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Consistent Disparity Synthesis for Inter-View
Prediction in Lightfield Compression

Yue Li, Reji Mathew, Dominic Ruefenacht, Aous Naman, David Taubman
School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia

Abstract—For efficient compression of lightfields that involve
many views, it has been found preferable to explicitly communi-
cate disparity/depth information at only a small subset of the view
locations. In this study, we focus solely on inter-view prediction,
which is fundamental to multi-view imagery compression, and
itself depends upon the synthesis of disparity at new view
locations. Current HDCA standardization activities consider a
framework known as WaSP, that hierarchically predicts views,
independently synthesizing the required disparity maps at the
reference views for each prediction step. A potentially better
approach is to progressively construct a unified multi-layered
base-model for consistent disparity synthesis across many views.
This paper improves significantly upon an existing base-model
approach, demonstrating superior performance to WaSP. More
generally, the paper investigates the implications of texture
warping and disparity synthesis methods.

Index Terms—lightfield coding, depth synthesis, dis-occlusion
handling, base models

I. INTRODUCTION

This paper is concerned with the efficient prediction of
views from other views within high density multi-view im-
agery. The term “lightfield” is also used for such content,
which provides a rich angular, as well as spatial sampling
of the scene, due to its large number of views. The lightfield
datasets explored in this work arise from a high density camera
array (HDCA). The compression of lightfields in general,
and HDCA data in particular, have been attracting increasing
attention, as evidenced by the current JPEG-Pleno light field
standardization activity [1].

Inter-view prediction plays an important role in such com-
pression schemes. In general, at the decoder side, some views
may be predicted from other “intra-coded” views, after which
prediction residuals may be coded. Prediction can also be used
to recover original or virtual views at the decoder side, com-
pensated with coded prediction residuals if available. In this
paper, we do not explicitly consider the compression aspects
of such a system, but focus exclusively on the performance
of the inter-view prediction process. High quality inter-view
prediction is facilitated by geometric models, expressed in
terms of scene depth or reciprocally in terms of disparity maps.
Since there are a large number of views, it is inefficient to
explicitly code depth fields or disparity maps at every view.
Instead, an underlying assumption in this paper is that explicit
disparity information will be available to a decoder only at a
sparse set of viewpoints. This is the model that has been found
most effective within the JPEG-Pleno activity, embodied by its
WaSP coding framework [2]. By contrast, in 3D-HEVC [3]
each view is accompanied by its own disparity map.

When disparity maps accompany only a few views, the
performance of view prediction depends on the way in which
sparsely communicated disparity is utilized for texture warp-
ing. In cases where a view involved in prediction does not
have its own communicated disparity, new disparity may need
to be synthesized from existing ones, leading to an intimate
connection between view prediction and disparity synthesis.

View prediction algorithms for lightfield compression pro-
posed in [4] and [5] encode disparity maps anchored at a
small set of intra-coded views, to transfer the texture data
from these views to predicted target views on a pixel-by-pixel
basis. In these approaches, each source pixel generally maps
to a non-integer location within the target view and is splatted
to the neighbouring pixel locations. WaSP [2] also adopts a
pixel-based splatting strategy for texture warping, but works
under a hierarchical view prediction framework. This means
that the reference views employed for a given prediction step
may not coincide with communicated disparity maps, so new
disparity maps must generally be synthesized as the algorithm
proceeds from coarse to fine levels in the hierarchy. These
algorithms do not attempt to resolve inconsistencies between
multiple communicated disparity maps; they simply combine
the splatted results produced using each reference view and
its associated disparity data.

Tran et al. [6] also adopt a pixel splatting approach, but
arrange for the missing texture within occluded regions to
filled in a consistent way across all the target views via a
proposed coordinate alignment algorithm. Their method relies
heavily upon the availability of reliable disparity maps at
reference views and only deals with one-dimensional inter-
view prediction. Pearson et al. [7] propose a layer-based
framework for communicating disparity, which effectively
allows the disparity to be consistently inferred at the predicted
target view and then used to interpolate pixels found within the
prediction source views, along with relevance information that
identifies the degree to which each source pixel is expected to
be visible in the target view. Construction of the layer-based
model is a non-trivial exercise in this approach, as each layer
is assigned only one global disparity.

Evidently, there are multiple ways to use a small set of
communicated disparity maps to predict the texture data at a
given view from other views. The purpose of this paper is to
explore the implications of some of these different methods in
a disciplined way, while proposing our own novel approach.

