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Abstract—Due to the diverse sparsity, high dimensionality, and
large temporal variation of dynamic point clouds, it remains a
challenge to design an efficient point cloud compression method.
We propose to code the geometry of a given point cloud by
learning a neural volumetric field. Instead of representing the
entire point cloud using a single overfit network, we divide the
entire space into small cubes and represent each non-empty cube
by a neural network and an input latent code. The network
is shared among all the cubes in a single frame or multiple
frames, to exploit the spatial and temporal redundancy. The
neural field representation of the point cloud includes the network
parameters and all the latent codes, which are generated by
using back-propagation over the network parameters and its
input. By considering the entropy of the network parameters
and the latent codes as well as the distortion between the original
and reconstructed cubes in the loss function, we derive a rate-
distortion (R-D) optimal representation. Experimental results
show that the proposed coding scheme achieves superior R-D
performances compared to the octree-based G-PCC, especially
when applied to multiple frames of a point cloud video. The
code is available at https://github.com/huzi96/NVFPCC/.

Index Terms—Point Cloud Compression, Neural Field, Rate-
Distortion Optimization

I. INTRODUCTION

We are in an era when the 3D visual applications are
emerging. Modern 3D visual capturing devices are widely
deployed on autonomous cars, mobile phones, drones, etc. In
these applications, point clouds serve as the raw representa-
tions for processing and analysis of 3D scenes. Due to the
computation limitation at the capturing devices, it is common
practices to compress and transmit captured point clouds to
remote processors and store them for future analysis. On the
other hand, in AR/VR applications, 3D contents represented
by point clouds need to be compressed and delivered from
servers to end users or between end users. Both scenarios
require efficient compression schemes for point clouds.

Due to the higher dimensionality and the sparsity in na-
ture, 3D visual data are generally more difficult to process
compared to 2D visual data, i.e. images and videos. In terms
of compression, the challenges coming with point clouds are
mainly twofold.

Transform Design. For images and videos, time-frequency
transforms like DCT and DWT are shown to perform well
for transform coding. Different from images, where the sam-
pling of the signal is on a dense grid, point clouds are
sparsely sampled in the 3D space. In terms of voxel grid

occupancy, even a dense point cloud is sparse from the signal
point of view. Therefore, existing time-frequency transforms
cannot be directly applied to point clouds. To tackle this
problem, machine learning based point cloud coding schemes
are developed. One category of learned point cloud coder
follows the octree coding structure. Given the already coded
parent nodes [5] and siblings [6], [9] in the voxel grids, the
probability distribution of the occupancy in the children nodes
is predicted, and directly serves entropy coding. The other
category adopts the binary voxel grid data structure, where an
3D auto-encoder is adopted to down-sample a point cloud into
compact latent representations [13]. Although these methods
achieve impressive rate-distortion performances, they show
limitations when adapting to dynamic point cloud coding.

Motion Compensation For conventional 2D videos, predic-
tion and motion compensation are shown to be the effective to
exploit the temporal redundancy. Due to the memory and com-
putational inefficiency, point clouds are usually not represented
as voxel grids but rather octrees [10]. Such octrees vary from
frame to frame and it is difficult to find the correspondences
between octree nodes for motion compensation. Therefore,
coding of point cloud videos is far more challenging than
2D videos. The Moving Picture Experts Group (MPEG) has
developed two approaches for point cloud coding [3], where
the V-PCC adopts a video codec-based method to code point
cloud videos. Such methods rely on projections from 3D points
to 2D frames during encoding, and reprojection from 2D to
3D during decoding, introducing distortion and complexity.
However, because it can leverage the significant progress in
2D video coding over the past 30 years, and effectively exploit
the temporal redundancy through motion compensation, V-
PCC has substantially better performance than G-PCC applied
to individual frames. In [2], a learned inter-frame predictive
point cloud coding framework is developed, and achieves
improved R-D performance over V-PCC. However, explicit
motion compensation is still required over voxel grids.

In this paper, we present a unified approach suitable to
compress both static and dynamic point clouds, without ex-
plicit motion compensation. We focus on the coding of the
geometry only. Our work is inspired by a recent advance in
3D modeling, i.e. Neural Radiance Field (NeRF) [7]. Our
core idea is to represent a 3D point cloud with an implicit
neural field. Specifically, we divide the space occupied by a
point cloud into subregions based on a shallow octree. Each

1

ar
X

iv
:2

21
2.

