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Abstract—Volumetric video content has attracted increasing
research interests over the last decade, as it facilitates the inte-
gration of dynamic real world content in virtual environments.
Point cloud is one of the most common alternatives to represent
volumetric video content. Yet, such representation requires an
enormous data storage and pose significant greater pressures on
compression algorithms compared to the standard 2D video. This
challenge has unleashed a new wave in the development of novel
point cloud compression technologies, which need to be evaluated
in terms of production quality. Due to the high dimensionality
of the data, evaluating the performances of relevant coding
algorithms can be time consuming. This puts a barrier on
optimizing coding algorithms with complex, but perceptually
accurate, objective quality metrics. In this study, we thus explore
the possibility of reducing temporal-dimension of the content
under-evaluation, i.e., temporal sub-sampling, for objective qual-
ity evaluation without sacrificing from the correlation with the
subjective opinion. In addition, we exploit different temporal
pooling methods to further make the quality evaluation procedure
more efficient. In total 30 different objective quality metrics were
tested on the the V-SENSE volumetric video quality database.
According to experimental results, there is no need to employ
full frame-rate (30 fps) assessment to reach the meaningful
correlation for the considered quality metrics. These observations
could be referred to reduce the computation complexity regarding
the evaluation and optimization of the relevant compression
algorithms.

Index Terms—temporal sub-sampling, volumetric video, qual-
ity assessment, point cloud

I. INTRODUCTION

Recent advancements in acquisition and display technolo-
gies enabled a more immersive form of imaging. Being one of
these immersive imaging technologies, volumetric video (also
known as 3D video or free-viewpoint video) makes it possible
to capture 3D objects in the real world and to display them
from any angle the viewer wishes to look [1]–[3], see Fig. 1.a.
The sequence of reconstructed 3D objects can be stored as
textured polygonal meshes or point clouds [4], which can be
used in augmented reality and virtual reality scenarios.

Using state-of-the-art techniques, the generated volumetric
video sequences can be compressed and transmitted over
the Internet. In this context, quality assessment is crucial to
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(a) The initial frame of a volumetric video from different angles

(b) Uniform temporal sub-sampling for 10 fps instead of 30 fps.

Fig. 1. Visualization of (a) a sample volumetric video frame and (b) a uniform
temporal sub-sampling scheme, where the sampled frames are shown in color
while others are shown in black and white.

ensure that the compression and transmission operations do
not degrade the sequence too much or to guarantee highest
quality of experience (QoE). Since “quality” is subjective by
definition [5], conducting user studies is the golden standard
for visual quality assessment. Hence, user studies have been
used for subjective quality assessment of volumetric video [4],
[6], [7]. Nevertheless, these user studies are both time and
resource expensive to conduct.

Objective visual quality assessment metrics are commonly
used to estimate the perceived visual quality without conduct-
ing a subjective user study. These metrics generally work for
a specific data representation, e.g., image-based metrics work
on pixels and point-based metrics work on points in 3D space.
There is a plethora of metrics that were designed for traditional
images [8], and there are some metrics that were developed for
point clouds (Please refer to Section III-B for more details) for
volumetric video quality assessment [9]–[11]. Recent studies
also show that the volumetric videos can be rendered as images
and traditional image quality metrics can be used for quality
assessment [12]. The current challenge for objective quality
assessment for volumetric video is that the sizes of volumetric



Fig. 2. Visualization of the initial frames of vsenseVVDB2 contents.

video sequences are big, and the objective quality evaluation
procedure can thus be time-consuming. Therefore, in this
paper, we seek answer to the following question: “Can we
speed up the metric computation for volumetric video quality
assessment without sacrificing the accuracy?”

In the literature, temporal sub-sampling methods have been
used to reduce the amount of calculations and increase pre-
diction accuracy in video quality domain [13]–[15]. Tu et al.
conducted a benchmark study on pooling methods for blind
video quality assessment [15]. Authors concluded that pooling
method choice is content dependent and an ensemble method
could improve the results for such ill-posed problems. Seufert
et al. [14] suggested that the arithmetic pooling works better
than sophisticated pooling methods for sequences of length
in order of minutes. However, to the best of our knowledge,
these approaches have not been investigated for volumetric
video content as the volumetric video with subjective quality
annotations were not available until recently [6].

