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Abstract—To optimize the perceived quality under a specific
bitrate constraint, multi-pass encoding is usually performed with
the rate control mode of the average bitrate (ABR) or the constant
rate factor (CRF) to distribute bits as reasonably as possible
in terms of perceived quality, leading to high computational
complexity. In this paper, we propose to utilize the video
information generated during the encoding to adaptively adjust
the CRF setting at GOP level, ensuring the bits of frames in
each GOP are allocated reasonably under the bitrate constraint
with a single-pass encoding framework. In particular, due to the
inherent relationship between CRF values and bitrates, we adopt
a shallow neural network (NN) to map video content features to
the CRF-bitrate model. The content-related features are collected
from the lookahead module inside the x265 encoder, including
encoding cost estimation, motion vector and so on. Further, a
rate control method, called content adaptive rate factor (CARF),
is proposed to adjust the CRF value of each GOP with the
requirement of the target bitrate by using the predicted CRF-
bitrate models of each GOP. The experimental results show that
the proposed approach can make 84.5% testing data within 20%
bitrate error (or better) and outperform the ABR mode in x265,
leading to 5.23 % BD-rate reduction on average.

Index Terms—Rate Control, x265, Constant Rate Factor, GOP,
HEVC, Machine Learning, Neural Network

I. INTRODUCTION

In rate control of x265, the average bitrate (ABR) mode
ensures that the output stream achieves a predictable long-
term average bitrate but it may fail in achieving the acceptable
quality of each frame. In contrast, the constant rate factor
(CRF) mode has the advantage of maintaining a certain level
of perceived quality among frames by compressing different
frames with different bits over the entire sequence. Its disad-
vantage is that the resulting bitrate is unpredictable [1].

To ensure the optimal output quality under a certain bitrate
constraint, multi-pass encoding method is usually used with
both ABR and CRF mode. The former efficiently allocates the
bits available based on the encoding cost statistics of previous
passes. The latter adjusts the CRF value manually to make the
resulting bitrate gradually approaches the target one. However,
those method are time-consuming and mostly empirical.

The unpredictability of the ABR and CRF mode in terms
of quality and bitrate is due to that the video content is
changing over the entire sequence. Covell et al. discover a
clear relationship existed among the bitrate, CRF value, frame

resolution and frame rate. They develop a video content-related
linear model to bridge between the bitrate and CRF value,
and embed this model into a CRF prediction classification
neural network to provide reliable guidance. The input of
this network is content-related video features collected from
previous transcoding results, such as the average number of
bits used for the texture per macroblock (MB), motion vector
(MV) per predicted MB and so on. To provide precise video
information, at least twice transcoding are needed.

Sun et al. implement a regression neural network in a two-
pass encoding framework to simplify the solution above. This
network predicts content-dependent parameters of the CRF-
bitrate model of each video segments instead of the CRF value
directly. Then a CRF value is derived from the predicted model
parameters with a given target bitrate. This solution improves
the prediction accuracy by fixing the frame resolution and
replacing the linear model with a second-order model. Besides
that, the video feature collected from the first pass encoding
result is similar to those used in the solution above.

All existing solutions are implemented outside the en-
coder and undertake sequence-level rate control. Furthermore,
content-related features are gathered from previous transcod-
ing or encoding statistic results so that those techniques have
two pain points:

• First, the training data of the NN are 5s video segments
sampled from long videos, which results in more than one
scene may be included in one video segment. It means
the determined CRF value is perhaps applied to different
video contents.

• Second, even if the above problem can be avoided, ex-
tracting video features from encoding results means that
at least one pre-encoding or pre-transcoding is required,
which is still multi-pass encoding essentially.

To optimize perceived quality under a certain bitrate con-
straint in a single-pass encoding framework, we attempt to
adapt the GOP-level CRF setting according to the specified
target bitrate. At the beginning of encoding, the encoder makes
slice-type decision in batches using a module called lookahead.
This module implements a scene-cut detection technique to
determine whether the current frame is a scene switching based
on the intra-frame and inter-frame encoding cost estimation
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about surrounding down-sampling frames.
On the one hand, the lookahead module divides a video

into different GOPs, mainly depending on the encoders flex-
ibility to the scene change. It is worth noticing that lots of
hyperparameters influence the structure of GOP and the po-
sition of scene-cut so that the related hyperparameters jointly
determine the flexibility of encoders before encoding. Overall,
adjusting the CRF setting at the GOP level can achieve a finer
granularity of adaptive selection.

