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Abstract—Artificial neural networks have been widely
used for knowledge extraction from biomedical datasets and
constitute an important role in bio-data exploration and
analysis. In this work, we proposed a new curvilinear algo-
rithm for training large neural networks which is based on
the analysis of the eigenstructure of the memoryless BFGS
matrices. The proposed method preserves the strong con-
vergence properties provided by the quasi-Newton direction
while simultaneously it exploits the nonconvexity of the er-
ror surface through the computation of the negative curva-
ture direction without using any storage and matrix factor-
ization. Moreover, for improving the generalization capa-
bility of trained ANNs, we explore the incorporation of sev-
eral dimensionality reduction techniques as a pre-processing
step.

Index Terms—Artificial neural networks, biomedical data,
dimensionality reduction, feature extraction, memoryless
BFGS, curvilinear search.

I. Introduction

During the second half of the last century the areas of bi-
ology and medical science have been dramatically changed,
from a rather qualitative science that was based on obser-
vations of whole organisms to a more quantitative science
that is now based on measurements at the molecular level.
Nevertheless, the growing research and developments of
microarray technology constitute in the exponentially gen-
eration of data in size, dimension and complexity. More-
over, these datasets have non-linear relationships between
inputs and outcomes, hindering their analysis and mod-
eling. The tremendous amount of data obtained from the
microarray studies constitutes a challenge for data analysis
which has been focused on developing intelligent compu-
tational systems (see [13], [28]), such as artificial neural
networks.

Artificial neural networks (ANN) are parallel computa-
tional models comprised of densely interconnected, adap-
tive processing units, characterized by an inherent propen-
sity for learning from experience and also discovering
new knowledge. Due to their excellent capability of self-
learning and self-adapting, they have been successfully ap-
plied in bioinformatics and are often found to be more
efficient and accurate than other classification techniques
[15]. Mathematically, the problem of training an ANN is
highly consistent with the unconstrained optimization the-
ory. More analytically, it can be formulated as the min-
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imization of the error function E(w) defined as the sum
of squares of the errors in the outputs [22]. A traditional
way to solve this problem is by an iterative gradient-based
supervised training algorithm using the update formula

wk+1 = wk + ηkdk (1)

where k is the current iteration usually called epoch, w0 ∈
R

n is a given starting point, ηk > 0 is the learning rate
and dk is a descent search direction, i.e., gT

k dk < 0. In
the literature, a variety of approaches has been proposed
for successfully training large neural networks while most
of them use second order information [5], [11]. The most
elaborate method is the limited memory BFGS [17], [19]
where the search direction in Eq. (1) is defined by building
up a Hessian approximation using curvature information
from the previous iterations.

In [2] has been proposed a method that exploits the
eigenstructure of the memoryless BFGS matrices without
using storage and matrix factorization. Consequently, a
direction of negative curvature can be computed analyt-
ically avoiding the storage and factorization of any ma-
trix. Motivated by their method, we propose a curvilinear
scheme which is based on a modification of the memo-
ryless BFGS method for training large neural networks.
The proposed algorithm exploits the nonconvexity of the
error surface based on information provided by the eigen-
system of memoryless BFGS matrices utilizing a pair of
directions; a memoryless quasi-Newton direction and a di-
rection of negative curvature, i.e., a direction d such that
dT∇2E(w)d < 0 and it is based on the following iterative
form

wk+1 =
{

wk + ηkpk, if Bk is positive definite;
wk + η2

kpk + ηkdk, otherwise

where pk is a memoryless quasi-Newton direction, dk is
a direction of negative curvature and Bk is the memo-
ryless BFGS Hessian approximation. In case the Hes-
sian approximation Bk is indefinite the proposed itera-
tive scheme performs a curvilinear search along the path
wk+1 = wk + η2

kpk + ηkdk which was first introduced by
Moré and Sorensen [18]. In different case, the iterative
scheme is the standard linesearch procedure (see [3], [20]).