In this paper, we study the effects of temporal sub-sampling
on the accuracy of quality assessment models for volumetric
video sequences, see Fig. 1.b. In particular, we focus on
volumetric videos represented as point clouds. Moreover, we
also analyze the effect of temporal pooling methods on the
quality assessment of volumetric videos. The results provide
insight for speeding up the objective quality estimation for
volumetric video sequences, which will be useful for the
community.

II. TEMPORAL POOLING METHODS

Considered temporal pooling methods are described in this
section. Fi is the ith frame in the video with an objective
quality score of qi. i ranges from 1 to N , where N indicates
the last frame of the video. Finally, quality score of the video
is denoted as Q. Table I lists the pooling methods which is
used in the experiment. Formulas and selected values for the
adjustable parameters are given in the table.

Arithmetic mean is calculated as the mean value of quality
scores across frames within a video. Harmonic mean uses a
similar definition with negative exponent to have higher impact
on frames with lower quality. Minkowski mean is a general-
ized version of the arithmetic and harmonic mean with an
adjustable parameter. VQ-Pooling was proposed as a pooling
method considering both spatial and temporal domain [16]. We
use temporal component of VQ-Pooling as its adapted version
proposed in [15]. Concretely, individual quality scores of all
frames are clustered into two groups utilizing the K-means
algorithm, which were denoted as GL and GH . Afterwards,

TABLE I
DEFINITIONS AND SELECTED PARAMETERS FOR POOLING METHODS.

Pooling method Formula Parameter

Arithmetic mean Q =
1

N

N∑
i=1

qi -

Harmonic mean Q =

(
1

N

N∑
i=1

q−1
i

)−1

-

Minkowski mean Q =

(
1

N

N∑
i=1

qpi

)1/p

p = 2

VQ pooling Q =

∑
i∈GL

qi + w ·
∑
i∈GH

qi

|GL|+ w · |GH |
, w =

(
1−

ML

MH

)2

-

Percentile pooling Q =
1

|Plow|
∑

i∈Plow

qi Percentile = 10%

Primacy pooling Q =
N∑
i=1

wiqi, wi =
exp(−αi)∑L

j=1 exp(−αj) , 0 ≤ i ≤ L L = 360, α = 0.01

Recency pooling Q =
N∑
i=1

wiqi, wi =
exp(−α(L−i))∑L

j=1 exp(−α(L−j)) , 0 ≤ i ≤ L L = 360, α = 0.01

the overall quality prediction is calculated as stated in the table.
|GL| and |GH | is the cardinality of respective clusters. w is de-
fined as shown in the table with ML and MH is the mean value
of clustered scores. Similarly, percentile pooling also signifies
the impact of frames with lower quality scores [13]–[15]. An
adjustable parameter κ was used to increase or decrease this
impact. Plow was defined as the set of frames, which belongs
to lower κth percentile. Primacy pooling take advantage of
the tendency of observers, where beginning of the video has a
higher impact on overall quality score. Recency effect captures
the opposite behaviour, where observers remember the last part
of the video while evaluating the overall quality. An adjustable
parameter α can be used to increase or decrease these effects
[15], [17].

III. EXPERIMENTAL SETUP

In the following subsections, we briefly describe the dataset
and selected quality metrics, explain the selected temporal sub-
sampling rates, and describe the selected evaluation criteria.

