according to the semantics of the construct.
The reduced product is applied to the abstract state returned
by each operator. The analysis is iterated till a fix point is
computed.

3. The Abstract Operators

The abstract operators to implement the analysis are
fully described in [7]. This section shows the abstract oper-
ator corresponding to the assignment only. We will consider
a general assignment involving n variables

Xj := c1X1 + ::::+ ciXi + :::cnXn + cn+1 (1)

where the right hand side expression is linear, i.e. each c i
is constant. Non linear expressions are discussed in [7].
The assignment is invertible iff the variable on the left hand
side also occurs on the right hand side. A relation between
the new value of the left hand side variable and its previous
value may be computed only if the assignment is invertible.

3

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’02)
0-7695-1730-7/02 $17.00 © 2002 IEEE

An abstract assignment updates the interval correspond-
ing to the left hand side variable and all the relations involv-
ing that variable, while all other relations are unchanged.
Both domains introduced in the previous sections are ex-
ploited by the interval analysis and by the relational analy-
sis described in the following. These analyses are applied
in parallel to each program statement and both exploit any
information in an input abstract state, i.e. the interval and
the relations, to produce a component of the output abstract
state. These components are then merged into a single out-
put state by the reduction operator.

3.1. Relations Analysis

Let us consider assignment 1. The abstract operator in-
serts into the output state each relation in the input state
involving any variable but Xj . If a relation involves Xj , it
may be updated by the assignment, to take into account that
the value of Xj is updated.

To compute the new relations, we exploit the results of
the interval analysis as follows

� a new relation, between the left hand side variable and
any right hand side variable can be computed through
an analysis of the intervals of the right hand side vari-
ables.

� if the assignment is invertible, the relation between the
new and the old value of the left hand variable can be
exploited to update the relations of the abstract input
state.

Let us consider the first case. To compute the relation be-
tween variables Xj and Xi, the assignment is transformed
as follows

Xj := ciXi + [aexp; bexp] (2)

where [aexp; bexp] is the approximate interval of values of
the expression exp resulting by removing the term c iXi

from the right hand side expression. This approximation
is returned by the interval analysis described in section 2.

The new relation between Xj and Xi depends upon the
signs of, respectively, ci, the interval corresponding to Xi

and [aexp; bexp], as shown in following example.

Example 3.1 Let us consider the assignment

X2:=2X1+3X2-X3

Consider an abstract state including the intervals
intX1

=[6,12], intX2
=[2,10], intX3

=[1,5] and the relations
X1 >X2, X2 >X3, X1 >X3,X3 <X4, To compute the rela-
tion between X2 and X1, the variable X1 is removed from
the right hand side and the interval of the resulting ex-
pression is computed as follows: X2=2X1+3[2,10]-[1,5]
=2X1+[6,30]-[1,5]=2X1+[1,29] Since the value of X2 is

obtained by multiplying the value of X1, which is positive,
by a positive constant and by adding a positive value to the
result, the analysis returns the relation X2 > X1. }

This analysis is implemented by the function NewRel that is
applied to an assignment statement a and a variable v and
returns a relation between v and the left hand side variable
of a. If v does not belong to the right hand side expres-
sion of a, Newrel returns the ? relation. The definition of
NewRel [7], is straightforward, and is based upon an anal-
ysis of the possible combinations of the signs of the right
hand side terms of 1. It is worth noticing that the function
NewRel can be exploited to compute a relation between the
old and the new value of the updated variable of an invert-
ible assignment as well. This relation can be exploited to
update the relation in the input abstract state as shown in
the following example.

Example 3.2 Let us consider again the assignment in ex-
ample 3.1. The corresponding input abstract state includes
the relation X2 >X3. Since NewRel detects that the value
of X2 is increased by the assignment, the analysis can safely
deduce that the relation X2 > X3 still holds after the assign-
ment. Note that, in this case, Newrel cannot determine a re-
lation between X2 and X3 because of the negative coefficient
of X3. }

The function Modrel [7] implements the analysis shown
in the previous example. It receives as input the relation R
between the old and the new value of the updated variable
Xj and a relationR0 between the left hand side variable and
any right hand variable and it checks if the latter is modified
by the assignment.

The abstract operator AbstrRel exploits both the previous
functions, as shown in Fig. 3. The function NewRel is ini-
tially invoked to compute a relation between the old value
and the new one of the left hand side variable. If the assign-
ment is not invertible, the function returns the ? relation.
Then, each relation Rel in the input abstract state is consid-
ered: if it does not involve the left hand variable, it is in-
serted in the output abstract state. Otherwise, both NewRel
and ModRel are invoked and the greatest lower bound of
the results is returned. For instance, in previous example,
the returned is the one computed by Modrel.

