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Abstract—For the lossless compression of dynamic 3-D+t
volumes as produced by medical devices like Computed To-
mography, various coding schemes can be applied. This paper
shows that 3-D subband coding outperforms lossless HEVC
coding and additionally provides a scalable representation, which
is often required in telemedicine applications. However, the
resulting lowpass subband, which shall be used as a downscaled
representative of the whole original sequence, contains a lot
of ghosting artifacts. This can be alleviated by incorporating
motion compensation methods into the subband coder. This
results in a high quality lowpass subband but also leads to a
lower compression ratio. In order to cope with this, we introduce
a new approach for improving the compression efficiency of
compensated 3-D wavelet lifting by performing denoising in the
update step. We are able to reduce the file size of the lowpass
subband by up to 1.64%, while the lowpass subband is still
applicable for being used as a downscaled representative of the
whole original sequence.

I. INTRODUCTION

In the daily medical routine, dynamic volume data provide

a good basis for analyses and predictions of spatio-temporal

movements of particular parts of the human body. Fig. 1 shows

the principal structure of a 3-D+t volume from Computed

Tomography (CT). It consists of T temporally equidistant

3-D volumes of size X×Y×Z. Due to the high temporal

and spatial resolution, dynamic volumes can get very large,

which makes storing and archiving them in a lossless manner

impractical. Additionally, for telemedicine applications a scal-

able representation is often required that allows for tasks like

browsing and fast previewing [1]. Moreover, CT data contain

a lot of sensor noise. This is caused by the radiation which has

to be kept low to reduce the risks for the patients as well as the

short acquisition time which is kept as low as possible to avoid

motion artifacts. Further, medical CT data have a higher bit

depth than natural video sequences, namely 12 bits per pixel.

Therefore, an efficient coding scheme is required.

Common video codecs are mainly designed for tempo-

ral 8-bit video sequences originating from the entertainment

industry. One way to apply them on medical 12-bit 3-D+t

data is to generate a single sequence over t for every slice

position z, resulting in Z temporal sequences. In Fig. 1, the

resulting sequence for slice position z = 3 is highlighted. Each
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Fig. 1: Example of a dynamic medical data set: The sketch

shows a 3-D+t CT volume of a thorax consisting of subsequent

3-D volumes over time t.

temporal sequence can be compressed using common video

coding schemes under the condition of lossless compression

and adaption of the range of the bit depth.

The HEVC standard [2], which describes a motion compen-

sated predictive coder, is mainly applied for the efficient cod-

ing of video sequences. By choosing the Lowdelay Main RExt

configuration and lossless mode, it is possible to apply HEVC

also to medical sequences. An alternative coding scheme

to predictive coding is represented by 3-D subband coding

(SBC). Incorporating motion compensation (MC) methods into

the subband coder is called Motion Compensated Temporal

Filtering (MCTF) [3].

In [4], dynamic volume data is compressed by performing

one Haar wavelet transform (WT) in temporal direction. This

WT is performed in a simple SBC coder and in an MCTF

coder with mesh-based MC. In both cases, the resulting

subbands are coded losslessly using the wavelet-based volume

coder JPEG 2000 [5] with four spatial decompositions steps.

Fig. 2 shows the resulting compression ratios of the above

mentioned coders for medical as well as natural sequences. For

the HEVC codec, the latest test model HM-16.16 was used.

The medical sequences Thorax1-3 originate from a 3-D+t CT

data set at slice positions z = 1, 2, 3. The content of this

volume can exemplarily be seen in Fig. 1 and describes a

beating heart. The natural sequences consist of three HEVC-

specific ClassD sequences [6]. As the medical sequences

comprise luminance information only, all sequences are used

in 4:0:0 color sub-sampling format for a fair comparison.

http://arxiv.org/abs/2302.01014v1
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Fig. 2: Compression ratio resulting from HEVC, SBC, and

mesh-based MCTF for medical (top) as well as natural se-

quences (bottom).

As can be seen in Fig. 2, HEVC reaches good com-

pression ratios for natural sequences, but performs relatively

less efficient for CT data. Apart from this, HEVC offers no

scalable representation for the original volume. In contrast,

SBC performs better than HEVC on medical CT data and ad-

ditionally provides scalability features. However, SBC causes

ghosting artifacts in the lowpass (LP) subband due to temporal

displacements in the sequence. Thus, SBC is not recommended

if the LP subband is to be used as a downscaled representative

of the whole original sequence. MCTF performs not as well as

SBC regarding the compression efficiency of medical CT data,

but provides a high quality LP subband. Accordingly, MCTF

results in a proper scalable representation for telemedicine

applications.

