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Ivana Tošíc and Pascal Frossard

Signal Processing Laboratory (LTS4)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

{ivana.tosic, pascal.frossard}@epfl.ch

ABSTRACT

Omnidirectional images represent a special type of images that are
captured by vision sensors with a 360-degree field of view. This
work targets the compression of such images by taking into account
their particular geometry. We first map omnidirectional images to
spherical ones and then perform sparse image decompositionover a
dictionary of geometric atoms on the 2D sphere. A coder basedon
Matching Pursuit and adaptive quantization is finally proposed for
efficient compression of omnidirectional images. The experiments
demonstrate that the proposed system outperforms JPEG2000cod-
ing of unfolded images. Since most omnidirectional sensorscan be
parametrized with a spherical camera model, the proposed method
is generic with respect to different sensor constructions.

Index Terms— omnidirectional images, compression, sparse

1. INTRODUCTION

Although omnidirectional cameras have found wide range of appli-
cations lately, there has been little work done on compression of the
acquired images. The projective geometry of omnidirectional cam-
eras, such as catadioptric or fish-eye cameras, has a specificnature
since lines in the 3D space project into curves on the omnidirec-
tional image. This leads to a clear conclusion that applyingstandard
2D planar image compression techniques to omnidirectionalimages
is suboptimal. To perform proper compression of such images, we
have to design spatial correlation reduction methods for their spe-
cific projective space. For catadioptric systems for example, the
projective surface is the mirror manifold. However, designing com-
pression methods for each mirror type results in a specific codec
for each camera type. Fortunately, Geyer et al. [1] have proposed
a unifying framework where omnidirectional images obtained from
catadioptric systems with different mirrors can be uniquely mapped
to spherical images. This allows us to represent the light field di-
rectly in the spherical domain and design a coding method on the
sphere which can be used for different types of mirrors. Two main
approaches for representing signals on the sphere have dominated in
the past: the Spherical harmonics transform [2]; and the spherical
wavelet transform SWT [3]. Spherical harmonics have globalspa-
tial support, which makes them unsuitable for local analysis on the
sphere. SWT has spatially localized and mutli-scale spherical ba-
sis functions, but it fails to represent multi-dimensionalsingularities
like contours in omnidirectional images. Another multi-resolution
representation of spherical signals is the Laplacian Pyramid on the
sphere [4], which is not as efficient for compression as wavelets due
to its redundant nature.
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To the best of our knowledge, the only work that considered
the geometry of catadioptric systems for omnidirectional image and
video compression has been presented by Bauermann et al. [5]. They
proposed a preprocessing step that maps each image in an omnidirec-
tional video into a panoramic image and then compresses thatvideo
using the standard H.264 coder. However, panoramic mappingcan-
not fully exploit the correlation statistics of the radial light field cap-
tured by an omnidirectional camera. This is because the sampling
density of light rays is non-uniform on a panoramic cylinder, while
the pixel distribution on the cylinder is uniform.

We propose to represent a spherical image as a series of oriented
and anisotropically refined functions taken from a redundant dictio-
nary of atoms on the sphere. These atoms are edge-like functions
living on the 2D sphere, which can take arbitrary positions,shapes
and orientations. Since the number of atoms in the redundantdictio-
nary is usually much higher than the dimension of the signal,there
is a high probability that a given signal is well approximated with
few atoms. Such signal representations are called sparse, as the se-
lected atoms are sparse in the dictionary. Due to compact signal rep-
resentation, redundant expansions can give good compression per-
formance. Hence, we exploit the proposed geometric dictionary on
the sphere to design a novel omnidirectional image coder, based on
the Matching Pursuit (MP) algorithm. An encoder is proposedthat
compresses the stream of atoms by adaptive coefficient quantization.
Experimental results demonstrate that the new coder outperforms in
rate-distortion the standard JPEG2000 coder on unfolded images for
2dB in average, at low rates. It also significantly outperforms the
SPIHT-encoded Laplacian Pyramid on the sphere.