A. Dataset

Extensive experiments were conducted on the vsen-
seVVDB2 dataset [4] to answer the aforementioned question.
This dataset consists of 8 different sequences, see Fig. 2.
The sequences were encoded using different compression
algorithms at different bitrates, following the MPEG common
test conditions. The compression algorithms were G-PCC [18]
and V-PCC [18] (both with all-intra and random-access op-
tions) for point clouds. These compressed and reconstructed
volumetric video sequences were then rendered in Blender
using a camera orbiting the 3D model. Then, the subjective
quality scores of the rendered sequences, i.e., Mean Opinion
Scores (MOS), were collected from a subjective experiment
conducted using the absolute category rating with hidden ref-
erence (ACR-HR) methodology with a traditional display. The
collected MOS values were also made available along with the
point cloud sequences. Interested readers are recommended to
refer to the original paper [4] for more details.

In our study, we compute both point-based and image-based
quality metrics for the evaluation of volumetric videos. Point-
based metrics are computed using both the reference and



Fig. 3. 95 % percentile range and the median values of the selected metric
scores for 5 levels of V-PCC coding at different frame rates.

Fig. 4. Each line represents the median metric score that changes over
8 temporal sampling frequencies for a compression type/level over the
“AxeGuy” source content. X axis is the fps value for each temporal sampling
frequency. Y axis is the metric scores normalized for each metric individually.

the reconstructed volumetric video sequences represented as
colored point clouds. Image-based approach uses traditional
image quality metrics on the rendered versions of volumetric
videos. For this, we employed the same renderings that are
used for the subjective quality experiment.

B. Selected quality metrics

We experimented with 11 image-based and 19 point-
based quality metrics. Image-based metrics include PSNR,
SSIM [19], and 9 other metrics. In [20], Sandic-Stankovic
et al proposed MP-PSNR based on multi-scaled pyramid de-
composition. Mean Square Error (MSE) was used to quantify
the distortion between the reference and distorted image in

Fig. 5. Scatter plots of objective scores predicted by selected quality metrics
versus the DMOS scores. Each row corresponds to a certain pooling method.

sub-bands. Similarly in [21], MW-PSNR was proposed based
on morphological wavelet decomposition. Multi-scale wavelet
MSE was further utilized to calculate final image quality.
Later, reduced versions (RR) of the MP-PSNR and MW-PSNR
was proposed in [22]. RR versions use only detail features
from higher scales of the decomposition pyramid. By assuming
the geometrically relevant distortion is the dominant degra-
dation in free-viewpoint videos, the EM-IQM was presented
in [23] to calibrate the structural-deformations. Analogously,
to quantify the structural distortions from a higher semantic
level, the SI-IQM was proposed [24]. NIQSV [25] was in-
troduced by Tian et al. by quantifying non-smooth regions
via morphological operations. Later on, it was extended as
NIQSV+ [26] by incorporating an extra indicator for dis-
occlusion areas. A learning-based blind metric APT [27] was
developed by adopting an auto-regression (AR) descriptor.

Point-based metrics considered in this study are based on
three main approaches: point-to-point [9], point-to-plane [10],
and plane-to-plane [11] differences in 3D space. The term
“plane” refers to the plane of a point defined by its nor-
mal vector. The missing point normals were estimated using
Matlab’s pcnormals function. The geometry metrics are
computed using either root mean square (RMS) distance, mean
square error (MSE), or Hausdorff distance measures. Mini-
mum, mean, and median are also used to pool the difference



TABLE II
PCC VALUES BETWEEN METRIC SCORES AND DMOS FOR DIFFERENT

TEMPORAL SAMPLING RATES WITH ARITHMETIC MEAN.

