
An Optimized H.266/VVC Software Decoder On
Mobile Platform

Yiming Li, Shan Liu, Yu Chen, Yushan Zheng, Sijia Chen, Bin Zhu, Jian Lou
Tencent Media Lab, Shenzhen, China and Palo Alto, CA, USA,

{marcli, shanl}@tencent.com

Abstract—As the successor of H.265/HEVC, the new versatile
video coding standard (H.266/VVC) can provide up to 50%
bitrate saving with the same subjective quality, at the cost of
increased decoding complexity. To accelerate the application
of the new coding standard, a real-time H.266/VVC software
decoder that can support various platforms is implemented,
where SIMD technologies, parallelism optimization, and the
acceleration strategies based on the characteristics of each coding
tool are applied. As the mobile devices have become an essential
carrier for video services nowadays, the mentioned optimization
efforts are not only implemented for the x86 platform, but more
importantly utilized to highly optimize the decoding performance
on the ARM platform in this work. The experimental results show
that when running on the Apple A14 SoC (iPhone 12pro), the av-
erage single-thread decoding speed of the present implementation
can achieve 53fps (RA and LB) for full HD (1080p) bitstreams
generated by VTM-11.0 reference software using 8bit Common
Test Conditions (CTC). When multi-threading is enabled, an
average of 32 fps (RA) can be achieved when decoding the 4K
bitstreams.

Index Terms—H.266, Versatile Video Coding (VVC), Video
decoding, ARM, SIMD optimization

I. INTRODUCTION

With the popularization of the video applications on the
Internet and the demand for high-quality video services, a
more efficient video compression standard with high coding
performance is desired. After High Efficiency Video Coding
(HEVC)/H.265 standard, Joint Video Experts Team (JVET)
between VCEG (Q6/16) and ISO/IEC JTC1 SC29/WG11
(MPEG) was created, and formed the Versatile Video Coding
standard (H.266/VVC) in July 2020 [1]. It can provide up
to 50% improvement in compression efficiency for the same
subjective quality compared to its predecessor HEVC [2]. In
order to enhance the coding performance, several coding tools
with decoder side computations are adopted, like decoder side
motion vector refinement (DMVR), bi-directional optical flow
(BDOF), adaptive loop filter (ALF), etc. These coding tools
introduce additional complexities for the decoder, that makes
it a hard work to optimize the decoding speed.

In general, video decoders can be classified into hard-
ware implementations and software implementations, where
hardware decoders are preferred in low-power devices, but
normally come a few years later after a standard is finalized.
In contrast to the hardware decoder, software decoders may
need more power, but still play an important role on general
computer, especially in the early stage for the new coding

standard. Therefore, it is essential to have an efficient and
optimized software decoder implementation to support the
emerging applications. In [3] [4], an independent VVC soft-
ware decoder implemented by Tencent demonstrated real-time
HD/UHD decoding capability on x86 platform. Considering
that mobile devices have become an essential carrier and
display tool for video services, extensive optimization efforts
were made on top of the framework of [3] to achieve real-
time HD/UHD decoding on the mobile platform. As a result,
a uniform-designed software H.266/VVC decoder that can
run real-time on different platforms and supports versatile
functionalities such as screen content coding (SCC) is ac-
complished. This paper will focus more on the discussions
of mobile optimization and capabilities. The rest of the paper
is organized as follows: Section II presents an overview of
H.266/VVC decoder processing blocks and briefly introduces
the proposed software decoder design including single in-
struction, multiple data (SIMD) processing technology and
data/task level parallelism. Section III elaborates the optimiza-
tion on some important modules and shows the benefit of the
implementation. Experimental results of the proposed decoder
are shown in Section IV. Finally, Section V concludes the
paper.

II. CODING TOOL INDEPENDENT DECODER
OPTIMIZATION

A. Overview of H.266/VVC Decoder

The structure of H.266/VVC decoder with the main pro-
cessing modules is shown in Fig. 1. Following the decoding
pipeline, the entropy decoder stage is the first stage, which ex-
tract and decode the codewords from the input bitstream. After
that, the syntax elements are derived. Similar as H.265/HEVC,
the entropy encoding/decoding is still based on the context-
adaptive binary arithmetic coding (CABAC) scheme, but sev-
eral enhancements have been introduced into VVC to improve
the throughput and the compression efficiency.