On the other hand, in order to estimate the encoding cost, the
lookahead module performs intra coding and inter coding on
subsampled frames respectively with fixed block size including
fast motion search and estimation. The analysis result gener-
ated during this stage plays a vital role in other encoding tools.
For example, the reference picture list information is used by
Macro Block-tree (MB/CU-Tree) technique [4] to calculate
the block-level quantization parameter (QP) offset, the ABR
and CRF mode leverage the encoding cost to derive the frame-
level initial QP. However, none of the frames-level rate control
technique has benefited from lookahead yet.

Accordingly, in this paper we propose a content adaptive
rate factor (CARF) rate control approach which attempts to
take advantage of the video content information of GOPs,
generated in lookahead, to decide the CRF value for each
corresponding GOP. Only one encoding is required to enable
the GOP level CRF setting to be controlled by the target bitrate
directly.

The rest of this paper is organized as follows. Section II
introduces our proposed framework as well as the key points
in this solution. Section III evaluates the proposed method
in terms of prediction accuracy and encoding performance.
Finally, discussion and conclusion are drawn in Section IV.

II. THE CONTENT ADAPTIVE FACTOR SCHEME

A. The proposed framework

Fig. 1illustrates the proposed single-pass encoding frame-
work . When the current frame is an I/IDR frame, CRF
Parameter Decision module outputs a CRF value based on the
current lookahead analysis result and a given target bitrate.
Then, this CRF value is fed into General Coder Control
module to calculate the frame level base QP of each frame in
current GOP. The current CRF value remains the same until
next I/IDR frame is decided.

B. Content-dependent features collected from Lookahead

Except for the coding and perceptual redundancy, the main
task of the hybrid encoding framework is to eliminate the
spatial-temporal redundancy. The spatial-temporal complexity
of videos could influence the encoding parameters configura-
tion and the encoding performance greatly. Hence we choose
the video features mostly from the lookahead information
representing spatial-temporal characteristics. The final features
are described as follows:

• a score of prediction encoding cost
• sum of pixels for each channel (Y, U, V)
• square sum of pixels for each channel

Fig. 1. Overview of the proposed framework

• a score of AC per MB
• percentage of I MBs in P frame
• the length of the MV for each predicted MB

We also take the original bitrate and frame rate into con-
sideration while assuming that the frame size is fixed since
the experiment results of [2] [3] have suggested that fixing
resolution in prediction task is a reasonable choice.

C. The CRF-Bitrate model in the CRF Parameter Decision
module

The CRF Parameter Decision module is driven by a regres-
sion prediction neural network (NN), which is used to predict
parameters of the CRF-bitrate model. With a target bitrate,
this module can compute a CRF value based on the predicted
CRF-bitrate model directly.

After multiple fitting tests on hundreds of video clips, we
confirm that the second-order model between CRF and bitrate
is more accurate than the linear model as Sun et al. proposed.
Therefore, we employ a content-dependent equation to model
the relationship between CRF and bitrate. Given a bitrate R,
the corresponding CRF setting of GOP g in the video v is as
follows:

crf(v, g) = a(v, g)ln(R)2 + b(v, g)ln(R) + c(v, g) (1)

where a(v, g), b(v, g), and c(v, g) are the content-dependent
parameters which are the predication target of the regression
network.

D. The neural network in the CRF Parameter Decision module
We adopt a shallow fully connected neural network with

two hidden layers to predict the parameters of the CRF-Bitrate
model by feeding scaled video features.

As shown in Fig. 2, with a set of target bitrate (from
0.2Mbps to 12Mbps), a set of CRF values ˆcrf i are computed
according to the predicted parameters and a set of CRF values
crfi are computed by the parameter labels. The mean absolute
error of those CRF setting is the final loss as the (2) shown.

loss =
1

n

n∑
i=0

|crfi − ˆcrfi| (2)



Fig. 2. Layout of neural network used to predict parameters of CRF-Bitrate
model.

Fig. 3. The training procedure of the regression prediction neural network

To train the NN, we take the parameters of CRF-Bitrate
models fitted by non-negative least squares (NNLS) as ground
truth, which is fitted with 15 different CRF settings(from 12
to 40, with an interval of 2). Fig. 3 depicts the block diagram
of the training procedure of the proposed NN.

III. EXPERIMENTS

In this section, we first evaluate our method in regression
task with a set of target bitrates (0.3, 0.75, 1.2, 1.85, 2.85,
4.3Mbps), to demonstrate the benefit of using the lookahead
information to represent the video characteristics and decide
the CRF setting. Then we evaluate the encoding performance
of the proposed CARF mode in encoding task with a set of
target bitrates (0.5, 0.75, 1.5 and 3.5 Mbps).