To improve the compression efficiency of MCTF, we pro-

pose to apply denoising in the update step. With this, we

avoid warping noise from the highpass (HP) subband to the

LP subband. This novel step in the context of compensated

wavelet lifting leads to a lower entropy in the LP subband and

the compression ratio can be increased. By applying adequate

filters for denoising, the compression ratio rises while the

suitability of the LP subband for telemedicine applications is

preserved at the same time.

After a short recap of compensated wavelet lifting in

Section II, Section III provides a detailed description of

the proposed method, followed by the simulation results in

Section IV. In Section V we give a short conclusion and

outlook.

II. COMPENSATED WAVELET LIFTING

An efficient implementation of the discrete WT, named

lifting structure, was proposed by Swelden [7]. The first step

is a decomposition of the input video signal into even- and

odd-indexed frames f2t and f2t−1. In a prediction step, the

odd frames are predicted and subtracted from the even frames,

resulting in the HP frames. Then, in an update step, the HP

frames are filtered and added back to the odd frames, resulting

in the LP frames. Fig. 3 shows a block diagram of the lifting

PSfrag replacements

f2tf2t

f2t−1f2t−1

HPt

LPt

MCMC
MC−1MC−1

DNDN

Fig. 3: Block diagram of the lifting structure containing the

proposed denoising (DN) filter at both encoder (left) and

decoder side (right).

structure. The temporal HP and LP frames are generated by

HPt = f2t − P (f2t−1) (1)

LPt = f2t−1 + U(HPt), (2)

where P (·) and U(·) describe the prediction and update

operators respectively. In the prediction step, MC is usually

done to avoid ghosting artifacts in the LP frames that are

caused by temporal displacements in the sequence [8]. This

MC has to be inverted in the update step.

However, while the appearance of ghosting artifacts is

reduced by MC, the noise variance of the single subbands is

increased. Structural information as well as noise is warped

from one frame to the other by the prediction and update

operators. As described in [9], this leads to a higher overall

entropy, so the required number of bits for coding the subbands

will also rise.

One possibility to reduce the increase of the noise variance

in the LP frames is to skip the update step entirely. This

results in the so-called Truncated WT, in which the LP frames

are generated by subsampling the sequence by a factor of 2.

However, apart from negative effects like temporal aliasing

and temporal fluctuation in video quality as discussed in [10],

the LP subband is not suitable anymore for telemedicine

applications. An adequate downscaled representative should

offer a high similarity to the odd- as well as to the even-

indexed frames, which is not given by simply subsampling

the original sequence.

III. COMPENSATED WAVELET LIFTING WITH DENOISED

UPDATE

To reduce the increase of the noise variance in the LP frames

and thereby improving the compression efficiency of MCTF,

we propose to apply denoising in the update step as shown

in red in Fig. 3. Considering (1) and (2), the Wavelet Lifting

with Denoised Update (WLDU) is described by

HPt = f2t −MC(f2t−1) (3)

LPt = f2t−1 + MC−1(DN(HPt)). (4)

Since the lifting scheme provides a flexible framework, f2t and

f2t−1 can be reconstructed without any loss if the denoising

filter is also applied at the decoder side, resulting in

f2t−1 = LPt −MC−1(DN(HPt)) (5)

f2t = HPt + MC(f2t−1). (6)



These equations hold for any denoising filter without compro-

mising the property of perfect reconstruction.

Under the assumption that the HP frames are zero-mean, an

infinitely strong filter would only add zeros to the odd frames

in the update step. This would correspond to the Truncated

WT. In theory, the maximum achievable compression ratio of

WLDU is hence bounded by the performance of the Truncated

WT. Therefore, we apply a simple 2-D Gaussian filter in a first

step so as to verify this theoretical bound of the compression

ratio.

After that, we will apply more complex filters. To guarantee

an accurate inverse MC in the update step, structural details in

the HP frames shall be preserved while noisy structures caused

by erroneous motion models and warping processes shall be

blurred to avoid augmenting additional noise to the LP frames.

In the context of video coding, various filters have been used

for in-loop denoising of reference frames [11], which is why

we will also apply them in our novel framework. These filters

are the Adaptive Wiener Filter (AWF) [12], the Non-Local

Means algorithm (NLM) [13], and Block Matching and 3-D

Filtering (BM3D) [14]. In addition to these filters, we will

apply Guided Image Filtering (GIF) [15].

All these algorithms are influenced by the filter strength h,

which can be calculated by

h = ξ · σ2

n
, (7)

where σ2

n
denotes the noise variance of the input image and ξ

describes an arbitrary parameter which optimizes the strength

of denoising in order to improve the compression efficiency.