To do this, we first provide a framework for the texture
warping process that allows different disparity synthesis ap-



lv1

lv2

lv3
GOV

Fig. 1. Hierarchical View Prediction in HDCA Dataset

proaches to be compared in a meaningful way. We inves-
tigate forward and backward texture warping strategies, as
well as the significance of consistent disparity synthesis. We
then introduce our base-mesh model to address the issue of
inconsistency by keeping a single description for geometric
relationships across a whole group of views (GOV). First
introduced in [8], the base model construction involves build-
ing an original model starting with the disparity map that
governs the GOV and completing the model by progressively
filling holes exposed at each view prediction step. The existing
backfill approach in [8] suffers from excessive reliance on
extrapolation for the hole filling problem. To address this, we
propose a novel disparity fusion strategy that is superior to all
the other methods explored in this paper.

II. VIEW PREDICTION USING SYNTHESIZED DISPARITY

We are concerned with the prediction of target views
from other reference views, using disparity information that
may be communicated at some views but must generally be
synthesized elsewhere. For lightfield compression, hierarchical
prediction strategies are often employed. At each level in the
hierarchy, new views are predicted from views that are avail-
able at coarser levels of the hierarchy, and prediction residuals
can be coded before moving to the next finer level. Benefits
of hierarchical prediction include efficient access to individual
views and the ability to use quality scalable compression
techniques, both of which are possible due to the total number
of precursor views on which a given decoded view ultimately
depends is limited by the depth of the hierarchy.

Fig. 1 provides an example of such a hierarchy, starting
from 4 intra-coded corner views at the root (level 0) of the
hierarchy. As shown, 5 new views are introduced at level 1,
each predicted from the 2 or 4 nearest views at level 0. Next,
16 new views are introduced at level 2, again each predicted
from the 2 or 4 nearest views at level 1. In a compression
system, prediction residuals can be coded for each predicted
view, so that prediction errors can be corrected and high-
quality views become available as prediction references for
the next level. This paper is not concerned with the details of
residual coding, focusing exclusively on the properties of the
view prediction process.

Fig. 2 illustrates three different ways to predict a target view
VT from neighbouring reference views VRk , k = 1, 2, . . .K.
For simplicity, only K =2 reference views are shown in the
figure. The distinction between these three view prediction
strategies lies in the way disparity information is used, which
further leads to different ways of warping texture across the
views based on the disparity.
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Fig. 2. View prediction using synthesized disparity. (a)tgt-bwd: backward
warping with disparity anchored at the target; (b)ref-fwd: forward warping
with disparity anchored at references; (c)ref-bwd: backward warping with
disparity anchored at references

Disparity information can be available at target view VT or
reference views VRk . Fig. 2a shows a target-anchored strategy
where view prediction is based on disparity DT described at
the target view. In this case, the target view is predicted by
projecting DT onto the reference views and bringing back the
texture - this is known as backward warping. We refer to this
as the tgt-bwd method. This is typical of coding frameworks
such as 3D-HEVC where disparity information is explicitly
communicated at the target view. Furthermore, the method
proposed by Pearson et al. [7] can also be viewed as a tgt-bwd
method.

By contrast, the prediction strategies in Fig. 2b and 2c
are based on disparities DRk described at the reference view
locations. We identify these as reference-anchored strategies.
In the first case, texture pixels from each reference view are
warped according to their respective disparity maps, splatting
each translated texture sample to the nearest pixel on the target
view - known as forward warping. The scheme in Fig. 2c is
also reference-anchored, but the texture warping process is
more elaborate: each reference disparity map is first mapped
to the target view, so that backward warping can be used to
import texture samples from the reference view, after which
the warped views produced by each reference are combined.
We refer to these two strategies as the ref-fwd and ref-bwd
methods, respectively. Lightfield coding algorithms [2] [4] [5]
cited in the introduction are based on ref-fwd methods; as
we shall see, however, the ref-bwd method provides superior
performance.

The three view prediction methods can be expressed as:

[tgt-bwd] V̂T =
P

k �k · W�1
DT

(VRk) (1a)

[ref-fwd] V̂T =
P

k �k · WDRk
(VRk) (1b)

[ref-bwd] V̂T =
P

k �k · W�1
D�1

Rk

(VRk), (1c)

In these equations W denotes a forward warping operation,
while W�1 denotes backward warping. The subscript indicates
the disparity information the warping process is based upon.
In backward warping, pixels in the target view are mapped to
arbitrary locations in the reference views and a disciplined
interpolation strategy is used to recover their values from
neighboring reference samples. By contrast, forward warping
involves a splatting process; splatting to a nearest neighbor
is less desirable from a signal processing perspective, but has
the benefit that regions of dis-occlusion (holes) are readily
identified as locations that are never hit.

