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Abstract 

Peer-to-peer networks consist of thousands or millions of nodes that might join and leave arbitrarily. The 
evaluation of new protocols in real environments is many times practically impossible, especially at design and 
testing stages. The purpose of this paper is to describe the implementation aspects of a new Java based P2P 
simulator that has been developed to support scalability in the evaluation of such P2P dynamic environments. 
Evolving the functionality presented by previous solutions, we provide a friendly graphical user interface through 
which the high-level theoretic researcher/designer of a P2P system can easily construct an overlay with the 
desirable number of nodes and evaluate its operations using a number of key distributions. Furthermore, the 
simulator has built-in ability to produce statistics about the distributed structure. Emphasis was given to the 
parametrical configuration of the simulator. As a result the developed tool can be utilized in the simulation and 
evaluation procedures of a variety of different protocols, with only few changes in the Java code. 

1. Introduction and Motivation 

In this paper we describe the design and implementation aspects of a novel P2P simulator. The developed 
simulator is based on a Message Passing environment where the peers are represented by Java threads and 
communicate with each other by sending and receiving messages. Three central levels can be distinguished in the 
developed tool. The first level is the system's kernel where the peers, the network environment and the messages 
have been implemented. The second level is the user interface of the simulator which facilitates the P2P 
operations of the network under simulation (node joins, updates, leaves etc). And finally, the third level is the 
graphical user interface of our system that facilitate the evaluation and statistical analysis.  

There are a number of simulators presented in the P2P literature. An extensive and analytical peer to peer 
simulators survey has been presented recently in [7]. A large number of papers (~70) have been included in the 
survey, which stated which simulator they used. The majority of these papers (62%) used a specially created 
simulator for their own case study evaluation. Some of these simulators might possibly be the same, reused within 
research groups. However, even taking this into account, the number of custom-made simulators far outnumbers 
the use of known simulators. This is not an ideal state of affairs, both in terms of duplication of effort and for ease 
of comparison and replication of results. The authors of the survey believe that “the poor state of existing P2P 
simulators is the reason that much published research makes use of custom built simulators”.  

Overall Neicken et al [7] have found that a key drawback of the simulators is that they have no systematic and 
user friendly mechanisms to allow a user to gather statistics of a simulation run that is what leads to different 
evaluation-simulation tools for new P2P environments.  

To overcome such difficulties we propose a novel P2P simulator tool, which includes built-in features to 
facilitate the logging and production of systematic statistical results for the algorithms' performance as well as the 
load balance of the distributed structure. Furthermore its friendly graphical user interface allows non-
programmers - high-level researchers/designers of P2P systems to easily construct their overlay with the desirable 
number of nodes and evaluate its operations using a number of key distributions. Our prototype is publicly 
available and free to download [8]. We evaluated our prototype simulator using the NBDT (Nested Balanced 
Distributed Tree) [1], a fault tolerant discovery-search infrastructure for P2P Web Service discovery. 
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The rest of this paper is organized as follows. Section 2 provides a short discussion of related popular P2P 
simulators. A short overview of the NBDT Network is given in section 3. Section 4 introduces the systems 
architecture. Section 5 analyses the peer/node structure. Section 6 and 7 describe the user interfaces. In section 8, 
experimental results are illustrated. Finally, section 9 concludes the paper. 

2. Related Work on P2P simulators 

In the comparative P2P simulator survey of Neicken et al [7], there is a number of tools discussed. For 
independency, popular solutions are shortly discussed here.  

PeerSim [4] has been developed with extreme scalability and support for dynamicity in mind. It is composed of 
two simulation engines, a simplified (cycle-based) one and event driven one. PeerSim is written entirely in Java. 
Unfortunately it completely lacks of graphical interface support as well as visualization interfaces, making it 
difficult to be used, especially by high level algorithmic/designers P2P researchers. 

p2psim [5] is a free, multi-threaded, discrete event simulator to evaluate, investigate, and explore peer-to-peer 
(p2p) protocols. p2psim is part of the IRIS project. p2psim supports several peer-to-peer protocols, making 
comparisons between different protocols convenient. p2psim is developed using C++ while most simulators are 
Java based. This makes its API difficult to support and to extend further. Unfortunately, it has scalability 
limitations in number of nodes (<3000). 

