
HAL Id: hal-01101678
https://inria.hal.science/hal-01101678

Submitted on 9 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dealing with Skewed Data in Structured Overlays using
Variable Hash Functions

Maeva Antoine, Fabrice Huet

To cite this version:
Maeva Antoine, Fabrice Huet. Dealing with Skewed Data in Structured Overlays using Variable Hash
Functions. The 15th International Conference on Parallel and Distributed Computing, Applications
and Technologies (PDCAT), The University of Hong Kong, Dec 2014, Hong Kong, Hong Kong SAR
China. pp.42-48, �10.1109/PDCAT.2014.15�. �hal-01101678�

https://inria.hal.science/hal-01101678
https://hal.archives-ouvertes.fr

Dealing with Skewed Data in Structured Overlays
using Variable Hash Functions

Maeva Antoine, Fabrice Huet
University of Nice Sophia Antipolis, CNRS, I3S, UMR 7271

06900 Sophia Antipolis, France
Email: FirstName.LastName@inria.fr

Abstract—Storing highly skewed data in a distributed sys-
tem has become a very frequent issue, in particular with the
emergence of semantic web and Big Data. This often leads
to biased data dissemination among nodes. Addressing load
imbalance is necessary, especially to minimize response time
and avoid workload being handled by only one or few nodes.
Our contribution aims at dynamically managing load imbalance
by allowing multiple hash functions on different peers, while
maintaining consistency of the overlay. Our experiments, on
highly skewed data sets from the semantic web, show we can
distribute data on at least 300 times more peers than when not
using any load balancing strategy.

Keywords—hash functions; load balancing; structured overlays;
CAN; semantic web; RDF

I. INTRODUCTION

Nowadays, many applications need to integrate data at web
scale to extract information and knowledge. Semantic web
technologies, such as RDF (Resource Description Framework
[1]), provide useful tools for describing knowledge and rea-
soning on web data. With the advent of Big Data, it becomes
incredibly difficult to manage realistic datasets on a single ma-
chine. Peer-to-peer (P2P) systems, such as Structured Overlay
Networks (SON), are an efficient and scalable solution for data
storage in large distributed environments. Many distributed
RDF repositories based on a SON cluster semantically close
terms, which appears as the best solution to efficiently process-
ing range queries and reasoning on data [2] [3] [4]. Since RDF
data is made of Unicode characters, distributing data among
peers frequently boils down to partitioning the Unicode space.
However, RDF datasets are often highly skewed, depending on
the knowledge represented. As a result, a small subset of peers
will have an arbitrarily large volume of triples to manage. Such
a biased data distribution can lead to large workloads sent to
a single node, which may impact system performance.
Various solutions have been proposed to achieve load balanc-
ing in SON (see Section II). We propose a very different
technique that preserves the ordering of data and does not
require to change the network topology. Our contribution aims
at dynamically managing load imbalance by allowing multiple
hash functions, while maintaining consistency of the overlay.
More precisely, we allow a peer to change its hash function
to reduce its load. Since this can be done at runtime, without
a priori knowledge regarding data distribution, this provides a
simple but efficient adaptive load balancing mechanism. Our
approach is based on a CAN (Content Addressable Network
[5]) storing semantic web data based on the RDF model.
However, the technique presented here could also be used for
other SON, such as Chord [6], and other data types.

To summarize, we show in this paper that a SON can be con-
sistent even when all peers do not apply the same hash function
on data. We also describe a protocol which allows a peer to
change its hash function at runtime. Then, we demonstrate
through simulations that this strategy greatly improves load
balancing of real RDF data.
The rest of the paper is structured as follows. In Section II,
we present existing load balancing solutions for P2P systems.
Section III introduces RDF data storage in a CAN. Section IV
describes how peers can use different hash functions and
change them at runtime. Based on this, Section V presents
different load balancing strategies we propose. Section VI
describes our experimental results and Section VII concludes
the paper.