The �k fields in these equations denote visibility factors;
with only two reference views, the visibility at each location,



from each view k, is 0, 1 or 1
2 , and some locations may be

invisible from all views – these locations are filled in via a final
in-painting step that is not shown. For the tgt-bwd method,
texture warping by interpolation is straightforward, but visi-
bility determination is much more involved. If the disparity is
explicitly coded at the target view, visibility information can
be encoded at the same time, as in 3D-HEVC. However, if
one wants to avoid coding disparity information at every target
view, a key challenge in using the tgt-bwd method is to infer
visibility information. The ref-fwd method makes visibility
determination simple, even if somewhat unreliable, identifying
the visible pixels as those to which a nearest neighbor splat
occurs. In the backward warping of ref-bwd, visibility is
determined during the construction of the backward pointing
disparity map D�1

Rk
from DRk .

While the view prediction methods summarized here are
not exhaustive, they form an important basis for investigating
different disparity synthesis strategies.

Tgt-bwd and ref-bwd should have equivalent performances
in view prediction if the reference-anchored and target-
anchored disparities employed are all consistent. With refer-
ence to Fig. 2, this consistency property means that DT (x) =
D�1

R1
(x) = D�1

R2
(x) for all pixel locations x in the target

view VT that are visible from both VR1 and VR2 . In the
next section we describe base-mesh models which ensure
this consistency. The base-mesh approach proposed in this
paper can be considered a tgt-bwd method, where visibility
determination is efficiently carried out at all views within a
GOV through a consolidated base model. Additionally, Ref-
fwd and ref-bwd can be compared with the same disparity
maps, even if inconsistent, to explore the benefits of backward
warping in comparison with forward warping of texture.

III. UNIFIED BASE-MESH MODEL

In this paper, we propose to decompose the whole HDCA
dataset into groups of views (GOV) and associate a com-
municated disparity map with each such GOV. A unified
disparity model is built for the description of geometric flows
across the whole GOV. Synthesized disparities within the
GOV are derived as needed from this single model, being
consistent with each other. The model itself is constructed
by starting with the original communicated disparity map and
progressively introducing new elements only as required to
provide complete disparity maps for target view prediction
operations. Our model is represented in the form of a multi-
layered triangular mesh where new mesh elements that are
progressively introduced constitute underlying layers in the
regions of dis-occlusion.

A. Multilayered Base-mesh Model Construction

Our proposed mesh model, written as M, is a collection of
triangular mesh elements, whose nodes carry spatial locations
and associated disparity values. Spatial locations are defined
on the so-called base-view VB associated with the correspond-
ing disparity map DB .
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𝑽𝑩 𝑽𝑻
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Transfer & Fuse
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Fig. 3. Backfill approach (top), novel disparity fusion approach (bottom)

When the mesh model is projected from the base-view to
other views, regions of dis-occlusion (holes) arise naturally in
the vicinity of object boundaries. These holes are identified
by the mesh elements in the base-view whose edges straddle
the object boundaries (i.e., disparity discontinuities). Ideally,
these edges have vanishing length in the base-view, undergoing
infinite expansion when projected between views, as depicted
in Fig. 3a. Accordingly, we denote these as 1 elements.

While the 1 elements do provide projected disparity values
within holes in the target view, this disparity information is
physically meaningless. To address this, we introduce new
mesh elements to cover the exposed 1 regions in the target
view VT , mapping these back to the base-view VB where they
contribute new underlying layers to the base-mesh model M.