05
58

9v
1 

 [
cs

.C
V

] 
 1

1 
D

ec
 2

02
2

https://github.com/huzi96/NVFPCC/


⋯
⋯

⋯
}M levels

(2N,2N,2N)
⋯

zk

q : (μ, σ)

ℒR

C
onv↑

IG
D

N
C

onv↑
R

eLU

C
onv

R
eLU

C
onv↑

R
eLU

C
onv

R
eLU

C
onv↑

Sigm
oid

⋯
⋯

Classify

ℒD1
Classify

ℒD2

ℒD3

⋯

Latent Code Generation

Entropy C
oded and

 Transm
itted to D

ecoder

z
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(b) Coding procedure.

Fig. 1: Overall framework of the proposed method.

subregion is associated with a latent code. The occupancies
inside a subregion are reconstructed by its latent code and a
network that is shared among all subregions. Both the network
parameters and the latent representations are rate-distortion
optimized, quantized and entropy coded. The collection of the
network parameters and all the latent codes forms the neural
field. To decode, we execute the network with the latent codes
and the network parameters to reconstruct the point cloud. This
method can be easily extended to code a point cloud video, by
learning a single shared network for all the subregions over a
group of frames.

The benefits of our approach are three folds:
• We take advantage of machine learning to design non-

linear transforms suitable for point cloud signals. Such
transforms are effective to reduce the redundancy.

• The same method works on both static and dynamics
point clouds, yielding more compression gains on dy-
namic point clouds without explicit motion estimation.

• Our approach does not rely on any dataset to train,
providing more flexibility for the highly diverse point
cloud data.

Experimental results show that the proposed method achieves
superior rate-distortion performance compared with G-PCC
[8], the MPEG octree based point cloud codec. We further
show that our proposed method has the potential to achieve
greater improvements when coding point cloud videos.

II. NEURAL FIELD BASED COMPRESSION

A. Represent Point Cloud with Neural Field

Neural fields, i.e. neural networks overfitted on a given
scene, are capable of constructing implicit volumetric func-
tions to represent 3D environments [7]. To utilize neural
fields for point cloud compression, three problems need to
be addressed: 1) We need to represent a point cloud by a
volumetric function, so a network can be trained to fit the
function and reconstruct a 3D volume. 2) the entropy of
the neural field parameters should be controllable to reach
different bit-rates. 3) With the original NeRF structure, we
need to query every voxel to reconstruct the occupancy, where
a large portions of them are empty. Such process is time
consuming and not suitable for decoding. Directly converting

a point cloud to the volumetric form, i.e. voxel grid, is also
memory inefficient. Besides, as we need many parameters to
fully characterize the entire voxel grid, training the network
and controlling the bit-rate is difficult.

We address these issues by constraining the volumetric
space represented by the neural field, and using a convolutional
network to generate groups of points at one time. We first
build a shallow octree from the point cloud. Such a shallow
octree only takes very few bits to represent. Each octree leaf
node that is 1 corresponds to a non-empty subregion (thereafter
called a cube) of the original point cloud space that contains
points. We use a neural network along with a input latent code
to represent the occupancy in each non-empty cube, so the
burden to characterize the entire volume is lightened. A shared
network that can reconstruct all cubes of a point cloud, along
with their respective latent codes, are learned to represent all
the cubes. Unlike the original NeRF work, where the input is
a user-specified view point, and only the network is trained to
generate the 2D projection from that view point, we learn both
the network and the latents associated with all the cubes. We
call the collection of the network parameters and the latents
as the neural field.

The framework of the proposed approach is illustrated in
Fig. 1. Assuming the original point cloud is voxelized and
represented with an M +N level octree. We take the first M
levels as the shallow octree T . It describes the point cloud
x at a coarse resolution. Each non-empty leaf node of T
is associated with a subtree of level N , corresponding to a
(2N , 2N , 2N ) binary cube. For example, if the original point
cloud is described by a 10-level octree, we may choose M=5,
and N=5, so that each cube has a shape of (32, 32, 32). The
k-th cube is associated with a trainable latent code zk.

