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Abstract—Research has shown that decoder energy models
are helpful tools for improving the energy efficiency in video
playback applications. For example, an accurate feature-based
bit stream model can reduce the energy consumption of the
decoding process. However, until now only sequences of the
SDR video format were investigated. Therefore, this paper shows
that the decoding energy of HEVC-coded bit streams can be
estimated precisely for different video formats and coding bit
depths. Therefore, we compare a state-of-the-art model from the
literature with a proposed model. We show that bit streams of
the 360◦, HDR, and fisheye video format can be estimated with
a mean estimation error lower than 3.88% if the setups have the
same coding bit depth. Furthermore, it is shown that on average,
the energy demand for the decoding of bit streams with a bit
depth of 10-bit is 55% higher than with 8-bit.

Index Terms—Decoder, Energy Modeling, Estimation error,
Power Measurement, 360◦, HDR, Fisheye, HEVC

I. INTRODUCTION

According to recent studies, the global mobile data traffic
for video content will rise from 12 exabytes per month in 2018
to 61 exabytes per month in 2022 [1]. Furthermore, the study
states that one key inhibitor of augmented reality (AR) and vir-
tual reality (VR) content is the short battery lifetime of mobile
devices. Therefore, the relevance for efficient transmission of
360◦ video content will rise in importance.

Furthermore, the development of the next-generation video
standard Versatile Video Coding (VVC) has been initiated with
the goal of reducing the bit rate by 50% with equal visual
quality in comparison to HEVC [2]. This video standard will
not only have a better compression performance, but it will
also include special modes for new video formats like high
dynamic range (HDR) and 360◦ content. Therefore, the test
category standard dynamic range (SDR) is extended by these
two video formats [3].

For conventional SDR sequences, researchers developed a
model to accurately estimate the energy consumption of the
decoding process [4]. If the model can estimate the decoding
energy with sufficient accuracy, it can be exploited to reduce
the energy demand of the device. It was shown that the energy
consumption of the decoding process in the state-of-the-art
video standard High Efficiency Video Coding (HEVC) can be
reduced by up to 15% with an equal visual objective quality,
at the cost of increasing bit rate by less than 5% [5].

The decoding energy can be modeled with various ap-
proaches. One example are bit stream feature-based models,
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Êdec Edec

SDR

360◦

HDR

Fig. 1. Overview of the complete evaluation toolchain with the newly
evaluated video formats (360◦, HDR, and fisheye). First, the input sequences
are encoded. Then, the decoding energy Edec is measured with the help of a
power meter. Energy estimation returns the modeled energy Êdec, which shall
approximate the measured energy Edec.

where features can be counted using a special analyzer soft-
ware [6]. It could be shown that the estimation error of feature-
based models is lower than 8% for different video standards
like HEVC, H.264, H.263, and VP9 [7].

In other works, the Rate-Distortion Optimization (RDO) of
the encoder was modified in such a way that modes with a high
energy demand will be chosen with a lower probability [8].
The energy-aware choice of modes resulted in energy savings
of up to 17.7% with a similar increase in bit rate. In [9],
the complexity of the decoder was modeled by processor
counts and several decoder functions. By that, the decoding
complexity is calculated and the RDO is substituted by a
complexity optimization, which aims to reduce the complexity
of the decoder and thereby the energy demand, too.

In this paper, the estimation accuracy for the video formats
fisheye, HDR, and 360◦ will be investigated, as shown in
Figure I. Moreover, we will introduce new features to the
bit stream feature-based model. As another contribution, our
measurements show that the decoding energy significantly
depends on the coding bit depth. Therefore, the energy model
of the literature will be extended by two new parameters.
With the combination of newly added features and the energy
model with bit depth extension, we are able to estimate the
decoding energy with sufficient accuracy regardless of the used
video format or coding bit depth. Furthermore, the developed
model reduces the estimation error significantly compared to
the reference model.

The paper is organized as follows: First, Section II ex-
plains the fundamentals of feature-based energy modeling.
In Section III, the setups for the different video formats are
introduced. Afterwards, Section IV presents the new features
and the extension of the energy model for higher bit depth.
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In Section V, the used measurement setup will be presented
and the results of the models and the setups will be discussed.
Finally, Section VI summarizes the finding of this paper.

