arXiv:2204.03277v1 [eess. V] 7 Apr 2022

Recursive Frequency Selective Reconstruction of
Non-Regularly Sampled Video Data

Markus Jonscher, Karina Jaskolka, Jiirgen Seiler, and André Kaup
Multimedia Communications and Signal Processing
Friedrich-Alexander University Erlangen-Niirnberg (FAU), Cauerstr. 7, 91058 Erlangen, Germany

Abstract—High resolution images can be acquired using a
non-regular sampling sensor which consists of an underlying
low resolution sensor that is covered with a non-regular sam-
pling mask. The reconstructed high resolution image is then
obtained during post-processing. Recently, it has been shown
that the temporal correlation between neighboring frames can
be exploited in order to enhance the reconstruction quality of
non-regularly sampled video data. In this paper, a new recursive
multi-frame reconstruction approach is proposed in order to
further increase the reconstruction quality. By using a new
reference order, previously reconstructed frames can be used for
the subsequent motion estimation and a new weighting function
allows for the incorporation of multiple pixels projected onto the
same position. With the new recursive multi-frame approach, a
visually noticeable average gain in PSNR of up to 1.13 dB with
respect to a state-of-the-art single-frame reconstruction approach
can be achieved. Compared to the existing multi-frame approach,
a gain of 0.31 dB is possible. SSIM results show the same
behavior as PSNR results. Additionally, the pre-reconstruction
step of the existing multi-frame approach can be avoided and
the new algorithm is, in general, capable of real-time processing.

I. INTRODUCTION

The fundamental work of Kotelnikov, Nyquist, Shannon,
and Whittaker on sampling continuous band-limited signals [[1]]
shows that these signals can be exactly restored from a set of
regularly spaced samples if they are acquired with twice the
highest frequency present in the regarded signal. However, in
many important applications like imaging, medical imaging, or
remote surveillance, the resulting rate is so high that far too
many samples have to be acquired. Despite the advances in
computational power, it may be either too costly or even phys-
ically impossible to build devices capable of acquiring such
signals at the necessary rate. A few years ago, Compressed
Sensing [2], [3] has been introduced as a new framework
for signal acquisition and sensor design. It achieves a large
reduction in sampling and computational costs for sensing
signals that have a sparse representation in another domain.
The idea behind Compressed Sensing is to directly acquire
the data in a compressed form which means a lower sampling
rate rather than first sample it at a high rate and compress
afterwards. Compressed Sensing is used for instance in single-
pixel cameras [4], where a scene is acquired by random
projections instead of collecting the pixels. The reconstructed
high resolution image can be obtained afterwards.

Another possibility to obtain a high resolution image and to
reduce the costs and storage space of the data acquisition at
the same time has been shown in [5]], where a low resolution
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Figure 1. Left: High resolution sensor with many read-out circuits. Middle:
Low resolution sensor with fewer read-out circuits and a poorer image quality.
Right: Masked low resolution sensor giving a high resolution image after the
reconstruction of all missing pixels.

sensor is covered with a non-regular sampling mask. The basic
idea of this approach is shown in Figure [T On the left, a
high resolution sensor that gives the high resolution image
f[m,n] is displayed. The area of the sensor that is sensitive
to light is denoted in light-gray and (m,n) depict the spatial
coordinates on this high resolution grid. In many applications
like multi-view scenarios or mobile devices it is of interest to
reduce hardware costs or the energy consumption. Therefore,
a low resolution sensor with fewer read-out circuits may be
employed which is shown in the middle. It is obvious that this
method leads to an image of poorer quality f[u,v], where
(u,v) depict the spatial coordinates on the low resolution
grid. A high visual quality, however, is always preferred.
Therefore, as in [5] proposed, a low resolution sensor can
be covered with a non-regular sampling mask which can be
seen on the right. Each large pixel of the low resolution
sensor is divided into four quadrants, where three of them
are randomly covered. As a consequence, only 1/4 of the
large pixel is sensitive to light anymore. This leads to an
incomplete high resolution image, since due to the masking,
pixels on the high resolution grid are only partially available.
A suitable reconstruction algorithm is then needed for the
reconstruction of these missing pixels. Finally, this leads to
the reconstructed high resolution image f[m,n]. Recently,
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Figure 2.  Non-regularly sampled video data fi[m,n] gets reconstructed
either frame by frame (single-frame) or by utilizing motion information
between the frames (multi-frame) in order to obtain the reconstructed high
resolution video f¢[m,n].

it has been shown in [6] that the reconstruction quality of
images captured by non-regular sampling sensors in multi-
view scenarios may be further enhanced by utilizing the
spatial correlation between neighboring views. When dealing
with videos, the temporal correlation between neighboring
frames may also be exploited as it is done for instance in
an existing multi-frame reconstruction approach [7], in super-
resolution [8], or video coding [9].