A. Dataset

To train the NN, we collect the User-generated content
(UGC) videos with fixed resolution (720p, including 1280x720
and 720x1280) from a commercial video-sharing website1.
Those videos mainly belong to the video blog (vlog) which has
no specific theme, enabling the dataset content-rich. We also
consider some typical content scenarios such as fast-moving
and dark scene.

Since CRF values are configured at GOP-level, no scene-cut
should exist in the video clips of dataset. In random access

1https://www.bilibili.com/

Fig. 4. Cumulative distribution of bitrate errors(%) across the testing set

(RA) coding structure, we sample short video clips from
collected videos by FFmpeg [5] to keep the frame numbers
of video clips ranging from 75 to 140 that corresponds to the
configuration of rc-lookahead. Furthermore, we manually filter
out the clips with more than one scenes. In the end, 5031 video
clips are sampled from 600 videos. 80% video clips are used
for training and 20% are for validation.

B. Hyperparameter

The whole experiment has been tested on the PC with
Intelr CoreTM i7-6850k 3.60GHz processor and 62.0GB
system memory. The proposed method is implemented in
x265 version2.9 [6]. The real encoding is performed under
the following configurations:

• preset: medium, which is the default setting
• tune: psnr, which disables the perceptual optimization
• rc-lookahead: 100, which is the number of frames for

slice-type decision lookahead
• min-keyint: 40, which is the minimum GOP size
The encoding has been carried on single threading by

removing all parallel encoding default configurations including
frame-level parallel and wave-front parallel processing (WPP).

C. Accuracy result in terms of regression prediction

The accuracy of the proposed nonlinear regression network
is evaluated by the bitrate error as follows:

bitrateerror =
|Ra −Rt|

Rt
∗ 100% (3)

Where Ra is the actual resulting bitrate, Rt is the target bitrate.
Fig. 4 illustrates the cumulative distribution of the bitrate

error of NNLS-fitted labels (blue curve) and the proposed
neural network (orange curve), respectively. The result of
NNLS-fitted labels can be seen as the upper bound of our
approach. Our approach keeps 84.5% of our testing data at or
below the 20% bitrate error, as shown in Fig. 4.

Table. I shows the comparison between our approach and
the reference methods [2] [3] in terms of prediction accuracy,
decision granularity and requirements of methods. In terms of



prediction accuracy, our method outperforms the approach pro-
posed by YouTube [2] but is inferior to UMKC [3]. However, it
is worth noticing that Sun et al. employ a specific CRF setting
on each resolution to obtain labels for NN training. If this CRF
setting is close to the setting of target bitrates for testing,
prediction accuracy will become higher. It means that the
selection of the CRF setting during the ground truth generation
phase may influence the final prediction result. Therefore, the
instability of Suns method will reduce its performance.

TABLE I
THE PREDICTION PERFORMANCE

YouTube[2] UMKC[3] CARF
Error

within 20% 80% 91.6% 84.5%

Decision
Granularity Segment level Segment level GOP level

Requirement
Two pre

-transcoding
are needed

One pre
-transcoding

is needed
No need

Considering all-of-the-above factors listed in Table I, it
can be seen that the lookahead information represents the
spatiotemporal properties of videos well and the proposed one-
pass approach is feasible and effective.

D. Encoding performance evaluation

To evaluate the encoding performance, we compute the
BD-rate [7] of the proposed rate control algorithm and take
the ABR mode as the anchor, because both of them accept
specified bitrate as the input for rate control. We evaluate
on 12 samples of 6-7s video segments, which belong to the
same platform where the dataset is collected. Table. II lists the
description of those segments.

The respective testing results compared with single-pass and
two-pass ABR are shown in Table. III. These results demon-
strate that the proposed CARF mode performs better than the
ABR mode, leading to average 4.12% BD-rate reduction in
PSNR, 5.35% BD-rate reduction in VMAF and 5.73% BD-
rate reduction in SSIM (over single-pass ABR).

Given a target bitrate, it is so empirical to find the suitable
CRF value for each testing video that the BD-rate over CRF is
not be computed. But we compare the CRF, 2-pass ABR with
CARF in terms of the fluctuation of bit number and quality
over several long videos. The CRF outperforms others and
CARF is better than ABR. But the selection of CRF value is
a tricky problem whereas the CARF can balance the BD-rate
and target bitrate well. Fig. 5 shows the result over one of the
long video.

E. Encoding time evaluation

We also evaluate the encoding time as follows. For each
segment v, its running time Entv is the geometric mean of
encoding time percent Entv,r, which is derived as (4).