II. FEATURE-BASED ENERGY MODEL

Previous research has found that the decoding energy can
be accurately estimated by a bit stream feature-based energy
model [4]. In this context, a feature can be understood as
a specific subprocess that is needed to decode a bit stream
and finally reconstruct a frame. For example, the number of
residuals, the prediction direction, the size of a transformation
block, or the number of sample adaptive offset (SAO) blocks
are potential subprocesses that influence the decoding energy.
The estimated energy demand Êdec, which a device needs to
decode a certain bit stream, is defined as

Êdec =
∑
∀i

ni · ei, (1)

where i indicates the index of a feature, the feature number
ni counts how often the feature i occurs within the bit stream,
and ei is the specific energy coefficient of the feature i [4].
The energy coefficient ei is related to the energy that is needed
to process the feature during decoding. The derivation of each
feature number ni can be executed both in the decoder and the
encoder. An actual implementation of the decoder counting all
features is available at [6].

In this paper, we use the feature-based accurate (FA) model
as a reference [4] to compare with the proposed model, which
will be introduced in Section IV. Table I lists all features
for all considered models, where the features from the FA
model are marked by check marks. As can be seen from the
table, all features are separated into five categories. Features
that are mandatory for the decoding of a bit stream, such
as the number of a certain frame type (e.g. Islice counts
the number of intra frames) or the decoding energy that is
needed for the initialization of the decoding process (EO),
are classified in the category ‘General’. The category ‘Intra’
contains all features related to intra-frame prediction. Some
features (e.g. pla) depend on the coding unit (CU) size of
a block. Therefore, squared blocks sizes are categorized into
depths with decreasing block size order from 0 to 4. In this
context, depth 0 corresponds to a block size of 64×64 and the
depth 4 to a block size of 4×4.

The category ‘Inter’ comprises all features concerning dif-
ferent prediction modes (inter, skip, or merge), fractional
pixel filters, and motion vectors. The features for residual
coefficients and transformation are comprised in the category
‘Residual’. Finally, the category ‘In-loop’ counts all executions
of the deblocking filters (Bs0-2) and the SAO-filter. A detailed
description of each feature can be found in [4].

III. SEQUENCE SETUPS

For the evaluation of the feature models, we use the
common test conditions of various video formats. For the
encoding of the bit streams, the HEVC-test model reference
software (HM) [10] version 16.16 was used. For each orig-
inal sequence, four different QPs (22, 27, 32, and 37) and

TABLE I
LIST OF ALL FEATURES OF THE FU AND THE FA ENERGY MODEL. THE

FEATURES ARE LABELED WITH CORRESPONDING DEPTHS AND ARE
ASSIGNED TO CATEGORIES. FA INDICATES FEATURES THAT ARE USED IN

THE FA MODEL FROM [4]. THE FEATURES BSLICE AND PSLICE ADD UP TO
THE FEATURE PBSLICE IN THE FA MODEL. φi INDICATES WHETHER THE

SPECIFIC ENERGY ei OF A FEATURE IS AFFECTED BY THE BIT DEPTH
(φi=1) OR NOT (φi=0).

Feature Label Depths FA FU φ
General

EO - X X 1
Islice - X X 1
Bslice, Pslice - (X) X 1

Intra
intraCU - X X 1
pla, dc, hvd, ang 1 - 4 X X 1
noMPM - X X 0

Inter
skip, merge, mergeSMP 0 - 3 X X 1
mergeAMP 0 - 2 X X 1
inter, interSMP 0 - 3 X X 1
interAMP 0 - 2 X X 1
fracpelHor, -Ver, 0 - 3 X X 1
fracpelBoth, copyPel 0 - 3 - X 1
chrHalfpel 0 - 3 X X 1
bi - X X 1
uni - - X 1
MVD - X X 0

Residual
coeff, coeffG1, val - X X 0
CSBF - X X 1
TrIntraY/C, TrInterY/C 1 - 4 X X 1
TSF - X X 0

In-loop
Bs0, Bs1, Bs2 - X X 1
SAO Y BO/EO - X X 0
SAO C BO/EO - X X 0
SAO allComps - X X 0

configurations (intra, lowdelay, lowdelayP, and randomaccess)
are used. In Table II, the number of original sequences, the
number of bit streams, the used bit depth, and the source of
the corresponding sequences are listed.