Clearly, the proposed method preserves the strong con-
vergence properties provided by the quasi-Newton direc-
tion when Bk is positive definite. Additionally, it exploits
the nonconvexity of the error surface through the computa-
tion of the negative curvature direction without using any
storage and matrix factorization. Moreover, based on the
fact that the proposed method uses only inner products
and vector summations and requires only O(n) space, it is
well-suited for efficiently training large neural networks.
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Despite, large neural networks can be trained efficiently,
these models are usually plagued by poor generalization
reliability due to the huge dimension of the dataset. There-
fore, to overcome the curse of dimensionality for improving
the generalization capability of ANNs the application of a
dimensionality reduction technique is considered essential,
namely the reduction of input dimensionality using a math-
ematical pre-processing step. More specifically, the goal of
dimensionality reduction methods is the transformation of
high-dimensional data into a meaningful representation of
reduced dimensionality. Hence, with the automatic iden-
tification and removal of the less relevant and important
inputs we can reduce the size of network and increase its
robustness. Therefore, in recent years a variety of nonlin-
ear dimensionality reduction techniques has been proposed
in the literature (see [8], [23], [29], [30]) with various prop-
erties.

The remainder of this paper is as follows: in Section II
we present in details the method to compute the descent
directions and describe the proposed algorithm, which is
based on the properties of the memoryless BFGS matri-
ces. Section III summarizes traditional dimensionality re-
duction techniques in order to projecting the original data
onto some low dimensional space. This pre-processing step
can reduce the size of the ANN classifier which it can now
be trained by the classical BFGS method. Simulation re-
sults are presented in Section IV and in Section V we give
some concluding remarks.

Notations. Throughout the paper ‖·‖ denotes the Eucli-
dean norm and n the dimension of the error function. We
indicate that a matrix A is positive definite by A > 0 and
with u(i) we denote the i-th component of vector u. The
gradient of the error function is denoted by ∇E(wk) = gk.

II. Curvilinear Memoryless BFGS

In this section we briefly discuss the eigenstructure of the
Hessian approximation B which is based on the L-BFGS
method [17], [19]. The memoryless matrix B is updated
by means of the BFGS formula

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

sT
k yk

, (2)

where in the vector pair sk = xk+1−xk and yk = gk+1−gk

is stored curvature information only from the most previ-
ous iteration. By setting B0 = (1/θ)I in Eq. (2) the result-
ing minimal memory BFGS update is defined as

Bk+1 =
1

θk+1
I − sksT

k

θk+1sT
k sk

+
ykyT

k

sT
k yk

. (3)

Moreover, it is known that the inverse of Bk+1 is given by
the following expression [19]

B−1
k+1 = θk+1I − θk+1

yksT
k + skyT

k

sT
k yk

+
sksT

k

sT
k yk

(4)

In our approach we consider the case where the scalar pa-
rameter θ is defined as θk+1 =

(
sT

k sk

)
/
(
sT

k yk

)
which is the

spectral parameter of Barzilai and Borwein [4].

Theorem 1 ([2]) Let the symmetric memoryless BFGS
matrix defined in (3). Then, the characteristic polynomial
of Bk+1 ∈ R

n×n has the general form

p(λ) =
(

λ − 1
θk+1

)n−2 (
λ2 − ak

θk+1
λ +

1
θ2

k+1

)
, (5)

where ak = 1 + θk+1
yT

k yk

sT
k yk

. Moreover, if ak > 2, then λ1 <

1/θk+1 < λn, where λ1 and λn are the smallest and largest
eigenvalues of Bk+1, respectively.

The parameter ak is bounded from below by 2, since

ak = 1 + θk+1
yT

k yk

sT
k yk

= 1 +
‖sk‖2‖yk‖2

(sT
k yk)2

= 1 +
1

cos2φ
≥ 2,

where φ is the angle between sk and yk. Clearly, the value
of parameter ak determines if the vectors sk and yk are lin-
ear independent or not. Hence, the above theorem states
that if the vectors are linear independent, that is ak > 2,
the extreme eigenvalues are distinct and can be com-
puted by solving the quadratic equation λ2−(ak/θk+1)λ+
1/θ2

k+1 = 0. In contrast, if ak = 2, then the characteris-
tic polynomial is reduced to p(λ) = (λ − 1/θk+1)n; thus
the smallest eigenvalue of Bk+1 is multiple and equals
λ = 1/θk+1. For determining the eigenvector correspond-
ing to the smallest eigenvalue of Bk+1, we consider the
following cases.

In case where the smallest eigenvalue of Bk+1 is distinct,
then the corresponding eigenvector is computed by apply-
ing a single step of the inverse iteration. Given a non-zero
starting vector u0, inverse iteration generates a sequence
of vectors ui, generated recursively by the formula

ui =
(
B − λ̂I

)−1 ui−1

‖ui−1‖ , i = 1, 2, . . .

where λ̂ = λ+ε, λ is a distinct eigenvalue of B and ε → 0+.
The sequence of iterates ui converges to an eigenvector
associated with an eigenvalue closest to λ̂. Moreover, if
this particular eigenvalue λ is known exactly, this method
converges in a single iteration. For being able to apply
the inverse iteration, we take into account the following
proposition for expressing (B − λ̂I)−1 in closed form.

