
Power Consumption of Video-Decoders on Various
Android Devices

Roman Kazantsev and Dmitriy Vatolin
The Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University
Moscow, Russia

{roman.kazantsev,dmitriy}@graphics.cs.msu.ru

Abstract—The critical constraint of mobile devices is a limited
battery life that is significantly reduced during video playback.
The power efficiency of video playback mainly depends on the
used compression standard, video-decoder, and device model.
We propose a software-based method to estimate the power
consumption of video-decoders on various Android devices.
Experiments on two devices of the same model show a small
variation of the power playback consumption and a lack of
dependence between the power consumption and the battery
level. We have implemented an automatic system that includes the
VEQE Android application to measure the power consumption
of decoders and a server to collect the power metrics. Our system
has collected power-consumption and decoding-speed dataset for
video-decoders of six standards (AV1, HEVC, VP9, H.264, VP8,
and MPEG-4) operating on 285 devices, representing 147 models.
We demonstrate some slices of the created dataset: the top
30 models and video-decoders in terms of power efficiency for
playback and for decoding only, as well as video-decoder ratings
by power consumption and decoding speed for a given device
model.

Index Terms—power-consumption, decoding-speed, video-
decoder, Android, dataset

I. INTRODUCTION

The number of people who watch video on a mobile device
has grown constantly in recent years. In general, video-service
providers must compress their videos and maintain high visual
quality by selecting an optimal video codec along with an
appropriate preset, in addition to using a suitable bitrate
for smooth transmission. But mobile devices have a critical
constraint: limited battery life. Video services targeting these
devices must therefore employ compression to save power yet
still provide a rich user experience.

Video-decoding is a major drain on the battery during
playback, so its power efficiency must be maximized. This feat
is achievable through a two-step process: First, select a power-
efficient video-compression standard and video-decoder for the
device. Second, find an encoding preset that ensures power-
efficient decoding of the resulting bitstream. In this work we
present a dataset that can help execute the first step that is,
selecting a power-efficient video-decoder for a given device. In
most cases, mobile-device users would rather watch video in
power-saving mode to extend battery life than watch it in high
quality. Moreover, the small size of mobile-device displays

This work was partially supported by Russian Foundation for Basic
Research under Grant 19-01-00785 a.

means users are less able to discern visual-quality artifacts
and shortcomings.

In this paper we propose a software-based system that auto-
matically creates power-efficiency dataset for video-decoders
running on various Android devices. The system consists of
a client Android application to make power measurements
and a server to collect the data from clients. Using this
system, we created a dataset with 285 samples (representing
147 device models). We depict some slices of this dataset in
charts that exhibit video-decoder ratings by power efficiency
for one model and for a multimodel comparison. The dataset
can aid in developing video-decoding-optimization methods
by informing selection of a power-efficient video standard and
video-decoder for a given device.

In the following sections we provide an overview of meth-
ods for video-decoding-energy minimization in related works,
we describe our software-based method for estimating video-
decoding energy, and we present our approach to creating and
analyzing the dataset.

II. RELATED WORK

Herglotz et al. [1] introduced Decoding-Energy-Rate-
Distortion Optimization (DERDO), which extends the tradi-
tional rate-distortion optimization (RDO) but aims to encode
video such that the decoding process is more power efficient.
To estimate decoding energy, [1] and [2] propose a model
that uses the features of a bitstream to predict the power
necessary to decode it. The model receives a bitstream-feature
vector that includes Intra and Inter blocks, nonzero residual
coefficients, transform-skip flags, and in-loop filter usage. In
[1], the authors reasonably claim that decoding power is
not necessarily proportional to the bit-stream size because
better compression often employs complex video-coding tools
that necessitate more energy for decoding. Therefore, energy
savings are possible at the expense of bitrate or video quality.
The DERDO approach can save 5–17% of energy at the
expense of a 6–24% bitrate loss in case of local playback.
Online streaming slightly drops the energy savings.