The derived intra mode after the entropy decoder stage is
used in intra prediction stage, where the prediction value can
be obtained by using the boundary pixels and the intra mode
index. To increase the prediction accuracy, VVC extends the
intra modes from 35 to 67, and wide-angle intra prediction
modes are used for the non-square blocks. Different with the
traditional angular prediction, the matrix weighted intra predic-
tion (MIP) technology takes the left and above neighbouring

ar
X

iv
:2

10
3.

03
61

2v
1 

 [
ee

ss
.I

V
] 

 5
 M

ar
 2

02
1



boundary samples as the input to generate the prediction by
matrix vector multiplication and linear interpolation. Besides,
a cross-component linear model (CCLM) prediction mode is
also introduced in the VVC to utilize the correlation between
luma and chroma components. Benefiting from these tools,
an accurate predicted block is prepared, and the final recon-
structed block can be formed by adding the residual block and
predicted block.

Fig. 1. VVC Decoder Structure [3].

Residual block is generated by the inverse quantization
and inverse transform (IQ/IT) stage shown in Fig. 1. This
stage can dequantize and transform the frequency-domain
coefficients back to the spatial domain. In VVC, multiple
transform selection (MTS) scheme is adopted, so that besides
DCT-2, DCT8/DST7 can also be selected as the core transform
matrices. This tool can help to remove the correlation and
reduce the coding bits. As another new coding tool, low-
frequency non-separable transform (LFNST) is added to fur-
ther remove the correlation in transform domain.

As videos usually contain temporal redundancy, for elim-
inating the correlation in temporal domain, inter prediction
technology is widely used, where the motion compensation
(MC) stage generates the inter prediction from a decoded
reference block. For acquiring a more accurate prediction
result, the decoded inter modes from entropy decoding stage.
e.g., MVs, RefIdxs can help to locate the reference block. As
Fig. 1 shows, another input for motion compensation stage is
the reference block, which is from the decoded picture buffer
(DPB). In the MC stage in VVC, 8-tap interpolation filter is
used for luma block and 4-tap filter is used for chroma block.
Besides the traditional translation motion as H.265/HEVC
used, the affine motion model is also applied in VVC. For
further increasing the prediction accuracy, BDOF and DMVR
can help to refine the subblock motion vector in order to obtain

Fig. 2. Runtime Spending of Each Processing Block on ARM Platform
without SIMD Acceleration.

a better prediction. Similar as the intra prediction module, the
reconstructed block generated by inter prediction mode is from
the residual block and the prediction block.

In VVC, loop filtering (LF) stage contains three kinds of in-
loop filters, including deblocking filter (DBK), adaptive loop
filter (ALF) and sample-adaptive offset (SAO). The general
idea for DBK and SAO in VVC is similar as the previous video
coding standard except the granularity for luma component is
changed to 4×4 on the deblocking filtering process. Adaptive
loop filters is newly added in VVC. Based on the gradients
of each block, one among 25 filters is applied for each 4×4
block filtering.

The test on each new coding tool has been conducted by
AHG13 of JVET [5], which is based on the reference software.
In [3], the runtime spent on each processing block based on
the optimized real-time decoder is provided on x86 platform.
Considering the architecture is different between x86 and
ARM platform, the runtime spent of the optimized decoder
[3] is tested on the ARM platform, as shown in Fig. 2. It
can be seen as a start point for the optimization on the ARM
platform. In this test, the test bitstreams are encoded from the
H.266/VVC common test conditions (CTC) [6] with random
access (RA) configuration. We take the average of the 1080p
test bitstreams for collecting the runtime in order to reduce
the content based fluctuation. As SIMD optimization for x86
platform cannot be directly used in ARM platform, there is
no SIMD acceleration in this test. The results show that ALF
and inter prediction are the most two time-consuming blocks
in the whole decoding pipeline.

