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Abstract—Inpainting-based image compression is emerging as
a promising competitor to transform-based compression tech-
niques. Its key idea is to reconstruct image information from
only few known regions through inpainting. Specific partial
differential equations (PDEs) such as edge-enhancing diffusion
(EED) give high quality reconstructions of image structures with
low or medium texture. Even though the strengths of PDE-
and transform-based compression are complementary, they have
rarely been combined within a hybrid codec. We propose to
sparsify blocks of a JPEG compressed image and reconstruct
them with EED inpainting. Our codec consistently outperforms
JPEG and gives useful indications for successfully developing
hybrid codecs further. Furthermore, our method is the first to
choose regions rather than pixels as known data for PDE-based
compression. It also gives novel insights into the importance of
corner regions for EED-based codecs.

Index Terms—PDE-based Compression, Edge-enhancing
Anisotropic Diffusion, JPEG Compression, Hybrid Codecs

I. INTRODUCTION

With image data steadily becoming more abundant and

of higher resolution, the need for good lossy compression

codecs increases. Established transform-based codecs such as

JPEG [1] and JPEG2000 [2] enforce sparsity in the transform

domain to reduce coding costs. In contrast, inpainting-based

codecs [3] compress data in the spatial domain by carefully

selecting and storing only very few pixels. The missing data

are reconstructed via inpainting from these pixels, the so-

called inpainting mask. Picking a suitable inpainting operator

as well as an efficient method for storing the locations of

the remaining pixels is vital for the efficiency of a codec.

Diffusion processes modelled by partial differential equations

(PDEs) have been particularly successful. The current state of

the art for natural colour images is the R-EED-LP codec by

Peter et al. [4] which employs edge-enhancing diffusion

EED [5]. It extends the work of Galić et al. [3] and

Schmaltz et al. [6] and consistently outperforms JPEG. It can

also surpass JPEG2000 for high compression ratios and images

with medium amounts of texture.

The strengths of transform- and PDE-based codecs are

complementary: Diffusion-based inpainting benefits from the

inherent smoothness conditions and edge preservation prop-

erties of the inpainting operator. Therefore, it can compress
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piecewise smooth structures highly efficiently by only storing

very few mask points [7]. However, these codecs are less ef-

ficient for high-frequent, repeating structures such as textures.

In such regions, transform-based methods in general surpass

PDE-based techniques.

A. Our Contribution

In the present paper, we propose to combine transform-

based with PDE-based methods to exploit their individual

strengths. To this end, we successively remove blocks from

a JPEG compressed image with a probabilistic sparsification

approach and reconstruct them with EED inpainting. The only

significant storage overhead is a block mask, indicating which

compression technique is used for each block. In particular, we

do not use any additional information apart from the JPEG

compressed blocks for our inpainting process. The resulting

hybrid block-based EED codec (B-EED) consistently outper-

forms JPEG, showing that transform-based and inpainting-

based ideas can be mutually beneficial. Additionally, B-EED

is the first codec to combine stored regions instead of single

pixels with EED inpainting. The acquired masks automatically

select regions containing corners. This indicates that corner

information is not only essential for the reconstruction quality

of EED, but also a preferred form of information.

B. Related Work

Hybrid ideas have been successfully used in image com-

pression in various ways. Peter and Weickert [7] proposed a

block-based decomposition of the image by choosing for each

block between a reconstruction with EED or exemplar-based

inpainting. In a similar way, Zhou et al. [8] store some image

blocks with vector quantisation, discard all others and recover

them with total variation inpainting. However, none of these

codecs involve transform-based ideas.