Proposition 1 ([2]) Let Λ be the set of eigenvalues of
Bk+1 with opposite signs. Then, for any λ ∈ R \Λ, the
matrix (Bk+1 +λI) is invertible and its inverse can be ex-
pressed by the following closed-form

(Bk+1 + λI)−1 =
1
γ

2∑
i=0

(−1)iγi(λ) (Bk+1)
i (6)

where the quantities γ = (1/θk+1 + λ)(λ2 + akλ/θk+1 +
1/θ2

k+1), γ2 = 1, γ1 = λ+(ak +1)/θk+1 and γ0 = λ2 +(ak +
1)λ/θk+1 + (ak + 1)/θ2

k+1 are functions of λ.
Hence, using Theorem 1 and Proposition 1 and after

some simple algebraic computations, the expression for the
eigenvector is defined by u1 = û1/‖û1‖, where

û1 =
2∑

i=0

(−1)iγi(λ̂)(Bk+1)
i u

γ(λ̂)

= −γu(λ̂) u + γus(λ̂) sk − γuy(λ̂) yk, (7)

88

Authorized licensed use limited to: University of Patras. Downloaded on July 01,2010 at 16:53:17 UTC from IEEE Xplore.  Restrictions apply. 



with λ̂ = −λ1 + ε , u = u0/‖u0‖ and the coefficients are

γu(λ̂) =
[
1− γ1(λ̂) θk+1 + γ0(λ̂) θ2

k+1

]/ [
γ(λ̂) θ2

k+1

]
,

γus(λ̂) =
{[

1− γ1(λ̂) θk+1

]
sT
k u + θk+1yT

k u
}/[

γ(λ̂) θ2
k+1sT

k sk

]
,

γuy(λ̂) =
{[

1− γ1(λ̂) θk+1 + ak

]
θk+1yT

k u− sT
k u

}/[
γ(λ̂) θ2

k+1sT
k yk

]
.

In case where the smallest eigenvalue of Bk+1 is mul-
tiple, then from Theorem 1 we have that ak = 2 and
Bk+1 = (1/θk+1)I. Thus, using the eigendecomposition
of B it follows that B = UΛUT , where U = I and Λ =
diag(λ1,λ1, . . . ,λ1). It is easy to verify that an eigenvector
corresponding to λ1 is u1 = e1 = (1,0, . . . ,0)T .

A. The CM-BFGS training algorithm

At this point, we recall that our new proposed curvi-
linear scheme uses a pair of directions; a quasi-Newton
direction [20] which is defined as

pk+1 =
{ −B−1

k+1gk+1, Bk+1 > 0;
−gk+1, otherwise.

(8)

where B−1
k+1 is defined in equation (4) and a direction of

negative curvature [18] which is calculated by

dk+1 =
{

0, Bk+1 > 0;
−sgn(uT

1 gk+1)u1, otherwise, (9)

where u1 is a normalized eigenvector corresponding
to the most negative eigenvalue of Bk+1. Conse-
quently, we present a high level description of our
proposed algorithm based on the Armijo procedure.

Step 1: Initiate w0, 0 < c1 < c2 < 1, Err and ε → 0;
set k = 0.

Step 2: If (E(wk) < Err) or (‖∇E(wk)‖2 < ε) termi-
nate; else compute the eigenvalues λi of Bk.

Step 3: If λ1 > 0 then
(a) Compute pk; set dk = 0 and ηk = 1.
(b) Find ηk > 0 such that

E(wk + ηkpk) ≤ E(wk) + c1ηkgT
k pk

Step 4: Else if λ1 ≤ 0 then
(a) Set pk = −gk and compute the normalized eigen-

vector u1; set dk = −sgn
(
uT

1 gk

)
u1 and ηk = 1.

(b) Find ηk > 0 such that

E(wk +η2
kpk +ηkdk) ≤ E(wk)+c2ηk

(
gT

k dk +
1
2
λ1

)

Step 5: Update the weights

wk+1 =
{

wk + ηkpk, if λ1 > 0;
wk + η2

kpk + ηkdk, otherwise
Step 6: Compute gk+1, sk = wk+1 −wk and yk+1 =
gk+1−gk; if |sT

k yk| > 10−6‖sk‖‖yk‖, update the vector
pair {sk,yk}.