B. Tool Independent Decoder Optimization

As described in Section II-A, many new coding tools are
added in VVC. Besides the coding tools in each module, the
new standard can also support larger block size, multi-type
coding unit partitions, etc. For versatile video applications,
the coding tools for screen content sequences like intra block
copy are also included in the main profile of H.266/VVC
instead of in the extension [7]. With the support for the new
coding tools and new coding features, the new standard is
significantly more complex than previous codecs and more
efforts are required for fully accelerating.



Fig. 3. ALF Filter Shapes (Chroma: 5×5 Diamond, Luma: 7×7 Diamond).

SIMD technology operates on loading multiple data in a
single operation. If the internal bit depth is 16, and taking 128-
bit SIMD, it can load up to eight data points at once and help
to accelerate the processing efficiency 8 times when compared
with non-SIMD optimized system. On the x86 PC platform,
AVX2 instruction sets are widely used, which can support
128-bit and 256-bit parallelism. For the ARM platform, the
instruction sets are different, where the ARM NEON intrinsics
can only support 64-bit and 128-bit parallelism. Besides,
the shuffle operation has many differences on the x86 and
ARM platform as AVX2 provide more freedom for the shuffle
intrinsics. For designing a decoder that can support different
platforms, the SIMD optimization is necessary to have dif-
ferent design in different platforms. On the ARM platform,
as the ability for SIMD parallelism is weaker than the x86
platform, some optimization methods is changed according
to the characteristics of each tool, which will be described
detailed in Section III.

Besides the SIMD optimization, the parallel processing
for each decoding module can benefit a lot for speedup.
In this part, the ARM platform and x86 platform share the
same design [3], where multiple level parallelization strategies
are supported, including picture level, CTU level, task level
and sub-CTU level. The picture level parallelism supports
decoding multiple nal units (NALU) at the same time when
there is no inter dependency. For the CTU level parallelism,
CTUs located at different CTU rows are processed following
the wavefront pattern at the same time. Task parallelization
helps to process multiple tasks of the decoder pipeline without
dependency at the same time. And the sub-CTU level paral-
lelization support process multiple CUs within one CTU once
the motion vector has been derived.

III. KEY CODING TOOL OPTIMIZATION

In order to make the decoder support the ARM platform, the
optimization methods based on the characteristic of the coding
tools are utilized. In this Section, the optimization strategies
on some high-complexity modules are presented.

A. Optimization on ALF

Adaptive Loop Filter (ALF) is the most time-consuming part
on the decoder side. Based on the direction and the activity
of local gradients, each 4×4 block will select a set of filter

coefficients among 25 filters. As shown in Fig. 3, The shape
of filter is diamond, where 7×7 diamond shape is applied
for luma component and chroma components use the 5×5
diamond shape.

Considering the filtering process is very time-consuming,
many efforts are spent in this part in the VVC standardization
stage. In one 4×4 grid, the luma component may use the ro-
tated filter coefficients, and then applying the filtering process
as the 7×7 diamond shape. While for the chroma components,
rotation process is unnecessary. The shape length for chroma
components are also reduced to 5×5 for complexity reduction.
In spite of this, the time cost for calculating the filtered value
is still more than half of the whole time in the ALF processing
pipeline. Besides using the NEON intrinsics for SIMD opti-
mization directly, the characteristic that the granularity of ALF
is considered. First, all of ALF filters and clips values of two
horizontal adjacent 4×4 blocks should be obtained at the same
time, as the bit length for two horizontal adjacent blocks with
block width equals to 4 is exactly 128 bits, which can utilize
the 128-bit SIMD efficiently. Second, as NEON only supports
shuffle processing in byte level, a possible way to use shuffle
processing in word level is found to support filter coefficient
rotating process. Third, considering the NEON register in ALF
filter is very time consuming, it is preferred to load multiple
4×4 blocks data to do ALF processing with NEON 128 bit
registers at the same time, which can obtain a better efficiency.