Given a point cloud, the encoder learns the network param-
eters y and the latent codes z = {zk,∀k} through backprop-
agation using a rate-distortion loss function. The quantized
y and z are entropy coded, and the resulting bits together
with the bits describing the shallow tree T form the coded
representation of the original point cloud. At the decoder, we
reconstruct the voxelized representation of the point cloud by
feeding the latent code zk through a shared neural network
with parameters y to reconstruct each non-empty cube.
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B. Neural Field Network Structure

In this section, we describe the neural network structure
for generating a non-empty cube in more detail. Because
we want to generate a size (2N , 2N , 2N ) binary cube, and
we let the latent code zk to have a spatial dimension of
(2L, 2L, 2L), L < N with J channels. The generator consists
of several convolution layers, some with transposed convo-
lutions as the upsampling method. We add a latent code
generator in front of the cube generator consisting of a 1× 1
convolutional layer and a 3D GDN [1], followed by a rounding
function. The input to the latent code generator vk has the
same dimension as zk. The purpose of the 1×1 convolutional
layer and the 3D GDN layer is to decorrelate the elements in
zk and furthermore make each element (before rounding) have
a distribution similar to Gaussian [1]. An example network
with N = 5, L = 1, J = 4 is shown in Fig. 1a. Notice that
this is a very light neural network, thanks to the small size of
the cube.

C. Rate Constraint Loss

We will optimize the latent codes and the network param-
eters by minimizing a rate-distortion loss function,

L = LRz + LRy + λLD. (1)

Different λ is set to achieve different R-D tradeoff. We first
discuss how to estimate the rate terms LRz and LRy in the
following.

By assuming each element zi in z (before quantization)
follows a Gaussian distribution with mean µz and scale σz ,
we can calculate the lower bound of the bits needed to encode
the quantized z, as,

LRz =
∑
i

− log(q(zi)), (2)

where q(zi) is the estimated probability of zi, given by,

q(zi) = φ(
zi − µz + ∆/2

σz
)− φ(

zi − µz −∆/2

σz
), (3)

where ∆ equals the quantization step, and φ is the standard
normal cumulative distribution function. We assume each ele-
ment of the network parameter y before quantization also has
a Gaussian distribution, with parameters µy, σy , from which
we can estimate the lower bound on the rate for encoding y,
denoted by LRy

. We use a quantization step size of ∆ = 1/16
for the network parameters and ∆ = 1 for the latent code.
During training, to estimate the bit-rate for z and y and
make the decoder quantization resilient, we add a uniform
noise U(−∆/2,∆/2) to each element in z and y rather then
performing quantization.

The encoding of a point cloud is de facto the training
process of the network using backpropagation, but we update
both network parameters y and the input vk,∀k (and con-
sequently the latent code zk,∀k). In addition, we also update
the distribution parameters q = {µz, σz, µy, σy}. Since q only
contains a few floating point values, after the rate-distortion
training, we simply transmit q in its original 32-bit floating

w
Equivalent Param. = Quantized + Pseudo-Random
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y

Forward computation
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p

Fig. 2: Separation of initialization and the coded network
parameters.

point form to the decoder. Then the quantized latent code z
for all leaf nodes and the quantized network parameters y are
entropy coded based on q.

Note that the parameters in the latent code generator part of
the neural network (see Fig.1a) will be trained together with
the cube generator part, but they do not need to be encoded,
as the decoder only need to apply the latent code to the cube
generator part to decode each cube. Therefore y only includes
parameters in the cube generator. Similarly, during training,
we update vk instead of zk. We encode the final optimal zk
corresponding to the optimized vk.

D. Network Parameters Initialization

Since we need to entropy code both the network param-
eters and the latent representation, we need to apply rate
constraints on both during the training. In this circumstance,
the commonly used random weight initialization introduces
high entropy to the parameters at the beginning, making it
hard to control the bit-rate throughout the training process. To
address this problem, we propose to separate the initialization
from the coded network parameters, as illustrated in Fig. 2. We
use a Kaiming pseudo ramdon initialization [4] tensor p, with
the same shape as y, to initialize the network parameters. The
initialization p is fixed for all point clouds and shared with
the decoder. The actual network parameters are represented by
w = p + y. During the training, we only update y. Because
∂L
∂w = ∂L

∂y , we can use the standard backpropagation gradient
to update y. By initializing y with zeros, we can limit its
entropy throughout the entire training process. For the latent
code, we initialize with zeros for all elements, which help to
minimize the rate of the optimized latent code.