OverSim [6] is an open-source overlay network simulation framework for the OMNeT++/OMNEST simulation 
environmen. OMNeT++ is open-architecture simulation environment with strong GUI support and an embeddable 
simulation kernel. Its primary application area is the simulation in the field of internet simulations (IP, IPv6, 
MPLS, etc), mobility and ad-hoc simulations. OverSim utilizes the GUI support of OMNeT++ to provide a node 
visualization mechanism. However such visualization mechanisms are only useful in network simulations with 
small numbers of nodes. Evaluation of large scale simulation network is not supported by the GUI but using 
external, post processing Perl based scripts. Furthermore the OMNeT++ infrastructure is based on detailed 
modelling of lower network layers that are of little interest to P2P researchers and make the overlay networks 
evaluation more complex. 

3. Overview of the NBDT network 

The structure that we examined was built by repeating the same kind of BDT tree-structure (Balanced 
Distributed Tree) in each group of nodes having the same ancestor, and doing this recursively. This structure may 
be imposed through another set of pointers. The innermost level of nesting will be characterized by having a tree-
structure, in which no more than two nodes share the same direct ancestor. Figure 1 illustrates a simple example 
(for the sake of clarity we have omitted from the picture the links between nodes with the same ancestor). Thus, 
multiple independent tree structures are imposed on the collection of nodes inserted. Each element inserted 
contains pointers to its representatives in each of the trees it belongs to. 

Let kσ an initial given )(⋅μ sequence of w-bit keys belonging in universe K=[0,2w-1 ], where )(⋅μ  an unknown 
density. At initialization step we choose as peer representatives the 1st key, the lnKst key, the 2lnKst key and so on, 
meaning that each node with label i (1≤i≤N) stores ordered keys that belong in range [(i-1)lnK,..ilnK-1], where 
N=K/lnK the number of peers. Note that during update operations; it is not at all obvious how to bound the load of 
the N peers, since new w′-bit keys with w′>w may be appeared in the system and K must exceed. For this purpose 
we will model the insertions/deletions as the combinatorial game of bins and balls presented in [2]: Modelling the 
insertions/deletions of keys in this way, the load of each peer becomes )log( NpolyΘ in expected case with high 
probability. Obviously, peers’ representatives early described have also been chosen according to this game. We 
also assume that each key is distinct and as a result the probability of collisions is zero. Each key is stored at most 
in O(loglogN) levels. We also equip each peer with the table LSI (Left Spine Index). This table stores pointers to 
the peers of the left-most spine (for example in figure 1 the peers 1, 2, 4 and 8 are pointed by the LSI table of peer 
5) and as a consequence its maximum length is O(loglogN). Furthermore, each peer of the left-most spine is 
equipped with the table CI (Collection Index). CI stores pointers to the collections of peers presented at the same 
level (see in figure 1 the CI table of peer 8). Peers having same father belong to the same collection. For example 



in the figure 1, peers 8, 9, 10, and 11 constitute a collection of peers. It’s obvious that the maximum length of CI 
table is )( NO . 

For example in figure 1 we are located at (green) node 5 and we are looking for a key k∈[13lnn, 14lnn-1]. In 
other words we are looking for (green) node 14. As shown in [1], the whole searching process requires: 
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 hops or lookup messages and that is also validated using the proposed simulator. 

When we want to insert/delete a key/node from the structure, we initially search for the node that is responsible 
for it (using a number of O(loglogN) hops in worst-case) and then we simply insert/delete it from the appropriate 
node. 