2. GEOMETRY OF OMNIDIRECTIONAL IMAGES

Various omnidirectional cameras exist on the market today,and al-
most all of them can be considered as spherical cameras usingan
appropriate mapping. We will consider a typical parabolic catadiop-
tric sensor, which is realized with a parabolic mirror placed in front
of a camera approximating an orthographically projecting lens, as
shown in Fig. 1a). In this construction, the ray of light incident with
the focus of the parabola is reflected to a ray of light parallel to the
parabola’s axis. The entire information seen by the catadioptric sys-
tem can be described with the intensity distribution of the pencil of
light rays incident to the focal point of the mirror. Obviously, the
most natural representation of this distribution is in the spherical co-
ordinate system. It has been shown in [1] that there is an equiva-
lence between any central catadioptric projection and a composition
of two conformal mappings on the sphere. First mapping is a projec-
tive representation, where the projective space is a spherecentered
at the focal point of the mirror. The second mapping is the stere-
ographic projection from the pole of the sphere to the catadioptric
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Fig. 1. a) Omnidirectional system with parabolic mirror [1]; b) Map-
ping from image plane to the spherical image.

plane (image sensor plane). We can thus recover the spherical coor-
dinates of incoming light rays through a simple inverse stereographic
projection of the sensor images, as shown in Fig. 1b).

Similar mapping schemes can be derived for different system
constructions (with hyperbolic or elliptic mirrors), by employing the
inverse stereographic projection from a point specified by the cho-
sen construction [1]. Therefore, designing a compression scheme
for spherical images leads to a generic coding method for omnidi-
rectional images obtained with various catadioptric devices.

3. SPARSE APPROXIMATIONS ON THE SPHERE

3.1. Redundant expansions

Given an overcomplete dictionaryD = {φk} in a Hilbert spaceH ,
every signaly ∈ H can be represented as a linear combination of
atomsφk. However, since the dictionary is over-complete, there are
infinitely many possible linear representations of the image. In or-
der to find a compact image approximation one has to search fora
linear expansion that contains a small number of components. In
other words, we look for asparserepresentation ofy in D, which
is a linear combination of a small number of atoms inD up to an
approximation errorη, i.e., y =

P

k∈I
φkck + η whereI labels

the set of atoms{φk}k∈I participating in the representation. Unfor-
tunately, finding the sparsest representation has combinatorial com-
plexity. However, there exist polynomial time algorithms,such as
Matching Pursuit (MP), that search for a suboptimal solution. MP is
an iterative algorithm, which selects at each iteration theatom that
best matches the signal and removes its contribution from the sig-
nal to form the residue. It then continues the same procedureon the
residue until it becomes sufficiently small.

Redundant expansions have shown interesting approximation
properties in the decomposition of signals with multidimensional
singularities such as contours in natural images. They provide a lot
of freedom in the design of the bases or dictionaries. In particular,
it is possible to design structured dictionaries which include rotation
or anisotropy in the basis functions. These two properties are keys
to the development of efficient algorithms for image approximation.

3.2. Redundant dictionary on the 2-D sphere

We propose to decompose spherical signals as a series of atoms,
taken from a redundant dictionary of functions defined on the2D
sphere. Dictionaries are in general constructed as a set of different
waveforms, where each waveform is defined by a generating func-
tion. Each generating function can serve as a base for building the

overcomplete dictionary, simply by changing the function parame-
ters or indexes (e.g., position or scale indexes). While there is a
priori no restriction on the construction of the dictionary, the us-
age of generating functions advantageously leads to structured and
parametric dictionaries, whose indexes directly correspond to atom
characteristics.

The construction of the dictionary on the 2D sphere is mostly
based on the dictionary presented in [6] for 3D surfaces, with some
modifications in order to account for statistics of the spherical im-
ages. The dictionary design involves the three following steps:

• definition of the generating function(s) on the sphere,

• anisotropic scaling of atoms

• definition of the motion of atoms on the sphere, and rotation
around their axis.

Since the signal to be approximated is defined in the space of
square-integrable functions on a unit 2-sphereS2, the atoms have
obviously to live in the same space. Letg denote a generating func-
tion on the 2D sphere. By combining motion, rotation and scal-
ing, we form an overcomplete set of atomsφ ≡ gγ , whereγ =
(τ, ν, ψ, α, β) ∈ Γ is the atom index. This index is described by five
parameters that respectively represent the position of theatom on the
sphere:τ along the zenith angleθ andν along the azimuth angleϕ,
its orientationψ, and the scaling parameters(α, β).