II. EXISTING LOAD BALANCING SOLUTIONS

Many solutions have been proposed to address the load
imbalance issue in P2P systems.
Hash functions can allow preventive load balancing. In [7],
a peer having to insert an item applies n hash functions on
the item’s key and gets back n identifiers. Then, a probing
request is sent to each peer managing one of these identifiers to
retrieve their load state. Finally, the peer with the lowest load is
chosen to store the item. This technique provides uniform data
distribution, but destroys the natural ordering of information,
useful for solving range queries.
Mercury [8] stores data contiguously on a Chord-like ring.
Hence, range queries can be executed on contiguous peers,
which would be impossible if randomizing hash functions
were used for placing data. Mercury uses node migration as a
load balancing solution: underloaded peers from lightly loaded
areas are moved to overloaded areas.
Node replication, as used by Meghdoot [9], consists in repli-
cating an overloaded peer’s zone to a new peer joining the
system. The authors recommand this approach when overload
is due to high processing load, for example due to requests
for popular items. Similar strategies replicating data [10] are
useful in case of a node failure but consume more disk space
and have high consistency constraints on updates.
However, all these techniques do not address the skewed data
problem. Furthermore, some of them are very costly regarding
network communication, if an overloaded peer first has to find
a suitable underloaded peer in the overlay. Also, they may
impose changes in the network topology, if peers change of
neighbors. Our solution, described in the following sections,
addresses the load imbalance problem from a different angle.
Solving the data skewness issue is at the heart of our approach,
while allowing efficient range query processing and without
having to change the network topology.

1

III. RDF STORAGE WITHIN A CAN

A. Content Addressable Network (CAN)

A CAN network is a decentralized Peer-to-Peer infrastruc-
ture that can be represented as a d-dimensional coordinate
space containing n nodes (denoted as peers). Each peer is
responsible for the zone it holds in the network (a set of
intervals in this space). All dimensions have a minimum and
a maximum CAN-based value Cmin and Cmax (0 and 1
in Figure 1). Each peer p owns an interval [mind

p;maxd
p[

delimited by 2 bounds (lower and upper bounds) between
Cmin and Cmax on each dimension d. A CAN-based interval
is constant and can only be modified during join or leave
node operations. Each peer can only communicate with its
neighbors, thus routing from neighbor to neighbor has to be
done in order to reach remote zones in the network. The CAN
topology is a torus which means, in Figure 1, that peers p1
and p3 are neighbors on the horizontal dimension.

Figure 1: Example of a 2-dimensional Unicode CAN

B. Resource Description Framework (RDF)

The Semantic Web refers to W3C’s vision of the Web of
linked data1, providing machine-understandable information.
RDF provides a powerful abstract data model for struc-
tured knowledge representation and is used to describe se-
mantic relationships between data. Resources are represented
as triples in the form of <subject; predicate; object> ex-
pressions. The subject of a triple indicates the resource
that the statement is about, the predicate defines the
property for the subject, and the object is the value of
the property. For example, when storing these two triples:
<John;fatherOf ;Helen> and <John;fatherOf ;Elsie>,
a machine should be able to understand that Helen and Elsie
are sisters and form a family along with John (i.e. semantic
relations).

C. Storage

Our approach for implementing a distributed storage of
RDF data uses a 3-dimensional CAN in order to benefit from
the 3-part structure of an RDF triple. This technique is based
on the architecture of the Event Cloud [4], a CAN-based
distributed RDF repository. Data is stored in a lexicographical
order and each dimension corresponds to a part of a triple:

1http://www.w3.org/standards/semanticweb/

subject, predicate and object (Figure 2). For all dimensions,
minimum and maximum Unicode values Umin and Umax are
set to determine the Unicode range that can be managed within
the CAN (in Figure 2, Umin is equal to A and Umax to Z). The
lexicographic order preserves the semantic information of data,
by clustering triples sharing common values in contiguous
peers. As a result, range queries, for instance, can be resolved
with a minimum number of hops.

Figure 2: Structure of a 3-dimensional lexicographical CAN.