First, the Conventional8 and the Conventional10 setup rep-
resent the conventional rectilinear video format with a standard
dynamic range (SDR). Both setups use the sequences of the
HEVC test set from Class A-F [11] and Class A1-A2 [12].
Furthermore, the sequences of the Conventional8 setup are
coded with an internal bit depth of 8-bit and for the Conven-
tional10 setup with 10-bit, respectively. Each setup has 480
different bit streams. Due to the high resolution, the sequences
of the classes A1 and A2 are encoded with 25 frames and
sequences of the class A with 50 frames. For the other classes,
the recommended number of frames is used.

For HDR, we use the recommendations of [13], which
suggest 11 sequences (see Table II). Therefore, each setup has
176 bit streams. Depending on the coding bit depth, the setup
with 8-bit is called HDR8, and the setup with 10-bit is called
HDR10, respectively. Due to the 4K resolution, sequences of
class H2 are only encoded with 25 frames.

For fisheye video content, a data set with 62 unique se-
quences can be found in [14]. These sequences are separated
into synthetic and real-world sequences. The former sequences
are cropped to a resolution of 1072×1072 and the latter



TABLE II
LIST OF ALL SETUPS WITH THE CORRESPONDING NUMBER OF SOURCE

SEQUENCES, THE NUMBER OF BIT STREAMS, THE USED BIT DEPTH, AND
THE SOURCES OF THE SEQUENCES.

Setup #Sequences #Bit Streams Bit Depth Source
Conventional8 30 480 8 [11], [12]

Conventional10 30 480 10 [11], [12]
Fisheye 62 992 8 [14]
360D8 10 960 8 [13]
360D10 10 960 10 [13]
HDR8 11 176 8 [15]

HDR10 11 176 10 [15]

sequences to a resolution of 1136×1072. In total, the setup
has 992 bit streams and, as we only considered a bit depth of
8-bit for encoding, the setup is called Fisheye.

The recommendations for 360◦ content are based on [15].
The 360◦ source sequences are given in the equirectangu-
lar projection (ERP) format with an 8K (Class S1) or 6K
(Class S2) resolution and are shown in Table II. For our
measurements, these sequences are downsampled to a lower
resolution and converted to different projection formats with
the 360Lib software [16]. In this paper, we considered six dif-
ferent projection formats of [15]. The downsampled sequences
in the ERP format, padded equirectangular projection (PERP),
cubemap projection (CMP), equi-angular cubemap projection
(EAC), adjusted cubemap projection (ACP), and rotated sphere
projection (RSP) format. A detailed description of each pro-
jection format can be found in the documentation of the
360Lib [16]. The bit streams were downsampled to a 4K
resolution, where for each projection format we chose the
recommended resolution from [15]. The bit streams for the
360◦ video format are both coded at a bit depth of 8-bit for
the 360D8 setup or with 10-bit for the 360D10 setup. Both
setups have 960 bit streams and every sequence is coded with
25 frames.

IV. EXTENDED DECODER ENERGY MODEL

This section introduces the proposed additional features in
Section IV-A. Furthermore, Section IV-B presents the pro-
posed extension for high bit depth coding.

A. Feature-Based Universal Model

In the following, we introduce the feature-based universal
model (FU) with additional features. In Table I, all features of
the FU model are listed. First, the features Bslice and Pslice
substitute the feature PBslice of the FA model, which is the
sum of both features. Therefore, the number of B-frames is
counted for the feature Bslice and the number of P-frames for
the feature Pslice.