Under the assumption that spherical images are mostly com-
posed of smooth surfaces, and singularities aligned on pieces of great
circles, we propose to build the dictionary over two generating func-
tions. First, in order to efficiently capture the singularities, we use
a generating function that resembles to a piece of contour onthe
sphere. Our choice is a spherical function which is a Gaussian func-
tion in one direction and its second derivative in the orthogonal di-
rection. Scalesα andβ additionally perform anisotropic refinement
of the generating function in two orthogonal directions, tofinally
obtain the edge-like atom function:
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whereK1 is a normalization factor. The motivation for the choice
of a Gaussian kernel lies in its optimal joint spatial and frequency
localization. On the other side, the second derivative in the orthogo-
nal direction is used to filter out the smooth polynomial parts of the
signal and capture the signal discontinuities.

Second, in order to represent efficiently the smooth areas inthe
spherical signals corresponding to low-frequency (LF) components,
we propose to use a second generating function for the construction
of the dictionary. The second function is a two-dimensionalGaus-
sian function on the sphere, anisotropicaly scaled:

gLF (θ, ϕ) =
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The functionsgHF andgLF define atoms that are centered exactly
on the North pole. We further form the redundant dictionary by ap-
plying geometric transforms to these functions, on the 2D sphere,
i.e., we apply different anisotropic scalesα andβ, and move the
generating functions on the sphere. Motion and rotation belong to
the group of affine transformations of the unit 2D sphereS2. They
are both realized by one transform composed of three rotations by
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Fig. 2. a-c) Samples of HF atoms; d) LF atom.
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Fig. 3. Omni-SMP coding scheme.

Euler angles(ν, τ, ψ). The generating function is therefore trans-
formed into an atom that can be moved to a particular point (τ ,ν)
on the sphere, and rotated. By a proper choice of the transformation
parameters, one finally obtains an overcomplete dictionaryof func-
tions, which is used to represent spherical signals. Sampleatoms are
illustrated in Fig. 2.

4. OMNIDIRECTIONAL IMAGE CODER

Our objective is to build on the effective approximation properties
offered by redundant expansions to obtain compressed versions of
omnidirectional images. The block diagram of the proposed coder,
called Omni-SMP (omnidirectional image coder based on Spheri-
cal Matching Pursuit1), is shown in Fig. 3. At the encoder side, an
omnidirectional image is first mapped to a spherical imagey(θ,ϕ).
Matching Pursuit algorithm is then performed on the spherical im-
age to select a series of atoms from the dictionary describedabove,
with their relative coefficients. Atoms are first sorted along the de-
creasing magnitude of their coefficients. The coefficients are then
uniformly quantized with a decaying quantization range, based on
the method proposed by Frossard et al. [7]. This method takesad-
vantage of the property that the energy of MP coefficients is limited
by an exponentially decaying upper-bound. The decoder firstper-
forms inverse quantization of MP coefficients and then reconstructs
the approximated spherical image by linear combination of atoms
whose relative weights are given by the MP coefficients.

5. EXPERIMENTAL RESULTS

5.1. Implementation

In the dictionary presented in Section 3.2, the atom indexesobvi-
ously take discrete values. We first use the equiangular spherical grid
to drive the values of the position parameters,τ andν; both param-
eters are uniformly distributed on the interval[0, π], and [−π, π),
respectively, with a resolution that is identical to the input image.
The rotation parameterψ is uniformly sampled on the interval[0, π],
with 16 orientations. This choice is mostly due to the use of the fast
correlation on the SO(3) group within the Matching Pursuit algo-
rithm. Finally, scaling parameters are distributed in a logarithmic
manner, from1 to half of the resolution of the input signal, with a

1Spherical Matching Pursuit refers to the Matching Pursuit of signals on
the sphere, using a dictionary of spherical atoms.

granularity of one third of octave. To reduce the dictionarysize and
hence the complexity, we limit the scaleβ to beβ ≤ α. This con-
straint gives a dictionary with atoms elongated along edges, which
efficiently represent image structures. For low-frequencyatoms, the
maximal value for the scaling parameters is chosen to be1/16 of the
signal resolution. Motion and rotation parameters are discretized in
the same way as for HF atoms.

5.2. Compression performance evaluation

The compression performance of the proposed Omni-SMP coderhas
been evaluated on synthetic spherical and natural omnidirectional
images. The original spherical image of the synthetic sceneRoom,
rendered by the ray tracer engine2, is shown in Fig. 4(a). Its unfolded
version is also shown in Fig. 4(b) in order to display all image fea-
tures. Natural Lab image has been captured by a paracatadioptric
camera with a mirror from the Remote Reality Corporation3, which
has 360 degrees view in the azimuth angle and the zenith view which
ranges from 35 to 92.5 degrees. It has been mapped to a spherical
image in Fig. 4(c), whose unfolded version is shown in Fig. 4(d).
Both test spherical images have resolution 256x256 pixels on the
equiangular spherical grid.