3.2. Intervals Analysis

This section shows that the relations defined in the Bi-
sector Domain support a refinement of the numeric inter-
vals. Let us consider again the assignment 1 and the ab-
stract operator that, given an abstract state, returns an in-
terval for the right hand side expression. The definition of
this operator requires the solution of a linear programming
problem, to compute the minimum and maximum value of

4

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’02)
0-7695-1730-7/02 $17.00 © 2002 IEEE

AbstrRel(Assign,Relset);
begin

R:=Newrel(Assign, LeftVar(Assign))

// if LeftVar(Assign) 62 RightVars(Assign) R = >

forall Rel 2 Relset do
if LeftVar(Assign) 62 Vars(Rel) then

Relout = Relout [fRelg
else
begin

Var :=V 2 f Vars(Rel)-LeftVar(Assign)g
NR:= Newrel(Assign, Var);
MR:= Modrel(Rel,R);
New:=NR u MR;
Relout := Relout [New

end
endforall

end

Figure 3. Computing the Relations

the expression within the region defined by the numerical
and the symbolic linear restraints belonging to an abstract
state. While any classical linear programming algorithm
may be exploited to solve this problem, these algorithms
are not suitable for a static analyzer because of their com-
plexity.

Our proposal is based upon an approximation of the
Fourier Motzkin elimination method [10].

The function AbstrInt, implementing the refined inter-
val analysis, is shown in Figure 4. For the sake of con-
ciseness, we consider � and � relations only. The exten-
sion to the whole bisector domain is straightforward. Ab-
strInt receives as input an expression and an abstract state
S = (Relset; Inteset). It returns a safe approximation of
the minimum value of the expression when it is evaluated
in a state satisfying the constraints of S. A similar function
has been defined for the computation of the maximum.

The function considers each variable v occurring in the
expression and, if possible, it replaces v either with a sym-
bolic lower bound or with an upper bound, according to the
sign of the coefficient of v in the expression, which is re-
turned by the function Positive. The function choose looks
for an upper or a lower bound in the input abstract state. If
no bound exists, the variable v is returned unchanged. If
more than one bound is detected, one of them is chosen ac-
cording to some heuristics. Currently, we exploit a straight-
forward heuristics which chooses a bound corresponding to
any variable occurring in the expression. The definition of
sophisticated heuristics is useless in our case, because most
practical cases includes just one lower/upper bound for each
variable. After replacing v, all the relations involving v are
removed from the abstract state to avoid that v is inserted
again in the expression by a following replacement. Fur-

thermore, the variable x introduced by the substitution is
marked and it will be not replaced before the simplification
of the expression. As a matter of fact, since the expression
can now include multiple occurrences of x it is not possible
to decide whether x has to be replaced by either its lower or
upper bound. When all variables have been considered, the
expression is simplified through the function simplify.

Finally, the interval analysis introduced in section 2 is
applied both to the simplified expression and to the origi-
nal one and the tightest bound is returned. The following

AbstrInt(Expr,Relset,Intset)
substvar = ;
forall v2 Var(Expression)

if v 62 substvar then
LB(v)=fl:v�l 2 Relset g
UB(v)=fu:v�u 2 Relset g
if Positive(v) then x=choose(LB(v))

else x=choose(UB(v))
Expr = replace(x,v,Expr)
substvar = substvar [fxg
Relset = Relset - Rels(v,Relset)

endforall
Simpexpr=simplify(Expr)
Int1 =interval(Simpexpr)
Int2 =interval(Expr)
Int = Int1 u Int2
return min(Int)

Figure 4. Computing the Intervals

example shows that the simplification does not always im-
prove the accuracy of the analysis. In this case, the results
of the interval analysis are returned.

Example 3.3 Let us consider the following expression

Y-X+K-T

and the following abstract state including the rela-
tions X�Y, K�T and the intervals X=[1; 10], Y=[5; 20],
K=[5; 30], T=[1; 20]. To compute the approximation of the
minimum, the expression is scanned from left to right and
the variable Y is initially considered. Since the coefficient
of Y is positive, Y is replaced by its lower bound X and the
first relation which involves Y is removed from the abstract
state. Furthermore, X is marked to prevent any further sub-
stitution. Since K is then replaced by T, the resulting expres-
sion becomes:

X-X+T-T

After the simplification of this expression, the returned min-
imum value is 0. Note that the analysis of interval applied
to the original expression returns the value -20, which is a
worse approximation. Consider the following expression

Y+X+K+T

5

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’02)
0-7695-1730-7/02 $17.00 © 2002 IEEE

and suppose it is evaluated with respect to the previous ab-
stract state. The same variables are replaced and

2X+2T

is returned, whose minimum value is 4. In this case, the re-
sult of the interval analysis, i.e. the value 12, is a better ap-
proximation. }

[7] shows that the operator always returns a safe approx-
imation. The argument is that each elimination step cor-
responds to an elimination step of the Fourier Motzkin
method, where some constraints are neglected.