Fernandes et al. [3] described a system that encapsulates
Green Metadata into a bitstream for power-efficient video
playback. The metadata includes the characteristics of video
content that needs to be decoded and displayed. The first
metadata is RGB statistics of video frames that are used

ar
X

iv
:2

11
0.

06
52

9v
1 

 [
cs

.M
M

] 
 1

3 
O

ct
 2

02
1



for adjusting RGB values to preserve visual quality in case
of backlight reduction. The display’s power savings can be
performed on account of backlight reduction and varying RGB
values changes the power consumption negligibly. The second
one is complexity metrics that estimate the decoding complex-
ity within some period and help to lower the CPU frequency
with guarantee to complete the decoding within frame-rate
deadlines. This approach passed the MPEG standardization but
we have not found any industry video codec that implements
it.

Sidaty et al. [4] proposed approximate computing methods
to replace the HEVC standard’s original motion-compensation
(MC) and in-loop filters. The MC filter’s approximation level
defines several taps for the MC interpolation filters. The in-
loop (deblocking and sample-adaptive-offset) filters introduce
the skip-control parameter, which defines the frequency at
which the in-loop filters are skipped. These approximate
computing methods allow decoding-energy reductions of up
to 20% depending on the approximation level and the skip-
control parameter. According to the authors, no significant
quality degradation is noticeable on mobile devices, partic-
ularly in the intermediate-approximation configuration.

Yadav et al. [5] proposed a software-based approach that
uses a monitoring tool for power measurement. This tool
reports the power usage of different Android device functions:
the CPU, display, and Wi-Fi. These values enable computation
of decoding energy through time as the video application
launches. The tool provides accurate measurements, but be-
cause it only works on few Android devices, it lacks generality.

Sostaric et al. [6] tested several video-decoders on Android
devices using a hardware-based tool. They concluded that
the best choice for mobile devices is to use older standard
video codecs with advanced options. For example, MPEG-
4 can outperform H.264 in a tradeoff among visual quality,
power consumption and bitrate. Although the authors analyzed
custom software codecs, modern devices employ a variety
of hardware codecs, which are the primary choice for video
applications.

Hu et al. [7] investigated methods to control a wireless
interface and set the CPU frequency for decoding the next
frame in a sequence. Such methods can reduce decoding
energy by 9–17%, whereas the frame-rate drop is less than
3%.

The decoding-energy-optimization methods above require
major modifications to video codecs and standards, and they
are not hardware agnostic with regard to power measurements.
In this paper we propose a way to create power-efficiency
data set for hardware- and software-based video-decoders
running on different Android devices. This dataset can aid in
developing methods to predict which decoder is most power
efficient for a certain device and resolution.

III. METHOD FOR ESTIMATING VIDEO-DECODING
ENERGY

We propose a software-based approach to measuring the
power consumption of video-decoders on Android devices.

Our approach is generic, meaning it is suitable for all device
models running Android 5.0 or higher. Android 5.0 was intro-
duced in 2014. Its main idea is to retrieve the device’s battery
level using the Android API’s BatteryManager feature. When
decoding video, our method constantly queries the battery
level (the current battery-charge percentage) using the Android
API, logging that level and a time step in case of a change. The
Android API also makes it easy to get other device parameters:
the voltage; battery capacity, type and health; device model
and manufacturer; and more.

The main problem with our proposed approach is that the
battery level rarely changes, so it must decode the same
bitstream multiple times until the battery level changes. For
greater accuracy, we wait for this level to drop by 3%. The
device runs in autonomous mode during these measurements.
To ensure more-accurate measurements, we track the iterations
and frame indices at which the battery level changes. Assume
the levels are B0 and B1 at times T0 and T1 (in seconds),
respectively, corresponding to iterations N0 and N1 and frame
indices n0 and n1. Also assume the sequence contains nseq
frames. The formula for computing the relative battery con-
sumption (%) when decoding the entire bitstream and the
formula for computing the average decoding speed (frames
per second) are as follows:

∆seq =
B0 −B1

(N1 −N0)nseq + n1 − n0
· nseq, (1)