By increasing ξ, the noise variance of the output image is

decreased and according to [9], a better compression ratio can

be reached.

Noise estimation is done at the encoder side. To guarantee

lossless reconstruction, the estimated noise variance σ2

n
has to

be known at the decoder side. This can be assured by transmit-

ting σ2

n
as side information to the decoder or by estimating σ2

n

at both the encoder and the decoder side. There exist different

possibilities to perform noise estimation, which differ mainly

with regard to the accuracy and the computational complexity.

To avoid transmitting additional information to the decoder

and to keep the decoder-side complexity low, we decided to

estimate the noise variance by a low-complexity algorithm

proposed in [16] at both the encoder and the decoder side.

By applying these filters in our novel framework of WLDU,

we enforce a higher compression efficiency than MCTF, while

the suitability of the LP subband for telemedicine applications

is preserved.

IV. SIMULATION RESULTS

In our simulation setup, we use a 3-D+t medical CT data

set1 that describes a beating heart and comprises 10 time

steps, each with 127 slices and a resolution of 512×512

pixels at 12 bits per sample. This results in 127 temporal

sequences. The first three sequences correspond to the test

1The CT volume data set was kindly provided by Siemens Healthineers.
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Fig. 4: Extended block diagram of the lifting structure illus-

trating the similarity of LPt to f2t and f2t−1.

sequences Thorax1-3 in Section I. We perform one Haar

wavelet decomposition step with a mesh-based MC with and

without the proposed denoising step. For the mesh-based MC,

we use a grid size of 8×8 pixels. The subbands are compressed

losslessly using the wavelet-based volume coder JPEG 2000.

We use the OpenJPEG [17] implementation with four spatial

wavelet decomposition steps in xy-direction.

A. Evaluation of the Quality of the Lowpass Subband

Usually, the quality of the LP subband is measured by

evaluating the similarity to the odd-indexed frames in terms

of PSNR. However, in many applications the LP subband is to

be used as a downscaled representative for the whole original

sequence. Therefore, a high similarity between the LP frames

and the even-indexed frames f2t should also be considered.

As shown in Fig. 4, this can be done by warping each LP

frame to the time step of the even-indexed frame and measure

their similarity also in terms of PSNR. Since PSNR goes to

infinity in case of perfect MC, it is not sufficient to calculate

the average PSNR. Hence, for evaluating the LP frames of

every time step with respect to both mentioned aspects, we

suggest two different metrics:

• First we consider the variance of the error signal con-

sisting of the even- and odd-indexed frames and their

corresponding LP frames

σ2

e
=

1

2

(

‖f2t−1 − LPt‖
2 + ‖f2t −MC(LPt)‖

2
)

. (8)

Then the quality of each lowpass frame LPt can be

measured by

PSNRLPt
[dB] = 10 log

10

A2

max

σ2
e

, (9)

where Amax corresponds to the maximum possible am-

plitude of the signal.

• An alternative to PSNR is given by the Structural Simi-

larity Index (SSIM) [18]. Since SSIM results in a range

of [0,1], it is possible to calculate the average value

regarding the similarity of each lowpass frame LPt to

f2t and f2t−1:

SSIMLPt
=

1

2
(SSIM(f2t−1,LPt) +

+ SSIM(f2t,MC(LPt))) .
(10)

In the following sections, the term “quality of the lowpass
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results compared against the file size of the LP frames in [kB]. The arrow above the diagrams

shows the direction of the single curves for increasing values of the filter strength h = ξ · σ2

n
. For better presentation, only

every 10th value for h is plotted.

subband” consequently describes a value calculated by one of

these two metrics.

B. Analysis of the Simulation Results

Fig. 5 shows the PSNRLPt
and SSIMLPt

results over the file

size of the LP subband in [kB] for all considered filter setups.

We examine the influence of the filter strength h by varying

ξ in a range of integer values from 1 to 100. The results are

averaged over all frames of all sequences.

As mentioned in Section III, we verify the upper bound

of the maximum achievable compression ratio by applying a

simple 2-D Gaussian filter. The dashed green curve in Fig. 5

shows the development of WLDUGauss for increasing values

of h. For high filter strengths the results are very close to the

performance of the Truncated WT. However, the quality of the

LP subband in terms of PSNRLPt
as well as SSIMLPt

decays

rapidly, making it useless for telemedicine applications.

Any curve which lies above the curve of WLDUGauss results

in a LP subband with a higher quality calculated by PSNRLPt

or SSIMLPt
that may be used in telemedicine applications.

We are looking for a filter which keeps the quality of the LP

subband at the level of MCTF for as long as possible. It should

not decay until the upper bound for the compression ratio is

almost achieved.