Expressions including non linear terms require a more
complex analysis. Before replacing a variable belonging
to a non linear term, the signs of all the variables of the
term have to be computed to decide if the variable can be
replaced by an upper or a lower bound.

4. Applications

To prove the effectiveness of our approach, we have con-
sidered the Perfect Benchmark, a set of scientific programs
widely exploited to test parallelizing compilers and applied
our analysis to some kernel loops of this benchmark. This
section shows that our analysis can prove the independence
of these loops.

Let us consider the loop nest shown if Fig. 5, a simplified
version of the TRACK code of the Perfect Benchmark.

ntrold = lsttrk S0
do k1 = 1, nm

do kt = 1, ntrold
if (k1 6= ihits(kt) then... S1

enddo
if (...) then

lsttrk = lsttrk + 1
ihits(lsttrk) =... S2

endif
enddo

Figure 5. TRACK code: Symbolic Analysis

Let us consider the array ihits which is read in statement
S1 and modified in statement S2. To prove that no depen-
dency exists between these pair of references, the analysis
computes the ranges of values accessed by each of these
references and shows that they do not overlap. Notice that
the values of the upper bounds of the loops and that of the
variable ntrold are not known. For this reason, the inter-
val analysis cannot infer a bounded interval neither for the
reference S1 nor for reference S2. As a consequence, the in-
terval analysis cannot prove independence for the loop nest.

Instead, the bisector analysis detects a symbolic upper
bound, ntrold, for the set of values of the subscript S1 and
symbolic lower bound ntrold+1 for the reference S 2. These
symbolic bounds guarantee that the pair of references never
overlap, independently of the value of ntrold. The upper
bound is detected through an analysis of the bounds of the
inner loop. To compute the lower bound, the analysis com-
putes the relation ntrold = lsttrk, which hold after the
execution of S0. Since lsttrk is incremented in the outer
loop, the relation lsttrk > ntrold always holds before the
execution of the statement S2.

A more complex example is shown in Fig. 6. The code
is one of the kernel loop of a N-Body dynamics simulation
program. The program includes a set of complex subscripts,
introduced by the elimination of induction variables from
the original code. Let us consider the read access to v in S0

and the write access to the same array in S1. We want de-
termine if any dependency carried by loop k exists between
these references.

do i = 1,norder
do k = 1,natmo3

s=0.0
do j = i, norder
s=s+ c(i*norder+j-norder+1)*v(k+j*natmo3) S0
enddo
v(i*natmo3+k-natmo3) = v(i*natmo3+k-natmo3) S1

enddo
enddo

Figure 6. MDG code: Symbolic Analysis

Since we are considering the dependencies carried by
loop k, we have to analyze two different iterations k1 and k2
of the that loop. Following [12], at first we compute the in-
teger range of the difference of the two subscripts, then we
determine whether this range is always positive or always
negative. The difference expression is

i � natmo3 + k1� natmo3� k2� j � natmo3 (3)

As in the previous example, an analysis taking into account
only the interval returns an unbounded interval, because of
the unknown value of the symbolic variables. Since expres-
sion 3 involves a pair of reference, we consider only the
relations which holds both before statement S1 and before
statement S2, that are

i � norder; k1 � natmo3; k2 � natmo3; i � j (4)

These relations are exploited to refine the interval of val-
ues of expression 3. Let us consider the computation of
the approximated maximum of this interval. The analy-
sis can compute that both the value of the sub expression
i � natmo3 � j � natmo3 and that of the sub expres-
sion k1 � natmo3 are always non positive because of, re-
spectively, the relations i � j and k1 � natmo3. Note

6

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’02)
0-7695-1730-7/02 $17.00 © 2002 IEEE

that the analysis can prove that the non linear expression
i�natmo3�j�natmo3 cannot be larger than 0, because of
the interval [1;1] inferred for the variable natmo3. Since
the interval associated with k2 is [1;+1], the maximum
value of the expression is �1. This proves that the value of
expression 3 is always negative and hence no dependency
is carried by loop k.