TABLE I
COEFFICIENTS FOR 8-TAP FILTERS

Fractional sample Interpolation filter coefficients
position f0 f1 f2 f3 f4 f5 f6 f7

1 0 1 -3 63 4 -2 1 0
2 -1 2 -5 62 8 -3 1 0
3 -1 3 -8 60 13 -4 1 0
4 -1 4 -10 58 17 -5 1 0
5 -1 4 -11 52 26 -8 3 -1
6 -1 3 -9 47 31 -10 4 -1
7 -1 4 -11 45 34 -10 4 -1
8

-1 4 -11 40 40 -11 4 -1(hpelIfIdx=0)
8

0 3 9 20 20 9 3 0(hpelIfIdx=1)
9 -1 4 -10 34 45 -11 4 -1
10 -1 4 -10 31 47 -9 3 -1
11 -1 3 -8 26 52 -11 4 -1
12 0 1 -5 17 58 -10 4 -1
13 0 1 -4 13 60 -8 3 -1
14 0 1 -3 8 62 -5 2 -1
15 0 1 -2 4 63 -3 1 0

B. Optimization on Interpolation Filter

Interpolation module is also a time-consuming part in
H.266/VVC decoder side, which uses filters to help generate a
better motion compensated block, where 8-tap filer is used for
luma component, 4-tap filter is used for chroma component. In
the module of decoder side motion vector refinement (DMVR),
2-tap filter is used. In order to reduce the calculation amount
and speedup the interpolation process, the characteristics of the



TABLE II
INFORMATION FOR TEST MATERIALS

Class Sequence Frames
Bitrate Bitrate
[Mbps] [Mbps]
/RA /LDB

ClassA

Tango 294 16.57 /
FoodMarket 300 14.66 /

Campfire 300 42.33 /
CatRobot 300 17.45 /

DaylightRoad 300 22.73 /
ParkRunning 300 95.98 /

ClassB

MarketPlace 600 11.49 14.96
RitualDance 600 8.96 9.92
Cactus 500 8.98 14.53
BasketballDrive 500 10.39 15.14
BQTerrace 600 17.90 37.98

ClassSCC-1080p

ArenaOfValor 300 11.66 12.29
FlyingGraphics 600 23.10 25.70
Desktop 600 1.98 1.09
Console 600 3.64 3.29
ChineseEditing 600 3.89 2.33

filter coefficients distribution should be taken in consideration.
Table I shows the coefficients for 8-tap filter as an example.

From Table I, it can be seen that only if the sample in
the middle fractional position has full 8-tap filter coefficients,
for fractional position smaller than 5 or larger than 11, only
7-tap filter is necessary. Thus, we can save several times of
the multiplication computation for each pixels in this case.
Based on this, the interface of the SIMD function is divided
according to the fractional position, which makes different
strategies can be designed adapted to the actual filter length for
speedup. Considering the symmetric characteristic, fractional
sample position equals to 1 and 15 share the same function for
code clean, which may help reducing the size of the decoder
library. In addition to the separation according to the fractional
position, we classify the filter set according to the input and
output bit depth as well, as different bit depth should use
different function to reduce the logic check times.

IV. EXPERIMENTAL RESULTS

To verify the decoding performance, the results and anal-
ysis for the optimized software decoder on different mobile
platforms are provided. Test bitstreams are generated by the
VTM11.0 reference software under the common test condition
(CTC) [6] with HD and UHD YUV-420 test sequences and 8-
bit internal bit-depth. The information for the test materials is
shown in Table II, where the QP value for encoding each test
sequence is in the range from 22 to 37 following the CTC. The
maximum bitrate for the test sequences under random access
(RA) configuration and low delay B (LDB) configuration are
provided, which can provide the impressions of the decoding
complexity for each sequence.