Enrv,r =
|Rcarf,r −Rabr,r|

Rabr,r
∗ 100% (4)

TABLE II
DESCRIPTION OF TESTING VIDEOS

Sequence
Number Inside\Outside Bright\Dark moving speed

01 inside bright medium
02 outside bright medium
03 inside bright slow
04 outside dark fast
05 outside bright medium
06 outside dark fast
07 outside dark medium
08 inside bright medium
09 inside bright veryfast
10 inside bright veryfast
11 concert bright fast
12 concert dark medium

TABLE III
RESULT OF BD-RATE(%) OVER X265-ABR

Random Access Main 10
Reference Over x265-single-passABR Over x265-two-passABR
Sequence
Number PSNR VMAF SSIM PSNR VMAF SSIM

01 -5.25 -11.94 -8.13 -9.21 -9.40 -4.82
02 -3.00 -6.51 -5.23 -1.63 -2.50 0.48
03 -4.02 -7.81 -3.99 -2.70 -2.05 -0.40
04 -1.82 -5.17 -3.12 -4.07 -0.96 -2.53
05 -1.06 -2.40 -1.21 -1.55 -1.63 1.30
06 -7.09 -16.39 -11.11 -10.68 -11.25 0.96
07 -4.29 -6.57 -6.06 -5.83 -6.11 1.17
08 -1.87 -5.53 -4.72 -4.60 -2.33 -2.43
09 -15.02 13.38 -12.02 -3.85 -0.14 2.75
10 -1.73 -5.02 -2.43 -4.59 -7.50 -4.60
11 -1.29 -2.36 -3.61 -0.15 -0.76 -1.48
12 -2.96 -7.91 -7.13 -3.96 -0.79 -0.95

Overall -4.12 -5.35 -5.73 -4.40 -3.78 -0.88

where the Rcarf,r and Rabr,r is the encoding time consumed
by CARF and ABR with a specific target bitrate r.

Table. IV shows that the running time of CARF decreases
by 31% over the two-pass ABR but increases by 48% over the
single-pass ABR on average. Our current implementation can
be further optimized to reduce the computational complexity.

TABLE IV
RESULT OF ENCODING RUNTIME(%) OVER X265-ABR

Random Access Main 10
Sequence
Number

Over x265-
single-pass-ABR

Over x265-
two-pass-ABR

01 125 66
02 144 77
03 120 65
04 126 73
05 154 81
06 146 82
07 125 68
08 136 71
09 230 119
10 216 115
11 124 65
12 133 71

Overall 148 79



(a) Bits fluctuation: 2-pass ABR > CARF > CRF

(b) Quality fluctuation: 2-pass ABR > CARF > CRF

Fig. 5. The fluctuation of the bits and quality over a 10mins video sequence
at 1Mbps (2-pass ABR:orange; CARF:blue; CRF:gray)

IV. CONCULSIONS

In this paper, we have proposed a GOP-level rate control
scheme called CARF to explore how to relate the target
bitrate with CRF directly in one-pass encoding framework.
This scheme utilizes the lookahead analysis result inside the
encoder to configure suitable CRF parameter setting for each
GOP under target bitrate. The experimental results have shown
that the CARF can keep 20% bitrate error (or lower) on
84.5% testing data. Compared with the ABR of x265, the
CARF has 4.12%, 5.35%, 5.73% BD-rate reduction in terms of
PSNR, VMAF and SSIM respectively(comparing with single-
pass ABR in x265). In particular, this method has following
advantages:

• As shown in the experimental results, the lookahead in-
formation adopted in the proposed scheme can contribute
greatly in CRF setting selection.

• By using the analysis results in the middle of encoding,
we implement a single-pass encoding framework, which
shows the rationality and effectiveness of the one-pass
solution implemented inside codec.

• This approach changes the CRF parameter setting as the
scene-cut is detected, enabling a finer CRF application
granularity without extra effort.

According to some analysis from the experiments, we
further explore below two implications for future work.

• The relationship between CRF and the video quality can
be obtained in the same way, which has been observed
in our subsequent experiment with VMAF, PSNR and
SSIM. With the CRF-quality and CRF-bitrate relationship
being clear, a new rate control scheme can be explored
by the same way under the joint constraint of bitrate and
quality which is expected to benefit the practical scenarios
more.

• As shown in Fig. 4, there is still room to further improve
the prediction accuracy of the neural network model, if
considering the information in addition to the lookahead
module. We can exploit the convolutional neural network
(CNN) which is good at feature extraction so that wider
and more features can be obtained to describe video
characteristic comprehensively, including not only the
spatiotemporal redundancy but also the visual one.
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