If new w′-bit keys, with w′>w, request to be inserted into the system, then we have to insert new peers on the 
network infrastructure and as a result we have to re-organize the whole p2p structure. In practice, such an 
expensive re-organization is very sparse. The new peers of NBDT are inserted at the end of the whole 
infrastructure consuming O(1) hops in worst-case. In particular, when a node receives a joining node request it 
has to forward the join request to the last node. The last node of NBDT infrastructure can be found in O(1) hops 
in worst-case by using the appropriate LSI and CI indexes.  

If the load of some peer becomes zero, we mark as deleted the aforementioned peer. If the number of marked 
peers is not constant any more then we have to re-organize the whole p2p structure. Based on the basic theorem of 
[2], if we generate the keys according to smooth distributions, which is a superset of regular, normal, uniform as 
well as of real world skew distributions like zipfian, binomial or power law (for details see [3]), we can assure 
with high probability that the load of each peer never exceeds polylogn size and never becomes zero. The latter 
means that with high probability split or delete operations will never occur. In other words, the re-organization of 
the whole P2P structure with high probability will never occur.  
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Figure1.  The NBDT peer-to-peer system 



4. Architecture: The message passing environment 

The basic architecture of the P2P simulator is based on the message passing environment which is discussed in 
this section. The peers exchange messages in order to build the overlay network and to carry out the search, insert 
and delete operations of a key. These are two different types of messages. In the first type the message has 
information about the LSI and CI tables, about the parent of the inserted node, its sibling node and the total 
number of nodes in the overlay network. On the other hand, the message which is being send during a search, 
insert or delete operation only contains the key for these operations. The information about the transmitter's and 
the receiver's address are included in both types of messages.  

This form of message is like the IP's format message. Having this in mind, the message that will be transmitted 
in the network is constructed. This message has the transmitter's node Id, the receiver's node Id, the type of the 
message and final, the data.  

For this purpose we have implemented a class Message and a class Data. The class Message has four private 
fields which hold the id of the transmitter and the receiver, the type of the message and a pointer to the Data 
object. Also, this class has static final variables which declare the type of the message (join, insert, delete, etc.). 

Next, the Network environment will be described. In our implementation, we make the assumptions that the 
messages don't get lost and no delay exists expect for the delay that take place between the time of transmitting 
and the time a specific node will take notice about the arrival of a new message. For the beginning, we don’t 
concern about the network failures and the delays. Later we will discuss how we can add these features in our 
network but firstly, the simple network model will be described. To simulate the network's behavior we have 
implement the class Network which consist of a buffer, a counter and a file descriptor. The buffer is implemented 
with the Vector type of Java and stores objects of type Message.  
 

  
Figure 2 and 3.  The Simulator architecture.  

Simulator’s tab “Initialize”  

The counter is used for counting the total number of messages which delivered at an operation time as well as 
the file descriptor stores the appropriate messages about the process is being executed. This class also implements 
several methods such as: sendMessage(), recvMessage(), broadcast() and msgForNodeId(). When a node wants to 
send a message it calls the method sendMessage which takes one argument, the message. This method which is 
synchronized attends to store the message into the buffer and increase the counter by one. If the type of the 
message is “search”, “insert” or “delete”, then the algorithm writes to the file a record with the following format: 
i.e. “Search message for node 3 to node 45.” This log file is used by the graphical user interface to show how an 
operation is incrementally completed.  On the other hand, each node observes consecutively the network in order 



to verify if any message has been arrived. This operation can be done with Network's method msgForNodeId. If 
there is a message for this node the method returns the index where the message will be stored into the buffer, 
otherwise it returns -1. In the first case, the node can receive the message by calling the method recvMessage. As 
we can see the method sendMessage is non-blocking, while the method recvMessage is blocking. In this way, we 
are simulating the functions send and receive of POSIX C. The broadcast() method is used during the construction 
of the overlay for sending the same message over a range of nodes. This method which is also synchronized is a 
wrapper function of sendMessage and is used only at the time of the network construction, since no broadcast is 
needed during a search operation. In the next section we will proceed on the analysis of the peers' functionality 
and their structure. 