5. Implementation

One analyzer has been automatically implemented in
PAG. The specification language of PAG [1] includes a
language for the definition of the domains and of the data
types and one for the specification of the abstract operators.
The former includes a set of constructs to define the ele-
ments and the ordering of the domain. It is possible to ex-
ploit some predefined domains or to define a new one. PAG
automatically defines the reduction of two domains by ex-
ploiting the reduced product definition supplied by the user.
The definition of the abstract operators is given through a
monomorphical first order language, similar to Haskell [8].
The language may be exploited to define the reduction op-
erator and the widening/narrowing operators as well. About
500 lines of code are necessary to specify our analysis.

6. Related Work

[12] proposes a symbolic dependence tester based on
an analysis which presents some similarities with our ap-
proach. A single abstract structure, the symbolic range,
describes both the numerical properties and the relations
among the variables. This increases the complexity of the
analysis. Furthermore, neither the abstract domain defini-
tion nor the correctness proofs are given. We recall that the
definition of an abstract domain is essential to exploit tools
for the automatic generation of the analyzers. Finally, the
definition of the abstract operators is based on the manipu-
lation and the simplification of arbitrary complex symbolic
expressions. On the other hand, our analysis computes inte-
ger ranges for the variables and only a simple symbolic cal-
culus is required when considering the relation between the
symbolic domain and the numeric one. [9] presents a sym-
bolic analysis for parallelizing compilers and performance
estimators. An algorithm to estimate the number of integer
solutions of a system of constraints is proposed. This al-
gorithm support elimination of zero-trip loops, elimination
of dead code, and performance prediction of parallel pro-
grams. [4] defines an abstract interpretation returning a set
of linear restraints among the variables of a program. The
analysis is very accurate, but its complexity is very high. A
set of linear restraints is represented as convex polyhedron
and the computation defined on the polyhedron requires the
application of the pivot method.

7. Conclusions

This paper has presented an abstract interpretation for
the parallelization of iterative constructs. We plan to extend
the analysis both by refining the domains and by defining
their composition with other abstract domains. For instance,
the bisector domain can be extended to include bounds par-
allel to the bisecting lines. Furthermore, we plan to describe
loops with different strides through the domain of arithmeti-
cal congruences.

References

[1] F.Martin. Pag, an efficient program analyzer genera-
tor. Int.Jour. on Software Tools for Technology Transfer,
2(1):46–67, 1998.

[2] I.Lari and L.Ricci. Array region analyses by abstract inter-
pretation approaches. In SBAC-PAD’2000 12th Symposium
on Computer Architecture and high Performance Comp.,
pages 305–312, October 24-27 2000.

[3] M.Haghighat and C.D.Polychronopoulos. Symbolic analy-
sis for parallelizing compilers. ACM Transactions on Pro-
gramming Languages and Systems, 18(4):477–518, July
1996.

[4] P.Cousot and N.Halbwachs. Automatic discovery of liner re-
straints among variables of a program. In 6th ACM Confer-
ence on Principles of Programming Languages, pages 84–
95, 1978.

[5] P.Cousot and R.Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In 5thACM Conference
on Principles of Programming Languages, pages 238–252,
1977.

[6] P.Cousot and R.Cousot. Systematic design of program
analysis frameworks. In 6th ACM International Confer-
ence Principles of Programming Languages, pages 269–
282. ACM, 1979.

[7] R.Broccolucci. Interpretazione astratta per l’analisi dei
descrittori di accesso. Master’s thesis, Dipartimento di
Informatica-Universita degli Studi di Pisa, February 2001.

[8] S.Thomson. Haskell: The Craft of Functional Program-
ming. Addison Wesley, 1999.

[9] T.Fahringer. Efficient symbolic analysis for parallelizing
compilers and performance estimators. The Journal of Su-
percomputing, (12):1–29, 1998.

[10] U.Banerjee, R.Eigenmann, A.Nicolau, and D.Padua. Au-
tomatic program parallelization. Proceedings of the IEEE,
81(2):211–242, February 1993.

[11] W.Blume and R.Eigenmann. An overview of symbolic anal-
ysis techniques neede for the effective parallelization of the
perfect benchmarks. In Int. Conf. on Parallel Processing,
August 1994.

[12] W.Blume and R.Eigenmann. Non linear and symbolic data
dependence testing. IEEE Trans. on Parallel and Distributed
Systems, 9(12):1180–1194, 1998.

7

Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC’02)
0-7695-1730-7/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