Step 7: Set k = k + 1 and goto Step 2.

Remarks: In Step 2, the computation of the eigenvalues
is based on Theorem 1. In Step 4(a), if ak > 2, then dk

is computed using relation (7), in contrast we set dk =
−sgn(g(1)

k+1)(1, 0, . . . , 0)T . Finally, in Step 6 we skip the
update in case |sT

k yk| ≤ 10−6‖sk‖‖yk‖ to ensure that Bk is
well defined.

III. Dimensionality Reduction

The problem of dimensionality reduction appears in
many fields of artificial intelligence such as data min-
ing, data compression and data visualization, moderat-
ing the curse of dimensionality and other undesired prop-
erties of high dimensional spaces [14]. Given a dataset
X = [x1, x2, . . . , xn] ∈ R

n×D consists of n datavectors xi

with dimensionality D and has intrinsic dimension d (with
d << D). The intrinsic dimensionality of data is the mini-
mum number of parameters needed to account for the ob-
served properties of the data [9]. The goal of dimension-
ality reduction is the transformation of the dataset X to
a new dataset Y with dimensionality d such that certain
properties are preserved.

In the literature, there have been proposed several tech-
niques for this problem. Most of them are based on the in-
tuition that data lies on or near a complex low-dimensional
manifold that is embedded in the high-dimensional space.
These techniques can be summarized in two main groups
a) linear techniques (PCA, LPP, OLPP) b) nonlinear tech-
niques (KPCA, LEM, LTSA).

• PCA: Principal component analysis [12] performs a
linear mapping of the data to a lower dimensional
space in such a way, that the variance of the data
in the low-dimensional representation is maximized.
The reduction is accomplished by identifying direc-
tions, called principal components, along which the
variation in the data is maximal.

• LPP: Locality Preserving Projections [10] is a linear
dimensional reduction technique which constructs the
k-NN graph in order to model the data topology aim-
ing at preserving the local structure defined by the
nearest neighbors.

• OLPP: Orthogonal Linear Preserving Projections
consists an extension of the LPP algorithm by sim-
ply enforcing the mapping to be orthogonal.

• KPCA: Kernel principal component analysis is a non-
linear extension of the traditional PCA that is con-
structed using a kernel function [25] and it has shown
to be a very powerful method of extracting nonlinear
features for classification and regression [24].

• LEM: Laplacian Eigenmaps [7] is a dimensionality re-
duction technique that preserves the local properties
of the manifold which are based on the pairwise dis-
tances between near neighbors. LEM computes a low-
dimensional representation of the data by minimizing
a cost function based on the distances between the
data points.

• LTSA: Local Tangent Space Analysis [31] is a tech-
nique for nonlinear dimensionality reduction that con-
structs approximations of tangent spaces in order
to represent local geometry of the manifold and the
global alignment of the tangent spaces to obtain the
global coordinate system.

All the above dimensionality reduction techniques have
been used in our experimental framework for being able to
construct adequate data for training small ANN classifier.
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IV. Experimental Results

We evaluate the generalization performance of our pro-
posed algorithm (CM-BFGS) in a variety of biomedical clas-
sification benchmarks. Subsequently, we explore the appli-
cation of a dimensionality reduction technique as a data
pre-processing step in the generalization performance of
our method. In our experiments, we have selected the fol-
lowing high-dimensional biomedical datasets:

• Colon Tumor [D1]: Contains 62 samples collected
from colon-cancer patients [1]. Among them, 40 tumor
biopsies are from tumors (labeled as ”negative”) and
22 normal (labeled as ”positive”) biopsies are from
healthy parts of the colons of the same patients. Two
thousand out of around 6500 genes were selected based
on the confidence in the measured expression levels.

• DLBCL-Outcome [D2] and DLBCL-Tumor [D3]:
There are two kinds of classifications about diffuse
large b-cell lymphoma (DLBCL) addressed in these
data [26]. First one is DLBCL versus Follicular Lym-
phoma (FL) morphology. This set of data contains
58 DLBCL samples and 19 FL samples. The second
problem is to predict the patient outcome of DLBCL.
Among 58 DLBCL patient samples, 32 of them are
from cured patients while 26 of them are from patients
with fatal or refractory disease.

• Lung-Michigan [D4]: This data set consists of 86
primary lung adenocarcinomas samples and 10 non-
neoplastic lung samples are included [6]. Each sample
is described by 7129 genes.