1-fps 2-fps 3-fps 5-fps 6-fps 10-fps 15-fps 30-fps
MP-PSNR-FR 0.7473 0.2655 0.7249 0.2905 0.3680 0.4008 0.3759 0.3088
MP-PSNR-RR 0.7287 0.7063 0.7394 0.7580 0.7098 0.7595 0.7089 0.7594
MW-PSNR-FR 0.7326 0.7432 0.6929 0.7357 0.7413 0.7404 0.7118 0.7378
MW-PSNR-RR 0.7155 0.7596 0.7180 0.7541 0.7269 0.7219 0.7559 0.7591
PSNR 0.8413 0.8298 0.8425 0.8406 0.8305 0.8298 0.8290 0.8286
SSIM 0.9109 0.9093 0.9088 0.9076 0.9083 0.9082 0.9078 0.9081
NIQSV 0.1806 0.2836 0.1668 0.1548 0.3423 0.3519 0.1596 0.1496
NIQSV+ 0.2526 0.2724 0.2857 0.2884 0.2747 0.2727 0.2884 0.2734
APT 0.3624 0.2989 0.3152 0.3125 0.3079 0.3082 0.3088 0.3073
EM-IQM 0.3543 0.3882 0.4035 0.4253 0.4696 0.4309 0.4158 0.4283
SI-IQM 0.8897 0.8872 0.8855 0.8865 0.8861 0.8868 0.8875 0.8871
Color-Y 0.8498 0.8485 0.8474 0.8464 0.8449 0.8450 0.8472 0.8453
Color-Y-PSNR 0.8495 0.8442 0.8348 0.8460 0.8446 0.8377 0.8464 0.8447
Color-U 0.5552 0.5523 0.5534 0.5545 0.5504 0.5519 0.5548 0.5520
Color-U-PSNR 0.5463 0.5548 0.5572 0.5773 0.5525 0.5457 0.5564 0.5536
Color-V 0.5811 0.5775 0.5819 0.5828 0.5782 0.5781 0.5829 0.5783
Color-V-PSNR 0.5285 0.5771 0.5281 0.5284 0.5559 0.5706 0.5789 0.5688
p2point-Haus 0.2289 0.1649 0.1846 0.3340 0.2059 0.1539 0.1495 0.2092
p2point-Haus-PSNR 0.4670 0.4792 0.4871 0.4796 0.4918 0.4797 0.4875 0.4867
p2point-RMS 0.9079 0.9073 0.9081 0.9081 0.9077 0.9068 0.9066 0.9068
p2point-RMS-PSNR 0.8743 0.8865 0.8817 0.8795 0.8775 0.8801 0.8789 0.8750
p2plane-Haus 0.1834 0.1150 0.1438 0.1821 0.1224 0.0663 0.1650 0.1274
p2plane-Haus-PSNR 0.2041 0.2041 0.2001 0.1966 0.1898 0.1972 0.1948 0.1994
p2plane-RMS 0.4283 0.4316 0.4314 0.4294 0.4329 0.4433 0.4262 0.4315
p2plane-RMS-PSNR 0.8085 0.8144 0.8123 0.8123 0.5608 0.8130 0.8118 0.8088
pl2plane-MSE 0.4862 0.4813 0.4850 0.4852 0.4862 0.4849 0.4839 0.4863
pl2plane-RMS 0.4870 0.4835 0.4859 0.4873 0.4867 0.4861 0.4870 0.4870
pl2plane-Mean 0.4876 0.4852 0.4879 0.4891 0.4892 0.4884 0.4891 0.4893
pl2plane-Median 0.4876 0.4852 0.4879 0.4891 0.4892 0.4884 0.4891 0.4893
pl2plane-Min 0.0737 0.1434 0.1674 0.1800 0.1690 0.1370 0.1347 0.1282

scores. In addition to geometry difference, color differences
are also calculated using point-to-point correspondence. For
this, MSE or PSNR is calculated from the differences between
the corresponding points’ assigned color values. These color
metrics are calculated for Y, U, and V channels.

C. Temporal sub-sampling rates
The frame-rate of the sequences in the vsenseVVDB2

dataset is 30 (fps). For a frame-rate k, we take the first frame
among 30/k frames and skipped the rest, where the divisor
k ∈ K = {1, 2, 3, 5, 6, 10, 15, 30}, see Fig. 1.b. This allowed
us to uniformly sub-sample the videos.

D. Evaluation criteria

To evaluate the effect of temporal sub-sampling on volu-
metric video quality assessment accuracy, this paper uses the
Pearson correlation coefficient (PCC) and root-mean squared
error (RMSE) for prediction accuracy and Spearman rank-
ordered correlation coefficient (SROCC) for prediction mono-
tonicity as recommended in [28]. Predicted scores are mapped
with a 5-parameter logistic function before evaluation as
recommended in [28]. Due to page limits we only report PCC
values in the paper. SROCC and RMSE values can be found
in the supplementary materials.