5. The Peer Nodes 

In this section we analyze the structure of the NBDT's nodes and their functionality. Some peer to peer 
simulators [4][5] use only limited threads to simulate the network in a sense of the producer/consumer model. 
With this synchronous approach one thread parses all the nodes of the network and produces the messages while 
the other thread parses the nodes and consumes the messages that have been generated by the first thread. In our 
simulator we have follow a different approach where each node is a thread and each of them is executed 
independently. Although this model is realistic enough, it also requires huge memory consumption and as a 
consequence we can simulate less and less nodes. Additionally, we have to face the scheduling problem since the 
Java's runtime environment does not provide scheduling processes. While each node is represented by a thread 
which runs ceaselessly and since there are critical segments, another problem we have to avoid is the thread 
competition. There are two critical segments: the incoming nodes must be inserted sequentially and only one node 
must operate on the network's buffer at a time.  

 
public  void class Node extends Thread{ 
public Node () { 
//allocate the memory for the vectors } 
public void run() { 
        while(!stopThisThread) 
                eventHandler();} 
private void eventHandler() { 
        if (net.msgForNodeId(myID)) { 
               msg = net.recvMessage(); 
               resolveMessage(msg); 
        }} 
private void resolveMessage(Message msg) { 
        if (msg.getType() == JOIN)  
              forwardJoinMessage(msg); 
        else if (msg.getType() == SEARCH) 
              forwardSearchMessage(msg); } 
private void forwardJoinMessage(msg) { 
        if (myID != lastLSNode) 
//send message  to last left spine node 
        else if (myID == lastLSNode) 
//send message to last node of the last collection 
        else if (sibling == empty) 
//append new node and send back to the incoming 
//node  the LSI table, its ID, etc..} 
private void forwardSearchMessage(msg) { 
        nodeID = findKeyRange(msg.key); 
     if (myID == nodeID) 
//search locally for the desired key and send back 
//the response. 



     else {  
       if (LSNodeId != myID && !isLSNodeIdVisited) 
//Forward the search message to the LS node. 
       else if (myID == LSNode) 
//send the search message to the representative  
//of the right collection of this level 
       else { 
//This is the root node of the right collection. 
//Reapeat the same procedure at the next nested 
//level tree.}}} 

 
Table 1: Pseudo-Code for the class Node 

To simulate the NBDT's nodes we have constructed the class Node which extends the Java's Thread class. This 
class holds the tables which are necessary for constructing the overlay and provides the methods for joining an 
incoming node, deleting an existed node, searching and updating a key. The threads communicate via the network 
exchanging messages as described in the previous section.  

If a new node wants to join, the network has to send a join message to one of its introducer nodes. The 
introducer node listens to the request and forwards the message to the last node. This node is responsible for 
sending to the incoming node its routing table, the id of the incoming node and all the rest necessary information. 
Moreover, the last node updates its pointers to point to the new node. The procedure is repeated recursively for 
each nested level until the node is inserted to all possible levels. Table 1 presents a pseudo code for the class Node 
having focused on the join and search operations. 

The crucial point here is that the incoming nodes must be inserted sequentially in order to construct properly the 
tree. Assume that two nodes want to join the network at the same time, then the introducer will forward their 
request to the last node of the tree. 

6. System User Interface 

To be able to deal with our system, we have implemented a class SystemUI which is the interface of our system. 
This class provides the methods for the initialization of our system, the functions for the search, insert and delete 
operations of the NBDT and methods which provide general information about the status of our structure as the 
total number of keys and nodes, the load balance and the range of the keys. This is the main class which also 
starts up the graphical user interface which we describe above.  

More specifically, the SystemUI class initializes an overlay with only three nodes which are the introducer 
nodes for those nodes that want to join the overlay. These nodes never fail, so that other nodes can join the 
system. Then, we can insert a desired number of nodes in the system and store some keys according to a given 
distribution (uniform, normal, beta and pow-law). Furthermore, we initialize the Network as well as a vector that 
will store the new nodes.  