• Central Nervous System-Outcome [D5]: Patients out-
come prediction for central nervous system embryonal
tumor [21]. Survivors are patients who are alive after
treatment whiles the failures are those who succumbed
to their disease. The data set contains 60 patient sam-
ples, 21 are survivors and 39 are failures. There are
7129 genes in the dataset.

• Prostate-Outcome [D6]: This data set is referred for
prediction of clinical outcome [27]. More analyti-
cally, 21 patients were evaluable with respect to re-
currence following surgery with 8 patients having re-
lapsed and 13 patients having remained relapse free
(”non-relapse”) for at least 4 years.

The parameters in CM-BFGS were set as c1 = c2 = 10−4

for all experiments and the initial weights were initiated
using the Nguyen-Widrow method. For evaluating classi-
fication accuracy of the first five benchmarks we have used
the 10-fold cross-validation repeated 100 times while for
the last one we have the 4-fold cross-validation. The tar-
get dimensionality in all experiments was determined by
means of maximum likelihood intrinsic dimensionality es-
timator [16] and for all dimensional reduction techniques
we have used the default parameters as in [29]. All simu-
lations have been carried out on a processor Pentium-IV
dual core computer (2.0MHz, 1Gbyte RAM) using the neu-
ral network toolbox of MATLAB.

Table I presents information about the networks archi-
tectures and the total number of weights that were trained
on high and low dimensional data for each benchmark. In

the right hand of Table I, the number of inputs coincides
with the intrinsic dimension d obtained by the maximum
likelihood estimator.

High-dimensional data Low-dimensional data
Data Inputs Neurons Total Inputs Neurons Total
Set in hidden weights in hidden weights

layers layer
D1 2000 10-5 20077 11 6 86
D2 7129 10-5 71367 22 11 277
D3 7129 20-5-10 142787 24 12 326
D4 7129 5-5 35692 24 12 326
D5 7129 20-5-10 142787 30 15 497
D6 12600 10-10 126142 16 8 157

TABLE I

Neural network architectures

In Table II are summarized the generalization results of
ANNs that were trained with CM-BFGS algorithm on the
high and low dimensional data. Each column reports the
average performance in percentage for each dataset using
different dimensionality reduction techniques. The column
under “None” indicates the results that were obtained us-
ing the original data. The best performing technique for a
dataset is illustrated in boldface. First of all, we observe
that the classification performance of the trained networks
was not significantly improved by performing a dimension-
ality reduction. However, linear techniques significantly
outperform nonlinear techniques since they present the
best generalization results in five datasets. Additionally,
we observe that the traditional PCA is the best reducing
technique exhibiting the best overall performance.

Data None PCA LPP OLPP KPCA LEM LTSA
D1 84.5 85.4 47.6 76.9 51.5 80.1 56.8
D2 53.7 53.7 58.1 52.0 54.8 50.9 44.3
D3 84.0 84.5 66.0 84.3 66.4 82.1 58.9
D4 89.5 89.6 88.7 90.1 89.2 89.4 89.4
D5 61.3 63.9 49.1 51.2 65.0 57.3 46.0
D6 52.3 54.7 52.8 55.6 41.9 51.8 53.6

TABLE II

Generalization performance (%) of ANNs trained with

CM-BFGS method.

Data PCA LPP OLPP KPCA LEM LTSA
D1 85.4 48.5 76.7 52.9 80.6 57.3
D2 53.9 58.9 52.7 55.3 50.1 44.0
D3 84.1 66.0 84.1 65.9 82.9 57.2
D4 89.6 88.9 90.0 89.2 89.5 89.4
D5 64.5 50.3 51.0 65.8 57.9 46.0
D6 54.4 52.8 56.1 41.8 53.4 54.2

TABLE III

Generalization performance (%) of ANNs trained with the

BFGS method.

Table III reports the generalization result of ANNs that
were trained with BFGS training algorithm (“trainbfg”)
on the low-dimensional data obtained from the presented
dimensionality reduction techniques. Note that the train-
ing process is impossible for the BFGS algorithm using the
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original data. Comparing the results of Table III with the
second column (“None”) of Table II we observe that both
algorithms have similar performance. Therefore, CM-BFGS
algorithm is well-suited not only for large-size networks
but it can also exhibits satisfactory generalization results
on small-size networks.