E. Distortion Loss Function

The distortion loss function we use is based on the binary
focal loss, formulated as,

Lfocal = −
∑
i

αi(1− Fi)γ logFi,

Fi =

{
qi if yi = 1

1− qi if yi = 0
, αi =

{
α if yi = 1

1− α if yi = 0
,

(4)

where yi ∈ {0, 1} is the ground truth occupancy of voxel i,
and qi is the predicted probability that voxel i is occupied.
Since in the voxel grid generated from a typical point cloud,
the non-empty voxels only occupy a very small portion, the
original BCE loss tends to make the trained network predict
all zeros. The focal loss is used to balance the empty and non-
empty voxels during training, which applies a higher weight
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to the voxels that are non-empty. In our experiments, α is set
to the portion of empty voxels in the binary grids.

However, the focal loss is designed for classification prob-
lems, where every sample with the same ground truth label has
the same weight. In voxel grid prediction, empty voxels far
away from the surface, if misclassified as occupied, introduce
greater geometric distortion. Hence, it is intuitive to apply a
higher penalty to these far-away errors. Following this idea,
in this work, we propose the distance-weighted focal loss
function, formulated as,

Ld = −
∑
i

αi(1− Fi)γDi logFi, Di = min
p∈S
||pi − p||2, (5)

where pi ∈ R3 is the 3D coordinate of voxel i and the
minimization is taken over the set S of all voxels that are
occupied in the ground truth point cloud. For positions farther
away from any occupied voxel in the ground truth, the loss
function applies higher penalties on false positive predictions.
In our implementation, before training, we compute the dis-
tances from every possible voxel to its nearest point in the
original point cloud in advance. Hence no extra computation
of distances is needed during the training.

Since we have multiple upsampling layers in the generator
network, we can have a better supervision by calculating
distortion loss at multiple spatial scales, i.e. (2N , 2N , 2N ),
(2N−1, 2N−1, 2N−1) and (2N−2, 2N−2, 2N−2) as shown in
Fig. 1a. The distortion term is the summation of the distortion
loss at different scales, as,

LD = LD1
+ LD2

+ LD3
, (6)

where LD2 and LD3 are focal losses calculated with the
down-sampled ground truth voxel grids. For LD1 we use the
distance weighted focal loss in Eq. (5).

F. Coding Procedure

Fig. 1b summarizes the encoding and decoding processes.
As shown, two bit-streams are formed by the encoder to
represent a point cloud, i.e., the shallow octree T and the
neural field (y, z). Since the shallow subtree T has only a
small number of levels, in our experiments we code them by
simply traversing the octree in BFS order and write out every
occupancy bit, which account for a very small portion of the
total bits. We assume that the parameters in y and/or z have
Gaussian distribution, with Gaussian parameters described by
q. The entropy coding will be aided with q. In Fig. 1b, we use
W to represent the bits for y and z. In general, q is content-
dependent and will also need to be coded. As described earlier,
since q only contains a few floating point values, we simply
use the original 32-bit floating point form to represent each
value. The bits for T, q, y, and z form the bit-stream for x.
At the decoder, we first entropy decode y and z based on
q, and construct the network using y. We then enumerate all
the non-empty leaf nodes of T and use the decoded latent
for each leaf node as the input to the network. The network
generates occupancy probabilities for all voxels in each cube.
The probabilities are binarized to reconstruct the point cloud.

III. EXPERIMENTAL RESULTS

A. Experimental Settings

We conduct experiments on the 8i Voxelized Full Bod-
ies (8iVFB) dataset (Longdress, Loot, Redandblack, Soldier),
which are adopted by MPEG Common Testing Condition [11].
The point clouds are all of bit-depth 10. We choose M = 5
and N = 5. We use a spatial dimension of (2, 2, 2) (i.e. L = 1)
for the latent code for each leaf node. We compare our method
with G-PCC TMC13 [8], for which the octree coding scheme
is used. Since we generate a probability for each cube element,
we threshold the probabilities to produce the reconstructed
point cloud. In the experiment, we choose the threshold that
balance the two PSNRs in determining the D1 PSNR [12] for
each point cloud. The threshold is signaled to the decoder with
32 bits.