In the FA model, the features fracpelHor and fracpelVer
correspond to the luma pels of the prediction unit (PU) that
have to be filtered if at least one dimension of a motion vector
points towards a fractional pel position [4]. To explain the
features fracpelHor and fracpelVer as well as the new features
fracpelBoth and copyPel, we distinguish for cases. In the first
case, the motion vector has an integer length in horizontal
dimension and a fractional length in vertical dimension. For
this case, the feature number nfracpelVer is incremented by the
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Fig. 2. Comparison of the measured decoding energies E8bit and E10bit of
bit streams with a coding bit depth of 8-bit (Conventional8 setup) and 10-bit
(Conventional10 setup), respectively.

number of luma pels in the current PU. Likewise, nfracpelHor
is incremented if only the horizontal dimension points to a
fractional position. For the third case, the motion vector has a
fractional length in both horizontal and vertical dimension. In
this case, the luma pels of the PU are added for nfracpelHor and
for nfracpelVer. Furthermore, in HEVC, six extra rows of filtering
operations are performed outside of the borders of the PU [4].
For the FA model, the feature nfracpelHor is incremented by
6 ·w, where w is the width of the PU. For the FU model, the
additional pels are assigned to nfracpelBoth. For the last case, the
motion vector has an integer length in both dimensions. Here,
we increment ncopyPel by the number of luma pels within the
PU.

Finally, uni is the last introduced feature of the FU model.
In HEVC, a block can be predicted from one or two reference
frames (uni- and bi-prediction, respectively) [17]. Therefore,
nuni counts every 4×4-subblock that is uni-predicted and,
consequently, is the counterpart to the feature bi.

B. Extension for Higher Bit Depth

By measurements, we found that the coding bit depth has
significant influence on the decoding energy. To show this, we
use the Conventional8 and Conventional10 setup. Both setups
use the same input sequences and encoder configurations, but
use different internal bit depths. In Figure 2, the measured de-
coding energy of bit streams with a coding bit depth of 10-bit
(E10bit) is directly compared to the corresponding bit streams
coded with 8-bit (E8bit). The graph shows that bit streams
with 10-bit have a significantly higher decoding energy, some
bit streams even require more than twice the decoding energy
of the corresponding bit stream with 8-bit. However, the ratio
has a high variance with a difference between 15% and 102%.
Averaging over the given test set, 10-bit decoding consumes
55% more energy than 8-bit decoding.

This difference in decoding energy leads to problems in
decoding energy modeling, because the dependency between
bit depth and specific energy coefficient ei is not considered
in (1). Therefore, we extend the energy model by

Êdec,10bit =
∑
∀i

(1 + ζ · φi) · e8bit,i · ni, (2)

where e8bit,i is the specific energy coefficient for a bit depth
of 8-bit, φi ∈ {0, 1} a parameter that indicates whether the



energy coefficient of a feature i depends on the coding bit
depth, and ζ represents a scaling factor.

For the determination of φi, we used a brute-force algorithm
to find the best solution. We separated all 100 features from
FU into groups of similar features, e.g. all features concerning
the intra-prediction direction (pla, dc, hvd, and ang), in order
to reduce the computing complexity. The brute-force was
trained with the Conventional8 setup and validated with the
Conventional10 setup.

V. EVALUATION

A. Measurement Setup

The setup to measure the decoding energy of the bit
streams is based on [4] and consists of three components.
The power demand is measured with a high precision power
meter (ZES Zimmer LMG 95), the device-under-test (DUT)
is a Raspberry Pi 3B+ [18], and the voltage source is a
HAMEG HM7042, which supplies the DUT with power. In
order to obtain the decoding energy, the power meter measures
the current through and the voltage across the main supply
jack of the Raspberry Pi. The decoding energy is determined
by two measurements. At first, the energy in idle mode is
measured and then the energy during the decoding process of
the bit stream. By subtraction, the directly caused energy of
the decoding process is determined. To ensure the statistical
correctness of the measurement, multiple measurements are
performed for each bit stream and a confidence interval test
described in [4] is applied.

The Raspberry Pi 3B+ is a single-board computer with a
Cortex-A53 quadcore CPU, which has a clock frequency of
1.4 GHz [18]. The device has a smartphone-like architecture
with the ARMv8 processor. As an operating system (OS),
we used Raspbian Stretch Lite [19] with the Kernel version
4.14.71. The OS only has a terminal interface, because a
graphical user interface (GUI) would cause a higher power
consumption and more background processes, which have a
disturbing influence on the measurement accuracy.