V. Conclusions

In this work, we have proposed a neural network clas-
sifier for classifying large data obtained from microarrays
studies based on a new memoryless BFGS algorithm that
incorporates a curvilinear search. The proposed algorithm
exploits the nonconvexity of the error surface based on
information provided by the eigensystem of memoryless
BFGS matrices avoiding any storage and matrix factor-
ization. Furthermore, we have explored the impact of ap-
plying a dimensionality reduction technique as a training
pre-processing step. Based on our numerical experiments
we conclude that the application of linear techniques for
dimensionality reduction are capable to improve the gen-
eralization ability of our proposed model.

Our future work will be concentrated on extending our
framework with other types of classifiers such as support
vector machines, decision trees etc in order to gain insight
and better analyze the microarray data.
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[18] J.J. Moré and D. Sorensen. On the use of directions of neg-
ative curvature in a modified Newton method. Mathematical
Programming, 16:1–20, 1979.

[19] J. Nocedal. Updating quasi-Newton matrices with limited stor-
age. Mathematical Computing, 35(151):773–782, 1980.

[20] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-
Verlag, New York, 1999.

[21] S.L. Pomeroy, P. P. Tamayo, M. Gaasenbeek, L.M Sturla,
M. Angelo, M.E. McLaughlin, J.Y. Kim, L.C. Goumnerova,
P.M. Black, C. Lau, J.C. Allen, D. Zagzag, J.M. Olson,
T. Curran, C. Wetmore, J.A. Biegel, T. Poggio, S. Mukherjee,
R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov,
E.S. Lander, and T.R. Golub. Prediction of central nervous
system embryonal tumour outcome based on gene expression.
Nature, 415:436–442, 2002.

[22] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning in-
ternal representations by error propagation. In D. Rumelhart
and J. McClelland, editors, Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, pages 318–362,
Cambridge, Massachusetts, 1986.

[23] L.K. Saul, K.Q. Weinberger, J.H. Ham, F. Sha, and D.D. Lee.
Spectral methods for dimensionality reduction. In Advances in
Neural Information Processing Systems, volume 17, pages 1473–
1480, Cambridge, MA, USA, 2006. MIT Press.

[24] B. Schölkopf, A. Smola, and K.R. Muller. Nonlinear component
analysis as a kernel eigenvalue problem. Neural Computation,
10:1299–1319, 1998.

[25] J. Shawe-Taylor and N. Christianini. Kernel Methods for Pat-
tern Analysis. Cambridge University Press, Cambridge, UK,
2004.

[26] M.A. Shipp, K.N. Ross, P. Tamayo, A.P. Weng, J.L. Kutok,
R.C. Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G.S. Pinkus,
T.S. Ray, M.A. Koval, K.W. Last, A. Norton, T.A. Lister,
J. Mesirov, D.S. Neuberg, E.S. Lander, J.C. Aster, and T.R.
Golub. Diffuse large b-cell lymphoma outcome prediction by
gene-expression profiling and supervised machine learning. Na-
ture Medicine, 8(1):68–74, 2002.

[27] D. Singh, P.G. Febbo, K. Ross, D.G. Jackson, J. Manola,
C. Ladd, P. Tamayo, A.A. Renshaw, A.V. D’Amico, J.P. Richie,
E.S. Lander, M. Loda, P.W. Kantoff, T.R. Golub, and W.R.
Sellers. Gene expression correlates of clinical prostate cancer
behavior. Cancer Cell, 1:203–209, 2002.

[28] C. Soares, L. Montgomery, K. Rouse, and J.E. Gilbert. Au-
tomating microarray classification using general regression neu-
ral networks. In Fourth International Conference on Machine
Learning and Applications, pages 508–513. IEEE Computer So-
ciety, 2008.

[29] L.J.P. Van der Maaten and H.J. Van den Herik. Dimensionality
reduction: A comparative review. Submitted to Neurocomput-
ing, 2008.

[30] J. Wang, Z. Zhang, and H. Zha. Adaptive manifold learning. In
Advances in Neural Information Processing Systems, volume 17,
pages 1473–1480, Cambridge, MA, USA, 2005. MIT Press.

[31] Z. Zhang and H. Zha. Principal manifolds and nonlinear dimen-
sionality reduction via local tangent space alignment. SIAM
Journal of Scientific Computing, 26(1):313–338, 2004.

91

Authorized licensed use limited to: University of Patras. Downloaded on July 01,2010 at 16:53:17 UTC from IEEE Xplore.  Restrictions apply. 