In this paper, a new recursive multi-frame reconstruction
approach is proposed in order to increase the reconstruc-
tion quality compared to the existing multi-frame approach
from [7]. This is achieved by introducing a new reference
order. Up to now, the existing multi-frame approach employs
a pre-reconstruction step, where all frames get reconstructed
in the first place followed by a pixel-based motion estima-
tion algorithm that is applied between all of these frames.
The new reference order uses only preceding frames which
allows the algorithm to be capable of real-time processing
and additionally, due to a modified motion estimation, where
motion vectors can be computed between a reconstructed
frame and an incomplete non-regularly sampled frame, the
pre-reconstruction step of the existing multi-frame approach
can be avoided. Another advantage is the reusing of previ-
ously reconstructed frames for a subsequent motion estimation
which leads to more reliable results of the computed motion
vectors that are used for projecting pixels from one frame into
another. Additionally, a new weighting function is introduced
in order to incorporate the projected pixel information from
different neighboring frames when they are projected onto the
same position.

The paper is organized as follows: The next section intro-
duces state-of-the-art methods for the reconstruction of non-
regularly sampled videos and Section [[TI] presents the proposed
recursive multi-frame reconstruction approach. Simulations
and results are given in Section and Section [V| concludes
this contribution.

II. STATE-OF-THE-ART VIDEO RECONSTRUCTION

In Figure 2] a scene is captured by a non-regular sampling
sensor with a fixed sampling pattern giving a video which
consists of incomplete frames f;[m,n]. It contains many
missing pixels due to the masking and has to be reconstructed
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Figure 3. Merging of several frames after motion compensation (MC)
to the current frame in order to obtain additional pixel information. Final
reconstruction by frequency selective reconstruction (FSR).

in order to obtain the reconstructed high resolution frames
ft [m, n]. A straightforward way is a single-frame reconstruc-
tion approach where each frame is reconstructed separately
by a suitable reconstruction algorithm. A more sophisticated
way is a multi-frame reconstruction, where motion information
between neighboring frames is utilized in order to support the
reconstruction of each frame.

A. Single-frame reconstruction

A frame-wise reconstruction of the sampled video can
be conducted by several algorithms like Natural Neighbor
Interpolation [10], Steering Kernel Regression [[11], the con-
strained split augmented Lagrangian shrinkage algorithm [12],
or sparsity-based wavelet inpainting [13|]. However, it has been
shown in [[14] that for non-regular subsampling problems like
this, frequency selective reconstruction (FSR) yields a better
reconstruction quality than the other state-of-the-art image
reconstruction algorithms. Recently, a texture-dependent ap-
proach for FSR has been developed [15], however, in this con-
tribution only FSR from [14] is regarded. The reconstruction
of single frames by FSR is called FSR-SF. The basic principle
of FSR is the iterative generation of the sparse signal model
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as a superposition of Fourier basis functions @ )[m,n]
weighted by the expansion coefficients ¢ ;). This is done in
a block-wise manner for each frame of the video. The set
K contains the indices of all basis functions that have been
selected for model generation. In every iteration, one basis
function gets chosen and before being added to the model,
its corresponding weight is estimated. The model g;[m,n] is
then used to replace missing pixels in the corresponding high
resolution frame f;[m,n].

B. Multi-frame reconstruction

For the reconstruction of a non-regularly sampled video,
however, it is obviously advantageous to make use of the
temporal dependencies between neighboring frames. Since the
performance of FSR highly depends on the number of avail-
able sampling points, a multi-frame FSR approach (FSR-MF)
has been proposed in [[7]] in order to increase the reconstruction
quality. It projects additional pixel information from neighbor-
ing frames by using a suitable motion estimation algorithm.



First, all frames get reconstructed by the single-frame re-
construction approach FSR-SFE. Afterwards, a modified block-
based motion estimation [16] is applied between them, where
the relative displacement is represented by a motion vector
which is computed for each pixel. These motion vectors are
then used to project pixel information from one frame into
a neighboring frame. In Figure 3] this process is exemplarily
shown. After a certain number of preceding and succeeding
frames are motion compensated to the current frame, all valid
pixel information is merged into a new frame which now
contains less missing pixels. Finally, FSR is applied to obtain
the reconstructed high resolution frame. These steps have to
be repeated for all frames in order to get the reconstructed
high resolution video.