The decoding of the bit streams is performed using the
FFmpeg framework [20] version 4.0.3. FFmpeg is developed
for practical real-time applications and is capable of using all
cores of the Raspberry simultaneously [5].

B. Training and Validation

For the evaluation of the estimation, we calculate the mean
estimation error ε̄, which is defined by

ε̄ =
1

L

L∑
l=1

∣∣∣∣∣ Êl − El,dec

El,dec

∣∣∣∣∣ , (3)

where l is the index of the bit stream, L the number of bit
streams within the setup, Êl the estimated decoding energy of
a bit stream, and El,dec the corresponding measured decoding
energy of the bit stream [4].

To train the coefficients ei, we use a trust-region-reflective
algorithm with least squares fitting [21]. Therefore, the de-
termined feature numbers ni for each bit stream and the
corresponding measured decoding energies Edec are used as

TABLE III
MEAN ESTIMATION ERROR ε̄ FOR THE FA AND THE FU MODEL WITH THE

TRAINING OF THE CONVENTIONAL8 AND CONVENTIONAL10 SETUP.
Training Setup

Conventional8 Conventional10
Validation Setup FA [4] FU FA [4] FU
Conventional8 - - 59.46% 60.21%

Fisheye 6.48% 3.88% 60.24% 62.91%
360D8 4.18% 2.58% 60.29% 61.12%
HDR8 4.34% 3.86% 68.89% 69.17%

Conventional10 35.95% 35.81% - -
360D10 38.29% 37.86% 3.37% 1.73%
HDR10 40.38% 40.32% 3.48% 2.80%

input data for the training and optimized in terms of ε̄.
Reported estimation errors for a certain validation setup are
calculated with trained coefficients ei from a disjunct training
set.

C. Results for Additional Features

For evaluation, we strictly separate the training from the
validation data. Therefore, we evaluate the estimation error for
all setups after training with a conventional setup. Table III
shows the mean estimation error ε̄ for the FA and the FU
model, where the conventional setup is used for coefficient
training. The results of the table show that the proposed model
improves the estimation error significantly. At first, we take a
look at the results with the trained energy coefficients of the
Conventional8 setup. For the FA model, ε̄ is 6.48% for the
Fisheye setup, 4.18% for the 360D8 setup, and 4.34% for
the HDR8 setup. With the FU model, we reduce ε̄ to 3.88%,
which corresponds to an absolute improvement of the mean
estimation error ∆ε̄ of 2.6%. Furthermore, the 360D8 setup
and HDR8 have both an improved ε̄ of 2.58% and 3.86%,
respectively.

However, as expected from the direct comparison of mea-
surements in Figure 2, the setups with a higher coding bit
depth show a significantly higher estimation error. For all three
setups, the ε̄ is between 35% and 40% for both models. A
closer inspection of the estimation reveals that the estimated
decoding energy Êl of the 8-bit sequences is always too low.

Nevertheless, the setups with a bit depth of 10-bit can be
accurately estimated with the training of the Conventional10
setup. For the 360D10 setup, ε̄ is 3.37% for the FA model
and 1.73% for the FU model. Furthermore, for the HDR10
setup, ε̄ is 3.48% with the FA model and 2.80% with the
FU model. Again, the FU model improves the estimation
error significantly. Though, for the remaining setups, ε̄ is
approximately 60%, which is caused by the increased energy
demand of bit streams with higher bit depth.

D. Results for 10-bit Extension

With both conventional setups and the FU model, it is pos-
sible to estimate all setups with ε̄ lower than 3.88%. However,
the measurement of bit streams is rather time consuming. In
order to reduce the amount of time to measure both setups,
we only use the training of the Conventional8 setup in the
following to model the 10-bit setups.

Since the estimation of bit streams with a different bit depth
is insufficient, we extended the energy model of (1) with new
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Fig. 3. Mean estimation error ε̄ for the validation of the Conventional10 setup
for two models depending on the value of ζ. The energy coefficients ei are
trained on the Conventional8 setup. First, all features of the FU model are
influenced by the bit depth (red curve). Second, only a subset of features of
the FU model (cf. φi in Table I) is influenced by the bit depth (blue curve).