In transform-based compression, JPEG [1] is currently the

most widely used image codec. Its core idea is to apply the

discrete cosine transform (DCT) to an image and quantise

high-frequent coefficients in a fairly coarse way. This allows a

compact data representation without perceptually severe degra-

dations. In order to localise the inherently global transform, it

performs all computations on separate 8×8 pixel blocks. JPEG

is a perfect candidate for integration into a hybrid transform-

inpainting codec, since it is easily accessible and structures

the image into almost independent blocks.

http://arxiv.org/abs/2102.01138v3


Building onto JPEG compression, Rane et al. [9] proposed

to reconstruct missing blocks with either structure inpainting

or texture synthesis. More recently, Couto et al. [10] com-

bined JPEG with patch-based inpainting. Following a more

complex approach, Liu et al. [11] augmented H.264 [12]

with both patch-based inpainting and additionally stored side

information. All of these methods remove blocks either by

simple mode detection in scanline order or by analysing image

structures.

In contrast, we include the reconstruction error directly

into our block removal approach. Moreover, we generalise

the probabilistic sparsification and nonlocal pixel exchange

methods by Mainberger et al. [13] to obtain an error-based

block selection strategy.

C. Paper Structure

In Section II, we briefly review EED-based compression.

EED plays the central role in our hybrid codec, which we

propose in Section III. After evaluating our codec in several

experiments in Section IV, we conclude with Section V.

II. EED IN IMAGE COMPRESSION

Edge-enhancing diffusion for denoising has been introduced

by Weickert [14] and has firstly been used for inpainting

by Weickert and Welk [15]. Assume that pixel values of a

greyscale image are known at mask positions K ⊂ Ω as a

subset of the image domain Ω ⊂ R
2. Weickert and Welk [15]

compute the inpainting result as the steady state of the image

u(x, y, t) that evolves under the EED equation

∂tu = div (D(∇uσ)∇u) on Ω\K × [0,∞) , (1)

where uσ is a Gaussian-smoothed version of u with standard

deviation σ.

For EED, Weickert [14] defines the diffusion tensor D

via its eigenvectors v1 ‖ ∇uσ and v2 ⊥ ∇uσ and corre-

sponding eigenvalues λ1 and λ2. The eigenvalues are set as

λ1 = g(|∇uσ|
2) and λ2 = 1 with the Charbonnier diffusivity

g(s2) = (1 + s
2

λ2 )
−

1

2 [16]. By design, EED allows smoothing

along edges, but inhibits it across them. The contrast parameter

λ determines how pronounced the gradient magnitude has to

be to indicate an edge. Since EED guides diffusion along

image structures, it is able to propagate information over large

empty image regions.

Galić et al. [3] exploited the strong reconstructing properties

of EED inpainting for image compression by storing values of

very sparse masks. Building on this first codec, Schmaltz et

al. [6] optimised performance for grey value images in their

R-EED codec. For colour images, Peter et al. [4] extended R-

EED to their R-EED-LP codec by enforcing sparser masks in

the chroma channels and guiding inpainting there through the

diffusion tensor of the reconstructed luma channel. R-EED-LP

can outperform JPEG2000 for large compression ratios and

images with medium texture. For highly textured regions, R-

EED-LP becomes inefficient, since it has to store an extensive

amount of mask points. As a remedy, codecs with nonlocal,

exemplar-based inpainting have been proposed [17], but they

(a) Original. (b) Sparsified Image. (c) Reconstruction.

Fig. 1: Block sparsification on a simple test image. Discarded

blocks are set to grey. B-EED removes all blocks except for

those 8 which contain a corner, indicating that corner regions

are the preferred form of known data for EED-based codecs.

are computationally expensive. Thus, let us now explore a

faster hybrid strategy.

III. MARRYING JPEG AND EED INPAINTING

JPEG performs significantly worse than EED-based codecs

on smooth regions since it has to store values for blocks

where the inpainting process can propagate information from

surrounding regions. By dropping image data in such areas and

reconstructing them with EED inpainting, we can reduce stor-

age significantly while preserving the overall reconstruction

error or even decreasing it. Our novel, block-based B-EED

codec starts with a pure JPEG compressed version as input

image. In order to find out which JPEG blocks to remove,

we generalise the pixel-based probabilistic sparsification of

Mainberger et al. [13] to image blocks.