For showing the decoding performance on different plat-
forms, two high-end smartphones with the top SoC on iOS and
Android platforms are used in this test, which is iPhone 12pro
with Apple A14 SoC and Vivo IQOO3 with Snapdragon 865
SoC. Table III shows the performance on these two different

TABLE III
THE PERFORMANCE ON IOS/ANDROID PLATFORMS

Class
VTM O266 O266 O266
Thread

1
Thread

1
Thread

2
Thread

Full
[fps] [fps] [fps] [fps]

ClassA-RA 2 11 19 32
iOS ClassB-RA 9 53 86 129

(A14) ClassB-LB 8 50 80 102
6core SCC-RA 13 82 126 180

SCC-LB 14 88 145 168
Android ClassA-RA / 6 10 20
(Snap- ClassB-RA / 26 38 75
dragon- ClassB-LB / 26 40 59

865) SCC-RA / 41 60 104
8core SCC-LB / 43 63 85

TABLE IV
THE SPEEDUP RATIO FOR MULTI-THREADING AND SIMD

Class
Thread SIMD O266 T-2 T-6
1 w/o Speed- Thread Speedup Speedup
NEON up Ratio 1[fps] vs T-1 vs T-1

ClassA-RA 3 3.53 11 1.69 2.87
ClassB-RA 14 3.78 53 1.62 2.44
ClassB-LB 13 3.73 50 1.59 2.03
SCC-RA 26 3.08 82 1.54 2.21
SCC-LB 28 3.15 88 1.63 1.90
Average / 3.45 / 1.61 2.29

platforms. For A14 SoC, the maximum core number is 6,
while for Snapdragon 865, the core number is 8. Thus the
label “Thread-full” in Table III means 6 or 8 separately.
In this Table, the proposed real-time software H.266/VVC
decoder is marked as O266, and the reference software is
VTM, where we can see the 4K stream can achieve above
30fps on A14 platform when using 6-threads parallelism. If the
single thread mode is used, 1080p bitstream can be decoded in
real-time based on A14 SoC. When compared with VTM, the
acceleration ratio is about 5.5 times for different classes. In
addition, from the experimental results, as the screen content
sequences can be predicted well by the intra block copy
technology, the bitrate is smaller than the test sequences with
natural scene, which makes the decoding speed for screen
content test sequences are higher than the common videos. In
this test, the decoding speed for screen content test sequences
can achieve averagely up to 180 fps on iPhone 12 pro. As the
performance of Snapdragon 865 is lower than the A14 SoC,
the decoding speed on the Android platform is smaller than
the iOS platform, where the average decoding speed for class
B is averagely 26 fps on single thread and can achieve up to
75 fps on 8 threads. For screen content sequences, Snapdragon
865 can decode them in real-time, which is higher than 30fps
on single thread, and has up to 104 fps on 8 threads.

Based on the analysis of Table III, the speedup ratio for
multi-threading can be obtained, which is summarized in the
Table IV. When compared with the speed of single-thread
decoding and 2-threads decoding on iPhone 12pro, the average
speedup ratio is about 1.61, while for 6-threads parallelism, the
speedup ratio is 2.29. The non-linear speedup ratio increase



Fig. 4. Runtime Spending of Each Processing Block on ARM Platform with
SIMD Acceleration.

is due to the chip design of A14 SoC, as there are only
two high-performance processors among the 6-core SoC. In
this table, the speed up ratio for SIMD acceleration is also
provided, where the average speedup ratio is 3.45. Noted,
because different modules have different internal bit depth in
the calculation process, the speedup ratio for each module is
different. Fig. 4 shows the runtime ratio information of each
processing block on ARM platform with SIMD acceleration.
As ALF is the most time-consuming part, and the design is
appropriate to obtain high speedup ratio from NEON intrinsics,
many efforts are put in this part for SIMD acceleration. When
compared with the runtime ratio of each module without SIMD
in Fig. 2, the proportion of ALF module is decreased from
62.01% to 30.95%, which indicates the speedup ratio of ALF
benefiting from SIMD is much higher than other modules.

Since the Apple A14 and Snapdragon 865 SoC are both
the processors which have the best quality on their own
platform, we also conduct some tests on the iPhone 11pro
with A13 SoC and iPhone Xs Max with A12 SoC to obtain
the performance on different devices. The experimental results
are shown in Table V, where the decoding speed on A12
SoC is slightly higher than 30fps on class B test sequences.
Thus, for real applications on iOS platform, it is suggested
to use the devices with the performance equal or higher
than Apple A12 SoC and enable multi-threading decoding
to prevent the performance drop when decoding the high
complexity bitstreams. In addition, the decoding speed of the
per-sequence results for the Class B test sequences under
RA configuration is also provided in Table VI to show more
detailed information.