(a) (b) (c)

(d)

Fig. 4. Original images, resolution 256x256: (a) spherical im-
age Room; (b) unfolded image (a); (c) omnidirectional imageLab
mapped to a spherical image; (d) unfolded image (c).

The rate-distortion (RD) performance of Omni-SMP has been
evaluated, reporting the number of bits per pixel of the image needed
to achieve the image quality measured by the PSNR (Peak Signal to
Noise Ratio). PSNR is a logarithmic measure of the mean square
error, evaluated as the mean of the sphericall2 norm of the error.
For the natural Lab image PSNR has been evaluated only on the
non-black (informative) part of the sphere. Fig. 5 and Fig. 6present
the RD performance of the Omni-SMP coder for Room and Lab im-
ages, respectively. In the same figures, we plot the RD performance
of the JPEG2000 coder on unfolded images, and the performance
of a multiresolutional method that employs the Spherical Laplacian
pyramid (SLP) [4], followed by the SPIHT coding of LP coefficients.
Since there are no spherical wavelet-based methods adaptedto the
compression of omnidirectional images, but only to shape compres-
sion, we compare to JPEG2000, which is a wavelet based coder for
planar images and currently state-of-the-art method in image cod-
ing. Performing compression on unfolded spherical images using
the planar image coder JPEG2000 is very similar to projecting im-
ages to panoramic images and then applying JPEG2000. To havea

2http://yafray.org/
3http://www.remotereality.com/
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Fig. 5. Rate-distortion performance for the Room image.
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Fig. 6. Rate-distortion performance for the Lab image.

fair comparison, the mean square error for JPEG2000 is evaluated
on the sphere, as for the Omni-SMP. We can see that the proposed
Omni-SMP coder outperforms JPEG2000 for up to 6 dB at low rates.
However, Omni-SMP is not efficient at high rates since the designed
dictionary is not optimized to approximate texture information domi-
nant at high rates, but rather structural image information. Due to the
redundancy of the Laplacian Pyramid, the RD performance of this
method is much worse with respect to Omni-SMP and JPEG2000.

Finally, we observe the visual image quality of the proposed
Omni-SMP coder and compare it to JPEG2000. Fig. 7 (a) and
(b) show respectively the decoded images using Omni-SMP and
JPEG2000 coder, at the same bit rate 0.057bpp. We can see that
Omni-SMP decoded image is more visually pleasing, with sharper
edges and smoother flat regions. Moreover, we can see how the
atoms in the image decomposition fit to 3D lines that are projected
to curvatures on the sphere. On the other side, JPEG2000 introduces
artifacts that degrade the structure of the image. At higherrates,
decoded images with Omni-SMP and JPEG2000 become closer in
PSNR value, but the coding artifacts are less annoying for Omni-
SMP, as shown in Fig. 7 (c) and (d) depicting the decoded Room
images at bit rate 0.088bpp. Similar observations can be made for
the Lab image (see Fig. 8).

6. CONCLUSIONS

We have presented a new compression method for omnidirectional
images, based on spherical mapping. As many omnidirectional im-
ages can be represented in the spherical domain, the new method

a) Omni-SMP b) JPEG2000 c) Omni-SMP d) JPEG2000
0.057 bpp 0.057 bpp 0.088 bpp 0.088 bpp
29.43 dB 27.56 dB 31.06 dB 30.25 dB

Fig. 7. Decoded Room images

a) Omni-SMP: 0.058 bpp, 30.44 dB c) Omni-SMP: 0.089 bpp, 31.94 dB

b) JPEG2000: 0.058 bpp, 25.50 dB d) JPEG2000: 0.089 bpp, 30.29 dB

Fig. 8. Decoded Lab images

is quite generic and can be used for different camera constructions.
The spherical images are decomposed over a redundant dictionary
of multi-dimensional atoms on the 2D sphere, which efficiently ap-
proximate the geometry- specific curved discontinuities inthe im-
age. The proposed encoder employs the Matching Pursuit algorithm
with adaptive quantization of coefficients. The new method outper-
forms state-of-the-art JPEG 2000 coder on unfolded (panoramic) im-
ages, at low bit rates where proper coding of the image geometry is
typically more important than texture coding.
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