υ =
(N1 −N0)nseq + n1 − n0

T1 − T0
. (2)

In this work we compute two valuable power metrics. The
first is relative battery consumption per hour of playback ∆play

(in % per hour), which lets end-users estimate how long they
can watch video in autonomous mode. The second is video-
decoding energy per hour, ∆decode (in mA), which helps
Android-device manufacturers estimate the power efficiency of
hardware video-decoders. Note that ∆seq includes the energy
that the display consumes. We define the display’s power
consumption per hour as ∆screen (% per hour) and compute
it using the same approach by which we track battery-level
changes on a device in idle mode with its display on. We
calculate ∆play as follows:

∆play = ∆seq ·
fps

n
·3600+∆screen max

(
0; 1− fps

υ

)
, (3)

where n is the number of frames in the sequence and fps is the
number of frames per second required for playback. Equation
(3) includes a term ∆screen max

(
0; 1− fps

υ

)
compensating

the energy that the display consumes for some time when
decoding is complete in case of υ > fps. Note that υ ≥
fps is required for normal playback. The formula to compute
∆decode (mA) is the following:

∆decode = V
(

∆seq ·
υ

n
· 3600−∆screen

)
, (4)

where V is a battery capacity (mA · h). Both metrics, ∆play

and ∆decode, can help to benchmark mobile devices and video-
decoders.



Android devices comprise multiple video-decoders imple-
menting different compression standards (AV1, HEVC, VP9,
H.264, VP8, and MPEG-4). These decoders divide into hard-
ware, software and hybrid types. To estimate the power
consumption, we selected three video sequences of SD, HD
and Full HD resolution with the frame-rate set to 25 fps, then
encoded them for each compression standard using FFmpeg
with the medium bitrates. The video sequences were encoded
for the streaming case with a fixed-cadence group of picture
(GOP), GOP-length equal to two seconds, three references for
motion compensation, two B-frames, and maximum bitrate
equal to 1.2 of the average bitrate. The settings restrict to
use the Main Profile for H.264 and HEVC with Level 4.2 that
supports selected resolutions, frame-rate, and maximum bitrate
on all Android 5.0 and higher devices. Our choice of video
sequences is based on their distinctive spatial and temporal
complexities. Defining the averages of these complexities are
the mean spatial perceptual information, SImean, and the
mean temporal perceptual information, TImean [8]. Table I
lists the SImean, TImean and the average bitrate for each
video.

Before employing the method in practice we arrange an ex-
periment to check how the playback power consumption varies
on different devices of the same model and the dependence
of the power consumption on the battery level. The results
for two ZTE Blade A5 2019 devices are shown in Fig. 1. We
receive the standard deviation for each device equal to 0.5%
and the absolute difference between the power metric means
on the devices equal to 0.01%.

Adequate power estimation using our method must satisfy
the following requirements:

1) The device must operate in autonomous mode;
2) The device must have neither too low a battery level

(less than 20%), which allows the device to run in safe-
power mode, nor too high a level (greater than 95%),
which makes the battery more resistant to discharging;

3) Power estimation for decoding one bitstream must ex-
pend at least 3% of the battery capacity;

4) Power measurements may take place in different charge
cycles, because devices can have more than 20 video-
decoders, and testing all of them at three resolutions
requires at least 180% of the battery’s capacity.

We implemented this method in the VEQE Android
application, which is available from Google Play:
https://play.google.com/store/apps/details?id=ru.msu.cs.
graphics.veqe mobile.

IV. DATASET CREATION

We developed an automatic system to collect power-
efficiency data for video-decoders in different Android de-
vices. It consists of the VEQE application, a client for testing,
and a server for collecting data from all clients once the testing
is complete. Since devices may implement multiple video-
decoders, and since a full battery charge may be insufficient
to test all of them, the application can report to the server
intermediate results in case of incomplete testing or premature

Fig. 1. Playback power consumption, ∆play , of two ZTE Blade A5 2019
devices and its dependence on the battery level.

cancellation, and it can save a checkpoint from which it can
continue testing after the client recharges. Aside from power
metrics, the application also estimates decoding speed for
every video-decoder.