V. CONCLUSION

In this paper, we present a high optimized H.266/VVC
software decoder, which can support the real-time decoding on
the ARM platform. On top of the framework of the published
real-time HD/UHD decoder on the x86 platform, a uniform-
designed software H.266/VVC decoder that can run real-time
on different platforms and supports versatile functionalities is
obtained. It has been shown that based on iPhone 12pro, 30fps

TABLE V
THE PERFORMANCE ON DIFFERENT IOS DEVICES

Class
VTM O266 O266 O266
[fps] Thread1 Thread1 Thread1

(A14) [fps] (A14) [fps] (A13) [fps] (A12)
ClassA-RA 2 11 9 7
ClassB-RA 9 53 41 32
ClassB-LB 8 50 42 32
SCC-RA 13 82 60 49
SCC-LB 14 88 68 52

TABLE VI
THE PER-SEQUENCE RESULTS ON DIFFERENT IOS

DEVICES(CLASSB-RA)

Sequence QP
VTM O266 O266 O266

Bitrate Thread1 Thread1 Thread1 Thread1
[Mbps] [fps]

(A14)
[fps]
(A14)

[fps]
(A13)

[fps]
(A12)

MarketPlace

22 11.49 7 39 30 24
27 4.68 8 45 35 28
32 2.10 9 51 39 31
37 0.96 12 61 47 37

RitualDance

22 8.96 7 42 33 26
27 4.47 8 50 38 28
32 2.34 10 58 44 36
37 1.25 11 67 52 41

Cactus

22 8.98 8 45 35 26

27 3.50 9 57 44 34
32 1.68 11 68 52 39
37 0.85 13 74 58 52
22 10.4 7 40 30 23

Basketball 27 4.17 7 47 36 28
Drive 32 2.00 9 53 41 31

37 1.03 10 53 41 35

BQTerrace

22 17.9 7 34 27 21
27 3.49 9 51 39 31
32 1.44 10 58 45 36
37 0.70 12 66 50 41

Average / / 9 53 41 32

decoding speed can be achieved for 4K bitstreams with SIMD
acceleration and multi-threading processing.

REFERENCES

[1] B. Bross, J. Chen, S. Liu and Y. Wang, “Versatile Video Coding (Draft
10),” ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 document
JVET-S2001, teleconference, July 2020.

[2] High Efficiency Video Coding (HEVC), Rec. ITU-T H.265 and ISO/IEC
23008-2, January 2013 and later editions.

[3] B. Zhu, et al. “A software decoder implementation for H. 266/VVC
video coding standard,” arXiv:2012.02832, 2020.

[4] B. Zhu, S. Liu, X. Xu, X. Zhang, C. Gu, L. Wang, W. Feng, “Perfor-
mance of a VVC software decoder,” ITU-T SG 16 WP 3 and ISO/IEC
JTC 1/SC 29/WG 11 document JVET-T0095, teleconference, October,
2020.

[5] W.-J. Chien, et al. “JVET AHG report: Tool reporting procedure
(AHG13),” ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11
document JVET-S0013, teleconference, July 2020.

[6] F. Bossen, J. Boyce, X. Li, V. Seregin, K. Sühring, “VTM common test
conditions and software reference configurations for SDR video,” ITU-T
SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 document JVET-T2010,
teleconference, October. 2020.

[7] X. Xu, et al. “Intra Block Copy in HEVC Screen Content Coding
Extensions,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 2016, 6(4): 409-419.

http://arxiv.org/abs/2012.02832

	I Introduction
	II Coding Tool Independent Decoder Optimization
	II-A Overview of H.266/VVC Decoder
	II-B Tool Independent Decoder Optimization

	III Key Coding Tool Optimization
	III-A Optimization on ALF
	III-B Optimization on Interpolation Filter

	IV Experimental Results
	V Conclusion
	References