7.  Graphical User Interface 

Someone can easily built a new P2P network and carry out experiments to evaluate the efficiency of this 
protocol through a graphical user interface. GUI consists of a window with six tabs, each of them is separated 
with panels to distinguish the different available operations. The graphical user interface has been implemented 
with NetBeans 5.5 software. In the following, we describe the functionalities of each tab. 

In the first tab the user can set the number of nodes which will constitute the overlay and select the key 
distribution over these nodes. The available distributions are: uniform, normal, beta, and pow-law. After the user 
has set these two fields then the system's initialization can begin. In the same tab there is a progress bar so the user 
can obtain the overall process due to the fact that this process may take several minutes. Also there is a button, 
which resets the system without the need of closing and reopening the simulator if we want to carry out several 
experiments with different number of nodes and key distribution. 



In the second tab – operations - the user can see the current number of nodes into the system, the number of keys 
that have been stored over the nodes and the range of keys that we can store in the overlay. The other three panels 
provide the ability to search, insert and update a key starting the procedure from any node in the network. While 
one of these operations is being executed, appropriate messages are appearing at the bottom of this tab. 

In the forth tab the user can prosecute experiments to evaluate the efficiency of the NBDT's algorithms. There 
are three panels one for each operation where the user sets the number of the experiments and selects the 
distribution according to the keys will be picked up for the experiments. After the termination of the experiments 
the user can see and save in png format the chart that has been generated. Furthermore, this tab generates a chart 
with the key distribution over the nodes (load balance). The charts are generated by the free distributed software 
JCharts and the distributions generated by the cern package, both of them implemented with Java. The rest two 
tabs provide information about the usage and design of this software. 

8. Simulation and Results 

In this section we evaluate the NBDT protocol by the simulator described in previous sections. More 
specifically we evaluate the search path length and the load balancing performance for the four key distributions: 
uniform, normal, beta and pow-law. 

 

  
Figure 4 and 5. The tab “Operations” and “Experiments”. 

In order to understand in practice the routing performance of this protocol, we simulated a network with 
N=[1000, 5000] nodes, storing K=[5728, 22572] keys in all. We conducted a separate experiment of each value. 
Each node in an experiment picked a random set of keys to query from the system, and we measured the path 
length required to resolve each query. For the experiments we considered synthetic data sets. Their generation 
was based on different distributions to choose from. A sample of the network’s lookup efficiency is depicted in 
figure 6. 

To evaluate the load balancing of our structure we performed several experiments. Initially the keys for the 
nodes were picked up according to a chosen (configurable) distribution, then we performed 2500 updates where 
the inserted/deleted keys draw the same (or configurable other) distributions. Figure 7 shows that NBDT has 
smoothly distributed load per peer, and this holds as we increase the number of nodes and keys in the network. 
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Figure 6 and 7: Look up performance graph, Load balance after 2500 updates with pow-law distribution. 

9. Conclusions 

In this paper we described the design and implementation aspects of a novel Java P2P simulator. The key 
features of the simulator is its extensibility, the user interface and the statistics support. The methodology 
presented can be easily extended to simulate real applications that use the different P2P protocol. The latter 
requires a few changes only, in the main class which implements the functionalities of the protocol. The prototype 
was evaluated upon the NBDT [1] solution. These changes are bounded in the message passing environment 
where the methods that simulate our network have to be replaced by the Java's network programming methods. 
Furthermore, we have developed a friendly graphical user interface, which provide all the main operations of a 
P2P protocol and has the ability to export directly charts with the algorithms' performance as well as the load 
balance per peer. Our aim is provide this friendly GUI Java based simulator as a basic tool of a framework 
towards the standardization of P2P simulations that will user friendly facilitate different protocol evaluation and 
comparison. Future work includes the support more simulation hosts. 
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