A. Data Optimisation

In a probabilistic block sparsification step, we randomly

pick a fraction cPS of all mask blocks as candidates and remove

them temporarily from the inpainting mask. We then perform

one global EED inpainting with the new mask. Afterwards, we

add back (1−rPS) of the removed blocks that have the largest

local error, as it is probable that these blocks are important for

the reconstruction. Consequently, we have removed rPScPS of

all mask blocks in one step. We repeat this process until the

mask reaches a target density. This allows to identify those

blocks that we can discard with least influence on the quality.

Since the greedy sparsification strategy does not guarantee

to reach a globally optimal mask, we additionally introduce

nonlocal block exchange (NLBE) as a generalisation of nonlo-

cal pixel exchange (NLPE) [13]. This allows to reinsert blocks

that have been removed in a sparsification step, although they

are important for a good reconstruction. First, we randomly

pick a fraction cNLBE of non-mask blocks as candidates. From

these candidates, we pick a fraction rNLBE with largest local

error and add them back to the mask. In order to keep the mask

density constant, we randomly remove rNLBEcNLBE of blocks

again. If the new mask improves the EED reconstruction, we

keep it, otherwise we discard it.

JPEG transforms colour images to YCbCr space and sub-

samples the chroma channels by a factor 2, exploiting the

fact that the human visual system values structure over colour.



original image JPEG compressed image B-EED compressed image

(ratio 60.6:1, PSNR 33.1 dB) (ratio 89.6:1, PSNR 32.7 dB)

mask for luma channel mask for chroma channels inpainting initialisation

Fig. 2: Comparison between JPEG and B-EED on a natural image. The bottom right areas are zooms of the corresponding

left rectangles. Best viewed in colour. Top row: The B-EED codec reduces coding costs by removing blocks from a baseline

JPEG image. Bottom row: Mask blocks (in black) cluster at textured regions.

Since our block sparsification method inherently reduces in-

formation in the spatial domain, we can achieve a similar

effect by allowing a differing mask density in the chroma

channels. B-EED separately optimises the mask density of

the luma and the chroma channels w.r.t. reconstruction error.

Indeed, the resulting chroma densities are much lower than

the corresponding luma densities.

Moreover, we found that block masks for a fixed density

hardly change for reasonable choices of the EED parameters

σ and λ. Thus, we first compute a mask with probabilistic

sparsification for standard EED parameters. In order to achieve

a given target compression ratio, this step includes the opti-

misation of the compression ratio of the baseline JPEG image

as well as the mask densities of luma and chroma channels.

Afterwards, we optimise σ and λ in two nested golden section

searches. Subsequently applying NLBE eliminates blocks that

are not optimal for the new parameter setting.

B. Storage and Reconstruction

The B-EED encoded image has very little storage overhead.

In the header, we write the image size and EED parameters σ

and λ separately for luma and chroma channels. Since we

represent inpainting block positions in a binary mask, we

can store them as simple bit sequences and compress them

afterwards with arithmetic coding [18]. For the actual image

data, we interpret the remaining blocks as smaller images

which we compress with the widely used Libjpeg library [19].

The sizes of these images determine jump positions for the

decoder that we additionally write to the header.

In the reconstruction step, we read JPEG compressed blocks

from the smaller JPEG images and place them at their original

positions in the image. Afterwards, we apply a global EED

inpainting on the original image grid for every colour channel

using the information from the JPEG blocks. For the chroma

channels, we guide the inpainting with the diffusion tensor of

the reconstructed luma channel as in R-EED-LP.

IV. EXPERIMENTAL EVALUATION

Our experiments cover two main topics: Firstly, we examine

which image structures our B-EED codec picks as optimal data

on a simple test image. Secondly, we compare B-EED against

JPEG and R-EED-LP .

A. EED and Corners: A Good Match

So far, there is no codec that combines EED inpainting

with stored regions instead of pixels. Based on the results

of Schmaltz et al. [6], one could only conjecture that a codec

using EED inpainting should pick corners as stored data for

a reconstruction with minimal error. To check this hypothesis,

we design a simple test image (Fig. 1a) with eight corner

locations lying always within one distinctive 8×8 pixel block.