IV. RESULTS

The impact of temporal sub-sampling rate: Speeding up
the computation of volumetric video quality assessment can be
achieved via reducing temporal sampling frequency. To verify
whether this can be achieved without sacrificing accuracy, we
uniformly sampled volumetric videos from the vsenseVVDB2
dataset with 8 different temporal frequencies. In Fig. 3, 95%
percentile ranges for the selected metric scores are presented,
where the horizontal axis is the temporal sampling frequency
in terms of frame per second. Each line corresponds to the
stimuli “AxeGuy” compressed with V-PCC coding [18] at a

TABLE III
PCC VALUES BETWEEN METRIC SCORES AND DMOS FOR DIFFERENT

POOLING METHODS WITH 30 FPS.

Arithmetic
mean

Harmonic
mean

Minkowski
mean

Percentile
pooling

Primacy
pooling

Recency
pooling

VQ
pooling

MP-PSNR-FR 0.3088 0.7738 0.6641 0.5177 0.3282 0.2996 0.8260
MP-PSNR-RR 0.7594 0.7000 0.7669 0.5283 0.7355 0.7176 0.7932
MW-PSNR-FR 0.7378 0.6817 0.7401 0.5415 0.7010 0.7121 0.7631
MW-PSNR-RR 0.7591 0.7084 0.7251 0.5409 0.7668 0.7291 0.7698
PSNR 0.8286 0.8332 0.8426 0.8103 0.8258 0.8466 0.8428
SSIM 0.9081 0.9081 0.9081 0.9190 0.9077 0.9115 0.9427
NIQSV 0.1496 0.1564 0.3436 0.2367 0.3207 0.1561 0.1639
NIQSV+ 0.2734 0.2754 0.2745 0.2323 0.2892 0.3154 0.3527
APT 0.3073 0.3073 0.3073 0.3086 0.3052 0.3183 0.1405
EM-IQM 0.4283 0.6565 0.4463 0.6035 0.3913 0.4249 0.1877
SI-IQM 0.8871 0.8874 0.8868 0.8870 0.8892 0.8853 0.8736
Color-Y 0.8453 0.8460 0.8443 0.8531 0.8445 0.8461 0.8408
Color-Y-PSNR 0.8447 0.8448 0.8449 0.8296 0.8443 0.8345 0.8352
Color-U 0.5520 0.5556 0.5482 0.5645 0.5520 0.5537 0.5694
Color-U-PSNR 0.5536 0.5533 0.5583 0.5270 0.5432 0.5668 0.5545
Color-V 0.5783 0.5803 0.5766 0.5889 0.5779 0.5777 0.5940
Color-V-PSNR 0.5688 0.5282 0.5800 0.5567 0.5245 0.5842 0.5776
p2point-Haus 0.2092 0.2888 0.1356 0.5604 0.1367 0.1866 -
p2point-Haus-PSNR 0.4867 0.4465 0.3558 0.4806 0.4745 0.4917 -
p2point-RMS 0.9068 0.9050 0.9009 0.9005 0.9043 0.9060 0.9021
p2point-RMS-PSNR 0.8750 0.8848 0.8667 0.9202 0.8777 0.8709 0.8184
p2plane-Haus 0.1274 0.1802 0.1234 0.2114 0.1388 0.0992 -
p2plane-Haus-PSNR 0.1994 0.1976 0.0241 0.1455 0.2017 0.1976 0.1028
p2plane-RMS 0.4315 0.4273 0.4300 0.4285 0.4258 0.4447 0.4318
p2plane-RMS-PSNR 0.8088 0.8154 0.7320 0.7648 0.8119 0.8039 0.8886
pl2plane-MSE 0.4863 0.4863 0.4861 0.4613 0.4821 0.4962 0.4670
pl2plane-RMS 0.4870 0.4870 0.4870 0.4751 0.4825 0.4985 0.4678
pl2plane-Mean 0.4893 0.4893 0.4895 0.4774 0.4843 0.4892 0.4539
pl2plane-Median 0.4893 0.4893 0.4895 0.4774 0.4843 0.4892 0.4539
pl2plane-Min 0.1282 0.0842 0.1896 0.1102 0.1792 0.1750 0.2079