III. PROPOSED RECURSIVE MULTI-FRAME
RECONSTRUCTION APPROACH

In this paper, a new recursive multi-frame reconstruction
approach (FSR-RMF) is proposed in order to further increase
the reconstruction quality compared to the existing multi-
frame approach FSR-MF. It consists of two major parts: a
new reference order for the motion estimation and a weighting
function to incorporate multiple projected pixels.

A. Reference Order for Motion Estimation

First, the new reference order for motion estimation is
introduced. The general principle is illustrated in Figure @]
Instead of utilizing both preceding and succeeding frames,
only preceding frames are considered. In doing so, a real-
time processing of the reconstruction of non-regularly sampled
videos can be achieved. Additionally, motion estimation is now
carried out between the non-regularly sampled current frame
ftm,n] and a certain number of previously reconstructed
frames f;_ x[m, n]. This way, a pre-reconstruction as it is done
in the existing FSR-MF can be avoided. The motion estimation
works the same way as in [[7]], however, missing pixels are now
neglected for the matching. Another advantage of this new
approach is that motion estimation can be applied between
the non-regularly sampled current frame and preceding frames
that are of higher quality, since they already have been
reconstructed using pixel information from other preceding
frames. Therefore, motion estimation and the projection of
pixels using the corresponding motion vectors perform better,
since more reliable pixel information is available.

The first frame f;_3[m, n] in this example has no preceding
frames and is therefore directly reconstructed by FSR and
saved as the reconstructed high resolution frame ft,g[m, nj.
Now, the succeeding incomplete frame f;_o[m,n] has to be
reconstructed. In this case, one preceding frame ft,g[m,n]
is available. Motion estimation can be carried out between
them and pixel information can be projected. The final recon-
struction by FSR leads to the reconstructed frame f,_[m, n].
Analogously, this is done for all other frames of the non-
regularly sampled video data, where a maximum number K
of support frames is utilized.
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Figure 4. New reference order of the motion estimation (ME) between
the non-regularly sampled current frame ftA[m, n] and a certain number of
previously reconstructed preceding frames f;_ g [m, n].
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Figure 5. Merging and weighting of projected pixels from preceding motion
compensated frames f;_j[m,n] into the current frame to be reconstructed.

B. Weighting of Projected Pixels from Neighboring Frames

The existing FSR-MF approach projects pixels from neigh-
boring frames into the frame that is currently reconstructed.
Up to now, if pixels from different frames are projected onto
the same position, only the information from the nearest frame
is used. It is now proposed to gather all pixels and weight them
depending on the temporal distance to the current frame. The
merged current frame f;[m, n] is computed using the following
formula

K
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Depending on the number of utilized support frames K, all of
the frames f;_j[m,n| are motion compensated to the current
frame f;[m,n] and denoted by f,_[m, n]. b[m, n] ensures that
only pixels are projected which are not originally acquired by
the non-regular sampling sensor, where B denotes the area of
all missing pixels and A the area of all available pixels. All
projected and merged pixels get weighted by the factor wy
depending on the temporal distance to the current frame.

An example for the merging and weighting of the projection
of two support frames is shown in Figure [5] All originally
acquired pixels are denoted by light-gray blocks and all motion
compensated pixels by shaded blocks. All motion compensated
frames f:_r[m,n] are merged with the current frame fi[m, n],
however, only on positions with missing pixel information.
This merged frame f;[m,n] now has additional pixels which
will support the reconstruction by FSR.
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Figure 6. Average PSNR gain for FSR-MF and FSR-RMF each compared to FSR-SF over the number of support frames for three different test sequences.
Table 1 Table 11
FSR PARAMETERS USED DURING SIMULATION. PSNR GAINS OF FSR-MF AND THE PROPOSED FSR-RMF EACH
- COMPARED TO FSR-SF AVERAGED OVER ALL FRAMES OF ALL
Block size 4x4 SEQUENCES FOR UP TO FIVE SUPPORT FRAMES.
Border width 14
FFT size 32 x 32 Support frames 1 2 3 4 5
Iterations 100
Decay factor j 0.7 FSR-MF [[7] 0.30 048 062 073 082 dB
Orthogonality deficiency compensation ~ 0.5 FSR-RMF 0.34 0.63 084 1.00 113 dB
Weighting of already reconstructed areas & 0.5
Table III