More formally, the base model is initialized to M0 using
the base-map DB . Then target views to be predicted within
the GOV are visited in a prescribed order, starting from the
coarsest level of the prediction hierarchy and working down,
and within each level visiting views in order of decreasing
angular distance from the base-view. Writing VTl , l=1, 2, . . .
for the lth such prediction target, the exposed 1 regions
within VTl , denoted as ⌦l, are covered with a new set of
mesh elements, denoted by B(⌦l), where B is an operator
that synthesizes new mesh elements. These are mapped back
to the base-view using the disparity DTl(⌦l) within regions
covered by newly synthesized base-mesh elements, so that the
model update can be expressed as

Ml = Ml�1 [WDTl
(⌦l)(B(⌦l)) (2)

with M = liml!1 Ml.
We associate a layer-id l with each element in the base

model, where l=0 corresponds to the original mesh elements
derived from DB and subsequent layer-ids l correspond to the
new elements derived from ⌦l, with 1 elements notionally
assigned the layer-id l=1. Whenever the base-mesh model
is warped to a view VTl , many mesh elements may map to
any given location within that view. We resolve such multiple
mappings by assigning absolute priority to those that arise
from mesh elements with lower layer-id l, and where there
are multiple mappings with the same layer-id, we adopt the



one that yields the larger disparity, since larger disparity is
associated with locations closer to the camera array. This
policy ensures that all mesh elements that contribute to the
synthesized disparity map at target view VTl (in the well-
defined sequence described above) necessarily come from Ml,
so the base-mesh model only needs to be partially constructed
to render views at a given level in the hierarchy.

The following sub-sections describe two different operators
B for deriving novel mesh elements in dis-occluded regions.

B. Backfill Approach

Our first approach relies upon filling dis-occluded regions
using extrapolation. Specifically, each mapped 1 element in
the target view VTl generates a new so-called backfill element,
whose node locations within the target view correspond ex-
actly to those of the mapped 1 element, so that the backfill
elements are guaranteed to cover the dis-occluded region ⌦l,
as shown in Fig. 3a. The nodes of each backfill mesh element
are of two types. Background nodes are assigned the same
disparities as those of the mapped 1 element. The remaining
nodes, identified as backfill nodes are assigned extrapolated
disparity values derived via a background splatting procedure.
Details of this procedure and the methods used to distinguish
between background and back-fill nodes may be found in [8].

C. Novel Disparity Fusion Approach

The backfill approach can only produce smooth extrapolated
background, which may be unreliable for large holes arising at
coarser levels, and especially near view boundaries. We pro-
pose a novel disparity fusion approach that takes advantages
of other communicated disparity maps to infer disparities in
regions of dis-occlusion.

We transfer all the communicated disparity maps onto ⌦l

in the target view VTl , taking the median of these transferred
disparities to produce a fused result DTl(⌦l). As explained
earlier, B(⌦l) is required provide a description of the disparity
over ⌦l in terms of triangular mesh elements. For this reason,
we follow the median-based fusion with a meshification step,
creating a hierarchical variable sized mesh to approximate
DTl(⌦l). Fig. 3b shows how this approach is able to introduce
important geometric features into regions that are occluded
relative to the base-view.

Note that B(⌦l) may introduce new 1 elements, corre-
sponding to newly exposed object boundaries. These new 1
elements may expose new holes in subsequent target views
VTp , p> l, leading to further augmentation of the base model
with mesh elements B(⌦p) having underlying layer-id p.

IV. EXPERIMENTS EXPLORATION

We carry out our experiments using the same HDCA
datasets [9] and estimated disparity maps [10] as employed
by the JPEG-Pleno standardisation activity. Specifically, we
use the full HD resolution sets known as Sets 2, 6 and 9 and
focus our attention on a subset of their input view arrays, these
being the central 49⇥ 13 views of the original HDCA.

TABLE I
COMPARISON OF PREDICTED VIEWS IN AVERAGE PSNRY AND SSIMY

ref-fwd
WaSP

ref-bwd
ind

tgt-bwd
bm-xtr

tgt-bwd
bm-fus

Set2 PSNRY 40.1423 40.5239 39.8062 40.7473
SSIMY 0.9836 0.9852 0.9847 0.9861

Set6 PSNRY 28.0671 28.1335 27.9664 28.1400
SSIMY 0.9132 0.9202 0.9178 0.9208

Set9 PSNRY 36.1778 36.8223 34.7901 36.8560
SSIMY 0.9786 0.9831 0.9818 0.9835
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Fig. 4. Average PSNRY at level of hierarchy for Sets 2, 6, 9. Here, the
horizontal axis reflects the cumulative number of predicted views at each
successive level in the hierarchy.

We consider the hierarchical view prediction framework
described in section II. Level 0 consists of the 4 corner views,
with explicitly communicated disparity maps; level 1 includes
5 new predicted views; etc. Continuing the hierarchical predic-
tion for 5 levels horizontally and 3 vertically yields an array
of 17⇥ 5 original and predicted views. Specifically, we have
5, 16, 20 and 40 views predicted in each successive stage of
the hierarchy. The full array of 49⇥ 13 views can be reached
by adding further levels of hierarchical prediction, but this
is less interesting for our current study, because inter-view
displacements and regions of dis-occlusion become very small.