We evaluate our proposed method in terms of R-D perfor-
mance. We measure the bit-rate as bit-per-point (bpp), where
the number of bits is the summation of the number needed
to code the first M -level octree, the network parameters, the
latent representations, and the distribution parameters. The
distortion is measured with the point-to-point error PSNR
(a.k.a. D1 PSNR).

B. R-D Performance

The comparison in R-D performance of the proposed
method and G-PCC on single frames of the point clouds is
shown in Fig. 3. For the same point cloud, we reach different
R-D points by training multiple networks with different λ,
different number of channels (i.e. J) in the latent code and
different widths of the generator network (i.e. the number
of output channels for the intermediate layers). The network
settings are fixed for the same λ among the entire testing
dataset. As shown, on all four point clouds, our method
achieve improved R-D performance than G-PCC.

The proposed method can be directly applied to dynamic
point clouds. Since frames in a dynamic point cloud sequence
share common geometry patterns, we can share the network
parameters among all leaf nodes in all frames from a dynamic
point cloud sequence. The bits to encode the network parame-
ters are therefore amortized over the larger number of points.
We further conduct the dynamic point cloud compression
experiments on the Longdress and Redandblack sequences,
where we code 16 successive frames in each sequence,
i.e. longdress vox10 1300 to longdress vox10 1315 in Long-
dress, redandblack vox10 1450 to redandblack vox10 1465
in Redandblack. Since G-PCC only supports all-intra coding
mode, we can take the G-PCC R-D curve as a reference to the
dynamic coding scenario. As shown in Fig. 3 (a, b), dynamic
point cloud can significantly benefits from our method, where
the neural field learns the mutually shared patterns among leaf
nodes over 16 frames.

C. Ablation Study on Architecture and Loss Function

To investigate the contribution by different components of
the proposed scheme, we compare different models obtained
with different configurations in a ablation study. The detailed
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Fig. 3: R-D curves by the proposed method and G-PCC.
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Fig. 4: Rate-distortion performance evaluation for multiple
variations of the proposed method and G-PCC.

TABLE I: Model variations in the ablation study.

Variation D-weighted Loss Rate Loss Init. Separation
M0 X X
M1 X X
M2 X

Proposed X X X

configurations of these models are shown in Table I. If D-
weighted Loss is not checked, the original focal loss is used.
If Rate Loss is not checked, the bit-rate term is removed from
the loss function. If Init. Separation is not checked, the actual
network parameters are coded, rather than the difference from
the Kaiming initialization.

The results are shown in Fig. 4. Comparing M0 to Proposed,
we observe that without the rate-distortion training, the bit-
rates are much higher at the same distortion level, and the
lower bit-rate range cannot be reached. The improvement of
M1 over M2 demonstrates that initialization separation enables
the network to be extended to low-rate range. Finally, com-
paring M1 and Proposed, we see that the distance-weighted
focal loss helps improve the rate-distortion performance sig-
nificantly and consistently over the entire range.

IV. CONCLUSION

In this paper, we introduce a novel approach to point
cloud compression. To overcome the challenges in designing
transforms and motion-compensated prediction techniques for
point clouds, we utilize an iterative optimization process as
the way to find a good compressive representation for a point
cloud. Specifically, we divide the entire space into small cubes
and represent each non-empty cube by a neural network and an
input latent code. The network is shared among all the cubes
in a single frame or multiple frames, to exploit the spatial and
temporal redundancy. We train the network parameters and
latent codes as the representation for all the non-empty cubes

of a point cloud. To the best of our knowledge, this is the first
work to utilize learned neural fields for point cloud compres-
sion. We develop a series of techniques to control the bit-rates
and improve the reconstruction quality. Experimental results
show that these techniques are effective, and our method
achieves a better rate-distortion performance than G-PCC.
Even though the R-D performance of the proposed approach
for static point clouds are below some of the recently published
works e.g., [13], [14], it opens a new avenue for exploration,
and future research in this direction may significantly improve
the performance. More importantly, such an approach has great
potential to effectively compress point cloud videos, because it
can easily exploit the inter-frame redundancy through training
a shared network for multiple frames.
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