IV. SIMULATIONS & RESULTS

The proposed FSR-RMF is evaluated for three 720p test
sequences, where only the luminance is considered. Each
sequence has a different kind of motion: translation (Panslow),
zoom (Jets), and rotation (Spincalendar). By selecting the
first 100 frames of each sequence, a comprehensive test set
of 300 frames is used. A fixed non-regular sampling mask
is applied to every frame of each sequence and all frames
are then reconstructed using the single-frame approach FSR-
SF [14], the multi-frame approach FSR-MF [7] and the
proposed FSR-RMF. All relevant parameters for FSR that are
used during simulation are listed in Table [l For an extensive
discussion of these parameters please refer to [14]. Since first
tests have been shown that an equal weighting of projected
pixels gives better results than a linearly decreasing weighting,
FSR-RMF employs an equal weighting for all simulations.

The reconstruction quality of the different methods is eval-
uated using both PSNR and SSIM [17]. The corresponding
values are calculated between the original frame and the
reconstructed frame. Afterwards, the gain of FSR-RMF and
FSR-MF is calculated with respect to FSR-SF. Furthermore, a
margin of 4 pixels is excluded in order to avoid the influence
of artifacts due to the black border of some frames. For both
FSR-RMF and FSR-MF, up to five support frames are used.

In Figure [0] the average gain in PSNR for both FSR-RMF
and FSR-MF is plotted over the number of utilized support
frames. It can be seen that for each sequence the proposed
FSR-RMF gives better results than the existing FSR-MF. It
is also noticeable that the more support frames are utilized,
the higher the overall gains get. Table [lI| shows the average
PSNR gains over all frames of all sequences for up to five

SSIM GAINS OF FSR-MF AND THE PROPOSED FSR-RMF EACH
COMPARED TO FSR-SF AVERAGED OVER ALL FRAMES OF ALL
SEQUENCES FOR UP TO FIVE SUPPORT FRAMES.

Support frames 1 2 3 4 5
FSR-MF [7] 094 160 233 291 3.42 x1073
FSR-RMF 1.08 224 319 398 463 x1073

utilized support frames. It can be seen that FSR-RMF leads
to a better reconstruction quality for any number of support
frames. For three support frames, the proposed FSR-RMF
already performs slightly better than FSR-MF with five support
frames. Compared to the single-frame reconstruction FSR-SF,
FSR-RMF achieves an average gain in PSNR of up to 1.13 dB
which is 0.31 dB better than to FSR-MF. In Table average
SSIM gains are displayed. They show the same behavior as
the PSNR results and verify the high reconstruction quality of
the proposed FSR-RMF.

Three detail examples are shown in Figure [/} allowing a
visual comparison of the proposed FSR-RMF with the existing
FSR-MF. For both methods five support frames are utilized
and the corresponding PSNR values are calculated on the
entire frame. In the upper row, the original frames of the detail
examples can be seen. The middle row shows how FSR-MF is
able to reconstruct the non-regularly sampled frames and the
last row shows the results for the proposed FSR-RMF. In the
Panslow frame, it can clearly be seen that using FSR-RMF,
more high frequency parts can be reconstructed. In the Jets
frame, the text appear sharper and in the Spincalendar frame,
fine details are better reconstructed and text is also better
readable. Therefore, it can be stated that not only noticeable
gains in PSNR and SSIM can be achieved, but also the visual
quality gets significantly increased.
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Figure 7.
frames. PSNR values are measured on the entire frame.

V. CONCLUSION

In this paper, the new recursive multi-frame reconstruction
approach FSR-RMF has been proposed. FSR-RMF is able to
reconstruct a video that is captured by a non-regular sampling
sensor by utilizing pixel information from neighboring frames.
It uses a new reference order which allows the reusing of
previously reconstructed frames for motion estimation which
leads to better results for the pixel projection. Compared to the
existing multi-frame approach FSR-MF, a pre-reconstruction
step can be avoided and a real-time processing is in general
possible. Additionally, a new weighting function has been
introduced in order to incorporate multiple pixels that are
projected onto the same position. By employing the new
FSR-RMF, a visually noticeable average gain in PSNR of
up to 0.31 dB compared to the existing FSR-MF has been
achieved. For future research, the influence of alternating non-
regular sampling patterns over time will be investigated and a
detailed evaluation of different weighting functions is also of
great interest.
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