For our proposed base-mesh models, the view array is
decomposed into 4 GOVs arranged to cover the quadrants,
each associated with the disparity map at a corner of the array.
All 4 GOVs overlap at the center of the array, one of which
is illustrated in Fig. 1. It is important to highlight that our
proposed method does not depend upon the arrangement of
GOVs and placement of disparity maps within the view array.

We explore four different view prediction approaches. First
is the view prediction employed by WaSP [2] that forward
warps the texture based on independently synthesized disparity
at each reference view, referred to as the ref-fwd WaSP1.
The second approach backward warps the texture based on
independently synthesized disparity at reference views, whose
visibility information is resolved by our mesh-based reasoning,
named as the ref-bwd ind approach. The third and fourth
approaches adopt our proposed unified base-mesh model for

1The WaSP framework is more commonly used with 4 reference views for
each predicted target view, whereas the arrangement in Fig. 1 involves only
2 references for some target views; however, in our experiments, a WaSP did
not perform better with 4 reference views.



Fig. 5. Visual comparison between ref-bwd ind (left two columns) and tgt-
bwd bm-fus (right two columns)

disparity synthesis, where the model is completed with either
backfilling or the novel disparity fusion scheme respectively,
written in short as tgt-bwd bm-xtr and tgt-bwd bm-fus.

Since we only focus on investigating the quality of predicted
views other than introducing the added complications of
quantization and coding, all the reference views used at each
level of hierarchy are original images without any degradation.
PSNRY(dB) and SSIMY of predicted views are reported

in Table I. Both the tgt-bwd bm-fus and the ref-bwd ind ap-
proaches that employ the backward texture warping give better
results compared with the ref-fwd WaSP approach; in fact, the
proposed tgt-bwd bm-fus method consistently outperforms the
others. The clear superiority of the ref-bwd ind approach over
ref-fwd WaSP, highlights the benefits of backward warping in
comparison to forward warping of texture.

Overall averaged PSNRY is broken down level by level, as
plotted in Fig. 4. We can see that both the ref-fwd WaSP (green)
and the ref-bwd ind (blue) approach suffer degradations from
level 2 onwards. This phenomenon reveals the adverse impact
of independently warping texture from various reference loca-
tions using incompatible disparities maps. At the finest levels
of the hierarchy, this inconsistency becomes less apparent only
because inter-view displacements becomes small in general.

While the tgt-bwd bm-fus (red) approach does not yield
dramatic improvements in objective quality compared with the
ref-bwd ind (blue) method, we note that the ref-bwd ind method
is not actually used in practice, because it introduces a high
computational cost, requiring disparity fields to be synthesized
by median consensus at the pixel level in each employed
reference view and then transported to the target view using
mesh-based reasoning. The proposed tgt-bwd bm-fus method,
by contrast, progressively builds a single consistent mesh
for each GOV. Furthermore, Fig. 5 demonstrates the visual
improvements that can arise from consistently synthesized
disparity. As can be seen, the ref-bwd ind method can result
in object boundary misalignment or toggling between different
decisions in inferring disparities for regions of dis-occlusion,
producing ghosting or blurring artifacts in predicted views.

Fig. 6 reveals the substantial improvements made by the
proposed novel disparity fusion approach tgt-bwd bm-fus, in
comparison with the previous backfill scheme tgt-bwd bm-xtr

Fig. 6. Visual comparison between tgt-bwd bm-xtr (left two columns) and
tgt-bwd bm-fus (right two columns)

[8]. Middle row of Fig. 6 is cropped from the edge of the view,
indicating that disparities outside of the base-view boundary
can be correctly inferred using our proposed approach.

V. CONCLUSIONS

The first conclusion from our work is that backward texture
warping is preferable to forward warping. However, if the
views involved in a prediction step do not have explicitly
communicated disparity, backward warping requires mesh-
based reasoning to correctly resolve visibility; this is perhaps
one reason why most existing schemes employ forward warp-
ing. Our unified base-mesh model addresses these difficulties
by consistently synthesizing required disparities over a large
group of views. The disparity fusion approach proposed in
this paper for base model dis-occlusion handling substantially
improves view prediction performance, surpassing that of
WaSP, which is the framework currently used in the evolving
JPEG-Pleno lightfield coding standard.
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