We then sparsify this image with our B-EED codec while

driving the density to the extreme such that only 8 blocks

remain (Fig. 1b). Note that borders only serve better visibility

and are not included in the test image. We can see that indeed,

the blocks containing corner information are the ones that

remain. Our codec identified these regions as optimal in terms

of reconstruction error and reconstructs the original image



Original JPEG B-EED

ratio 68.4:1, PSNR 29.7 dB ratio 70.4:1, PSNR 30.9 dB

ratio 93.1:1, PSNR 28.3 dB ratio 94.4:1, PSNR 30.0 dB

ratio 111.1:1, PSNR 27.8 dB ratio 111.1:1, PSNR 31.4 dB

Fig. 3: Comparison between JPEG and B-EED for the images 15, 20, and 23 of the Kodak database (from top to bottom).

The zooms contain areas with mostly JPEG compressed blocks. In addition to increasing the PSNR, B-EED reduces blocking

artefacts in the background and also improves quality in textured regions through increased JPEG initialisation quality.

faithfully (Fig. 1c). This indicates that using regions containing

image corners as known data in EED-based compression can

lead to highly efficient codecs.

B. Comparison to Other Codecs

In our next experiment, we illustrate the potential of B-

EED on a real-world image. As a test case, we choose Image

23 from the Kodak database [20]. Figure 2 shows a JPEG

compressed version and a B-EED result acquired with the

same JPEG image as initialisation. One can see that our codec

mostly removes blocks in the background area. This yields a

much smoother reconstruction compared to JPEG, especially

visible for large compression ratios. B-EED keeps highly

structured areas as JPEG blocks and propagates information

from there into the empty regions. Thus, we do not create

any block artefacts apart from the ones present between JPEG

blocks. In this way, we increase the compression ratio by 48%
while decreasing the PSNR by only 1%.

In our third experiment, we visually and quantitatively eval-

uate B-EED on a selection of images from the Kodak database.

Along with Image 23, we select Image 20 and Image 15

as representatives for varying image content. Figure 3 shows

a visual comparison with JPEG for different compression

ratios. By smoothly inpainting homogeneous regions, B-EED

removes blocking artefacts. Since it reduces storage cost via

block removal, B-EED can choose lower compression ratios

for its JPEG initialisation image leading to more accurate

reconstructions also in textured regions. For the presented

images, the chosen JPEG initialisation compression ratios are

about 25% smaller than original JPEG ones. Corresponding

rate distortion curves in Figure 4 indeed show that B-EED

outperforms JPEG over all compression ratios, for high ratios

by a large margin. It can be seen as competitive to R-EED-

LP while being less computationally demanding and easier

to optimise, decreasing runtime by roughly a factor 10 for

medium compression ratios. In the compression pipeline de-
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Fig. 4: Rate distortion curves for three images from the Kodak database. B-EED outperforms JPEG consistently and comes

close to R-EED-LP with less computational effort.

scribed in Section III, the optimisation of σ and λ improved the

error by up to 3% compared to the standard choice. Further-

more, NLBE decreased the error additionally by up to 10%.

We observed stronger improvements for higher compression

ratios, since non-optimally chosen blocks in the probabilistic

sparsification have a higher influence on the global error for

smaller mask densities.

V. CONCLUSIONS

We have proposed the first hybrid B-EED codec which

combines JPEG and EED inpainting. Despite its simplicity,

the codec is able to outperform JPEG on a set of natural

images. Additionally, it performs similarly as the state of the

art of PDE-based codecs while using much less demanding

optimisation techniques. This shows that already simple com-

ponents can lead to viable hybrid codecs performing well on

a variety of image content. We expect that the application of

our proposed concepts to more sophisticated codecs such as

H.264 [12] can lead to similar improvements.

Furthermore, our work is the first to show that a codec

combining EED inpainting with stored regions instead of

pixels automatically selects image corners as optimal known

data. This opens up a number of possibilities for advanced data

selection strategies for PDE-based codecs which supplement

pixel information with additional corner regions.
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