Therefore, we apply more complex denoising techniques as

introduced in Section III. For the AWF, we use a window of

3×3 pixels. For the NLM algorithm, the support area has a

size of 5×5 pixels and the neighborhood size is 3×3 pixels.

The implementation used for BM3D is provided by [19]. GIF

is applied under self-guidance, using HPt itself as the guidance

image. The window used in GIF is of size 5×5 pixels.

According to Fig. 5, AWF seems not to be the right

choice in the context of WLDU, since no gain regarding

neither the compression ratio nor the quality calculated by

PSNRLPt
or SSIMLPt

can be reached compared to WLDUGauss.

WLDUBM3D has a quite high computational complexity but

gives no significant advantage compared to WLDUGauss.

Therefore, it is also not suited for WLDU.

In contrast, by applying GIF and NLM as filters in the

context of WLDU, we are able to reach higher compression

ratios at nearly constant quality of the LP subband for small

values of h. However, for higher filter strengths, WLDUNLM

completely fails in terms of PSNRLPt
as well as SSIMLPt

. In

contrast, WLDUGIF keeps the quality of the LP subband at

a high level even for high filter strengths. With WLDUGIF,

we thus found a filter which fulfills the desired behavior: We

achieve a higher compression efficiency of the LP subband at

a quality close to MCTF with regard to both metrics PSNRLPt

and SSIMLPt
.

For a closer examination, we choose one value in Fig. 5

that is good in a rate-distortion sense for each WLDUNLM,

WLDUBM3D, and WLDUGIF. Additionally, we choose the

lowest possible value which we can achieve by WLDU re-

garding the file size of the LP subband. This value belongs to

WLDUGauss. All these values are marked with black circles in

Fig. 5. The corresponding values for the quality in terms of

PSNRLPt
and the file size of the LP subband can be found in

Table I.

By applying WLDUGauss, we can save 19.74 kB compared

to MCTF, which corresponds to 2.60% bit rate savings.

However, PSNRLPt
amounts only to 46.22 dB. This loss of

2.74 dB constitutes the inability of the resulting LP subband

for being used in telemedicine applications. In contrast, by

applying the more complex filters, the quality of the LP

subband in terms of PSNRLPt
is significantly less degraded,

while the file size can still be reduced by more than 1%. In

particular, choosing WLDUGIF saves 12.44 kB compared to

MCTF. This corresponds to bit rate savings of 1.64% at a

loss of only 0.25 dB regarding the quality of the LP subband.

Consequently, the applicability of the LP subband to represent

the whole original volume is preserved and the compression



TABLE I: File size and quality of the LP subband in terms of PSNRLPt
for certain values of Fig. 5. Absolute and relative

differences against MCTF are also provided. The line printed in bold indicates the setup that we recommend for the given

data set.

File size LP [kB] ∆ to MCTF PSNRLPt
[dB] ∆ to MCTF [dB]

absolute [kB] relative [%]
MCTF 758.43 - - 48.96 -

WLDUNLM 749.51 - 8.92 -1.18 48.74 -0.22

WLDUGIF 745.99 -12.44 -1.64 48.71 -0.25

WLDUBM3D 743.80 -14.63 -1.92 47.63 -1.33

WLDUGauss 738.69 -19.74 -2.60 46.22 -2.74

Truncated WT 738.53 -19.90 -2.62 46.17 -2.79

efficiency is increased at the same time.

For very high filter strengths, however, the results stagnate

for all applied filters. The theoretical upper bound of the max-

imum achievable compression ratio given by the Truncated

WT cannot be reached by further increasing ξ. With larger

neighborhood sizes for the single filters, a further compression

would be possible. However, this would result in significantly

lower values for PSNRLPt
as well as for SSIMLPt

, which is

not useful, if the LP subband is to be used as a downscaled

representative.

V. CONCLUSION

In this paper, a novel technique for improving the com-

pression efficiency of MCTF at nearly constant quality of the

LP subband in terms of PSNRLPt
as well as SSIMLPt

was

proposed. After demonstrating that HEVC is not as efficient

as SBC with regard to the compression of dynamic CT data,

it was shown that SBC gives no satisfying scalable repre-

sentation for use in telemedicine applications. Incorporating

MC methods into the lifting structure of SBC was shown

to result in a high quality LP subband, while suffering with

regard to the compression efficiency. Therefore, we proposed

to apply denoising in the update step, called WLDU. This

novel approach preserves the suitability of the LP subband to

be used as a downscaled representative of the whole original

sequence and improves the compression efficiency at the same

time. Further work aims at the investigation of optimum

denoising filters and the suitability of deblocking filters for

block-based MC.
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