To create the dataset we used Yandex.Toloka, a cloud-based
crowdsourcing platform: we collected and labeled extensive
data by posting an exercise that paid participants to launch
our application. To retain good-quality data submissions and
discard fake ones, we prepared a server-side script that helps
avoid duplicates in the dataset by checking device properties
(a serial number and a build host). The script also ensures
the samples are complete — that is, all available video-
decoders on a given device undergo testing — by reporting
the ratio of video-decoders tested for each submission. It
allows validation of samples in addition to uploading the
dataset semiautomatically — a necessary feature because of
the myriad submissions.

Finally, we received data from 285 devices representing 147
models and 60 video-decoders (43 hardware, 17 software and
1 hybrid). The next section describes processing and analyzing
the dataset.

V. DATA PROCESSING AND EVALUATION

The data we collected is raw and needs further processing
to exclude anomalies and to compute ∆decode as well as ∆play

for each video-decoder and resolution. If certain samples
correspond to the same device model, we combined them and
computed the mean ∆decode, ∆play and υ values for each
decoder and resolution of a given model.

Some participants in the exercise we posted on the crowd-
sourcing platform generated low-quality data if they used
a device that was powered through an AC adapter or had

https://play.google.com/store/apps/details?id=ru.msu.cs.graphics.veqe_mobile
https://play.google.com/store/apps/details?id=ru.msu.cs.graphics.veqe_mobile


TABLE I
DESCRIPTION OF VIDEOSEQUENCES

Video Resolution SImean TImean Bitrate (Kbps)
Shakewalk 640 × 480 0.058 124.76 2560
Tractor 1280 × 720 0.071 100.57 5120
Zombie 1920 × 1080 0.073 104.66 12288

a locked screen during the benchmarking. The number of
devices of the same model is small and varies up to nine in
our dataset so statistical methods turned out rough for anomaly
detection. So we manually walked through each model with
a suspicious deviation for the power metrics and removed
obvious outliers. We detected 8% anomalies and low-quality
instances.

After cleaning the dataset and computing ∆play as well
as ∆decode we have done analysis of the data by collecting
different statistics and we conclude the following:

• Hardware decoders surpass software decoders consider-
ably in power efficiency and decoding speed, particularly
for high resolutions. Software decoders win only in 2–6%
cases depending on resolution.

• Video-decoders of MPEG-4 (in 29–32% cases) and H.264
(in 25–31% cases) standards outperform decoders of
other standards in terms of power efficiency for all
resolutions.

• Software decoders of MPEG-4, VP8 and AV1 stan-
dards can nevertheless remain efficient for low-resolution
videos in 6% cases.

• AV1 decoder presents only on devices with Android 11
where software AV1 decoder from Google is the most
power-efficient for low resolutions in 38% cases but it can
be inapplicable to real-time decoding on some devices
due to a low decoding speed.

We depict some slices of the dataset in charts to rate video-
decoder power efficiency for a multimodel comparison in
Fig. 2 and 3. The playback power consumption ∆play can
depend on battery capacity. For example, the large battery
capacity helps Lenovo TB2-X30L Tablet accidentally hitting
the dataset to bypass smartphones with half the capacity for SD
resolution. However, for higher resolutions, this tablet model
has inefficient video-decoders. Most of the positions in both
top 30 ratings are occupied with smartphones from Xiaomi
and Huawei. Samsung and Google smartphones hardly fit these
ratings despite their models are well-represented in the dataset.

Besides, we rate video-decoder power efficiency for a
concrete model, Samsung Galaxy A70, in Fig. 4 and 5 where
Qualcomm hardware decoders noticeably outstrip software de-
coders and AV1 decoder demonstrates unacceptable decoding
speed.