TABLE IV
MEAN ESTIMATION ERROR FOR THE VALIDATION OF THE 10-BIT SETUPS.

THE SPECIFIC ENERGY COEFFICIENTS ARE TRAINED WITH THE
CONVENTIONAL8 SETUP AND THE FU MODEL. FURTHERMORE, THE

VALUE OF ζ IS EITHER 0 (C.F. TAB. III) OR 0.66.

Training: Conventional8
Validation Setup ζ = 0 ζ = 0.66
Conventional10 35.95% 7.31%

360D10 38.29% 6.52%
HDR10 40.38% 9.89%

parameters (cf. Section IV-B). Therefore, the improvement of
φi, which indicates whether a feature is influenced by the bit
depth, will be discussed first. In Figure 3, two assumptions are
compared. First, all specific energy coefficients depend on the
bit depth (φi = 1,∀i; see red curve). Second, only a subset
of features (cf. φi in Table I) depends on the bit depth (blue
curve). The x-axis is the value of ζ and the y-axis is the mean
estimation error ε̄. The graph shows that the lowest ε̄ of the
red curve is 10.61% (ζ = 0.56) and of the blue curve is 7.31%
(ζ = 0.66). This significant difference of ε̄ suggests that the
energy difference can be modeled by scaling a subset of the
energy coefficients.

Table IV compares the estimation errors of the proposed
extension (ζ = 0.66) with the results from Table III under
the assumption that the Conventional8 setup is used for
training. We can see that all estimation errors are significantly
reduced to values below 10%. These results show that with
the proposed extended model, a conventional SDR training
setup is sufficient for the estimation of unconventional video
formats, if mean errors of 10% are acceptable.

VI. CONCLUSION

This paper showed that our proposed bit stream feature-
based model with additional features can be used to accurately
estimate the decoding energy of various unconventional video
formats like 360◦, fisheye, and HDR. Using a suitable training
set, mean estimation errors below 5% can be achieved. If the
model is solely trained on conventional sequences, estimation
errors below 10% were observed. The extension of the energy
model showed that the additional energy demand of bit streams
with a higher bit depth can also be modeled accurately.

In future work, the model shall be used to reduce the
decoding energy using, e.g., decoding-energy-rate-distortion
optimization. Further research regarding the decoding energy

of different bit depth shall investigate a generally applicable
value for ζ. Furthermore, the model shall be extended to the
upcoming VVC video compression standard.

REFERENCES

[1] Cisco. (2019, Feb.) Cisco visual networking index: Global mobile
data traffic forecast update, 2017-2022. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-738429.pdf

[2] G. J. Sullivan, J. Boyce, and T. Wiegand, “Requirements for fu-
ture video coding,” International Telecommunication Union (ITU)
Telecommunication Standardization Sector SG16-TD155-A2/PLEN,
Macao, China, Document ToR-JVET-TD-PLEN-0155A2-A20171027-
Reqs-VCEG, Oct. 2017.

[3] A. Segall, V. Baroncini, J. Boyce, J. Chen, and T. Suzuki, “Joint call for
proposals on video compression with capability beyond HEVC,” Joint
Video Exploration Team of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, AHG Report, JVET-H1002-v6, Oct. 2017.

[4] C. Herglotz, D. Springer, M. Reichenbach, B. Stabernack, and A. Kaup,
“Modeling the energy consumption of the HEVC decoding process,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 28, no. 1, pp. 217–229, Jan. 2018.

[5] C. Herglotz, A. Heindel, and A. Kaup, “Decoding-energy-rate-distortion
optimization for video coding,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 29, no. 1, pp. 171–182, Jan. 2019.

[6] C. Herglotz. (2019) Decoding Energy Estimation Tool (denesto).
accessed 2019-06-05. [Online]. Available: https://denesto.lms.tf.fau.de/

[7] C. Herglotz, Y. Wen, B. Dai, M. Kränzler, and A. Kaup, “A bitstream
feature based model for video decoding energy estimation,” in Proc.
Picture Coding Symposium (PCS), Nuremberg, Germany, Dec. 2016.
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