certain level. While for higher performing metrics such as
Color-Y and SSIM, the range of the metric score does not
change along with the temporal sampling frequency; metrics
such as EM-IQM and p2plane-Haus score fluctuate with the
varied temporal sampling frequency. Similarly, Fig. 4 presents
all the median metric scores for 16 different compressed
versions of “AxeGuy” content. It can be observed that the
majority of the metric scores are not affected by temporal
sampling frequency. Therefore, metric performances are not
significantly affected either. Table II presents the PCC values
for each metric under different temporal sampling frequencies.
It could be observed that metrics with higher performance
(with PCC values higher than 0.5) have insignificant perfor-
mance differences with varied temporal sampling frequencies.

The impact of temporal pooling method: Fig. 5 shows the
scatter plots of the 128 point cloud stimuli in vsenseVVDB2
dataset. The horizontal axis in each plot is the metric score,
while the vertical axis is the difference mean opinion score
(DMOS) for each stimuli. In the figure, each column corre-
sponds to a different objective quality metric and each row
corresponds to a certain temporal pooling method. As shown,
for the 1st and 2nd columns (i.e., Color-Y and SSIM), the
distributions of the data points of the same column do not
differ from each other significantly. On the contrary, the ones
of the 3rd and 4th columns vary significantly across different
temporal pooling methods. Table III presents the PCC values
for each metric with different pooling methods. In the table,
it is obvious that the change of temporal pooling method does
not significantly affect the high-performing quality metrics
(with PCC values higher than 0.5).

Combined effect of temporal sub-sampling and pooling
methods: No particular pattern was observed in combined
effect evaluation. We further confirmed that no pooling method
has clear advantage over certain sub-sampling frequency. We
provide a figure reporting the overall accuracy of each pooling



method for each sub-sampling rate in the supplementary
materials.

V. CONCLUSION

In this study, we conducted comprehensive experiments with
30 different metrics to investigate the effect of temporal sub-
sampling and temporal pooling methods on the accuracy of
volumetric video quality assessment. First, we investigated the
effect of the temporal sampling rate. Our findings indicate that,
even by sub-sampling the frame rate to 1 fps, metric scores and
the metrics’ performances do not show a significant difference
compared to the full frame rate, i.e., 30 fps. In our experiment
with different temporal pooling methods, we observed that
better performances were achieved for image-based metrics
by using the VQ-Pooling. We did not observe any categorical
preference for color and point-based metrics among the tested
temporal pooling methods.

Results show the temporal sub-sampling has minimal effect
on metrics’ correlations with ground truth subjective scores.
This observation indicates that compression artifacts affect
the perceived quality of the volumetric video uniformly in
time. Our findings suggest that with no significant loss in the
accuracy of both types of objective quality metrics, calcula-
tions can be sped up to 30 times for stimuli with point cloud
compression artifacts. It should be noted that further research
is required to further extend current conclusions for other types
of distortions.

Each considered pooling method has a different priority
for the temporal dimension. In our experiments, we observed
minimal changes in metric performances with different pool-
ing methods. Similar to the sub-sampling experiments, this
indicates the uniform impact of the point cloud compression
artifacts on perceived quality.

Our results provide insight regarding performances of var-
ious objective metrics for quality evaluation of point cloud
compression algorithms on volumetric videos. Additionally,
we provide statistical analysis for temporal pooling method
selection for each metric. Finally, we show that the objec-
tive evaluation of the point cloud compression is minimally
affected by the temporal sub-sampling rate, which allows the
community to increase the computation efficiency of objective
quality evaluation without sacrificing accuracy.
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