VI. CONCLUSION

In this work we proposed a software-based method to
estimate the power consumption of video-decoders running
on various Android devices. This method serves in the VEQE
Android application and allowed us to create a dataset using

Fig. 2. Playback power consumption, ∆play , for the top 30 video-decoders
at SD, HD and Full HD resolution (top to bottom). Horizontal errorbars
correspond to standard deviations.

the power metrics from 285 Android devices, representing
147 models and 60 video-decoders. We tested video-decoders
for six standards (MPEG-4, VP8, H.264, VP9, HEVC and
AV1) and nine video-decoder manufacturers (Exynos, Google,
Huawei, Imagination Technologies, Intel, MediaTek, Qual-
comm, Samsung and Spreadtrum). Hardware decoders out-
perform software decoders in power efficiency and decoding
speed, but software decoders of MPEG-4, VP8 and AV1
standards can remain efficient for low-resolutions. Due to a
small number of devices that correspond to the same model
in the dataset we did not manage to apply statistical methods
for anomaly detection and did cleaning manually.

VII. FUTURE WORK

As shown in Fig. 2 and 3 we encounter a solid stan-
dard deviation in the power metrics for some models. To
avoid low-quality data in the future, we plan to implement
a protection mechanism against the use of smartphones in
parallel to the VEQE application run. Also, we must exclude
smartphones with old batteries that can affect the statistics and
such phones can be detected using battery cycle count from
/sys/class/power supply/battery/cycle count file.



Fig. 3. Power consumption, ∆decode, for the top 30 video-decoders at SD,
HD and Full HD resolution (top to bottom). Horizontal errorbars correspond
to standard deviations.

Fig. 4. Playback power consumption of video-decoders, ∆play , running on
a Samsung Galaxy A70 smartphone (all resolutions). Horizontal errorbars
correspond to standard deviations.

Fig. 5. Playback power consumption, ∆play , versus decoding speed,
υ, on a Samsung Galaxy A70 (all resolutions). A=Android; G= Google;
Q=Qualcomm; S=Samsung. Small letters indicate SD, medium letters indicate
HD, and big letters indicate Full HD.

REFERENCES

[1] C. Herglotz and A. Kaup, “Joint optimization of rate, distortion, and
decoding energy for HEVC intraframe coding,” in Proc. IEEE Interna-
tional Conference on Image Processing, pp. 544–548, September 2016.

[2] C. Herglotz, M. Kranzler and A. Kaup, “Decoding Energy Modeling
For The Next Generation Video Codec Based On Jem,” in Proc. Picture
Coding Symposium, pp. 96–100, June 2018.

[3] F. C. Fernandes, X. Ducloux, Z. Ma, E. Faramarzi, P. Gendron and
J. Wen, “The Green Metadata Standard for Energy-Efficient Video
Consumption,” IEEE MultiMedia, vol. 22, no. 1, pp. 80–87, January–
March 2015.

[4] N. Sidaty, J. Heulot, W. Hamidouche and M. Pelcat, “Software HEVC
video decoder: towards an energy saving for mobile applications,”
Multimedia Tools and Applications, vol. 79, 2020.

[5] P. K. Yadav and N. Ramasubramanian, “Power consumption of Android
device using different video codecs: An analysis,” in Proc. IEEE
International Advance Computing Conference, pp. 1019–1023, February
2014.

[6] D. Sostaric, D. Vinko and S. Rimac-Drlje, “Power consumption of video
decoding on mobile devices,” in Proc. ELMAR-2010, pp. 81–84, October
2010.

[7] W. Hu and G. Cao, “Energy-aware video streaming on smartphones,”
in Proc. IEEE Conference on Computer Communications (INFOCOM),
pp. 1185–1193, April 2015.

[8] Telecommunication Standardization Sector of ITU, “Subjective video
quality assessment methods for multimedia applications,” Series P.
Telephone Transmission Quality, Telephone Installations, Local Line
Networks, pp. 4–6, April 2008.


	I Introduction
	II Related Work
	III Method for Estimating Video-Decoding Energy
	IV Dataset Creation
	V Data Processing and Evaluation
	VI Conclusion
	VII Future Work
	References