A Unicode value is associated to each of the peer’s
CAN bounds and a peer is responsible for storing Unicode
values falling between these bounds on each dimension. For
example, on Figure 1, p1 is responsible for data between
[A;G[(corresponding to CAN-based interval [0; 0.25[) on the
horizontal dimension (for clarity, we will represent schemas
as 2-dimensional CAN in this paper). The mapping relation
between CAN-based and Unicode-based values can be seen
as a form of hash function. Indeed, for each Unicode value
corresponds a CAN-based value between Cmin and Cmax,
obtained by applying a given hash function on the Unicode
value. This hash function provides CAN-based coordinates that
determine where a triple should be stored. The default hash
function applied by all peers of Figure 1 for all dimensions is
shown on Figure 3.

Figure 3: Default hash function.

We assume each peer stores RDF data and can easily sort
triples alphabetically (using index trees for instance). A peer
receiving a new triple to insert or a query to execute has to hash
it to check whether it is responsible for it or not. For example,
the hash value of string ProductType1 in the context of a
CAN storing worldwide data (wide Unicode range, up to code
point value 220) would be equal to CAN value 0.00004673
(i.e. at the far-left of the CAN). By default, strings made of
Latin characters have a low hash value, whereas strings made
of any Asian characters have high values (close to Cmax). If
the hash value does not match the peer’s CAN coordinates, it
means the peer is not responsible for the corresponding triple.
In this case, the peer chooses a dimension and forwards the

2

triple/query on the same dimension until it reaches the correct
coordinate for this dimension, then on another dimension and
so on until the message reaches the right peer.

D. Skewed data

The order-preserving storage technique presented above
suffers from a major drawback regarding data distribution.
Indeed, having a system covering the whole Unicode range
means potential overloaded areas may appear, depending on
data distribution. Figure 4-(1) describes a system where only
triples made of Latin characters are stored, which means only
a small area of the CAN is targeted when inserting or querying
data. In consequence, peer p1 becomes overloaded, while the
rest of the network stores nothing as it is dedicated to other
Unicode characters. Based on this observation, our contribution
aims at dynamically adapting the size of skewed Unicode areas
in a CAN, by changing hash functions to determine where
data should be stored. We will present hereafter our notion of
variable hash function and how it helps balance the load of a
storage system.

IV. VARIABLE HASH FUNCTIONS

A. Definition
For each CAN-based interval [mind

p;maxd
p[of a peer

p on a dimension d, corresponds a Unicode interval
[Umind

p;Umaxd
p[. As a consequence, the matching between

p’s CAN interval and p’s Unicode interval can be seen as the
hash function applied by p for dimension d. A peer can use
different hash functions on different dimensions. As in any
standard structured overlay, all peers initially use the same
uniform hash function. In the present case, our function lin-
early matches the minimum Unicode value that can be stored
within our CAN Umin (resp. Umax) to the minimum CAN-
based value Cmin (resp. Cmax). This is shown on Figure 3,
where 0 and 1 respectively match A and Z.

When a peer is overloaded, it has to reduce the Unicode
interval it is responsible for, in order to store less data.
Changing the Unicode value of one of its bounds on a given
dimension implies for the peer to change the hash function
it applies on data. The general idea of this paper is to enable
peers to change their hash function in order to improve skewed
data distribution. For example, in Figure 4-(1), the default hash
function used by all peers places data made of Latin characters
on peer p1. New hash functions successively applied by p1,
p2 and p3 evenly distribute data load between these peers
(Figure 4-(2)), by enlarging the Latin interval. Empty areas
are shrunk in order to give more space to the currently stored
data. If, for instance, large Thai datasets are later inserted, peer
p5 will have to change its hash function in order to balance its
load (with peer p6, in Figure 4-(3)). Therefore, by changing a
hash function, a skewed Unicode interval will be managed by
more peers, and data distribution improved among them.

B. Updating hash functions

As there is no central coordination in an overlay, it is very
difficult to change the overall hash function applied in the
network. However, it is not necessary for all peers to use the
same hash function to get a fully functional CAN. Peers can
use different functions as long as these rules are observed:

Figure 4: Hash function change depending on data skewness.

(a) A peer should know the hash function of its neighbors
for each dimension, and should notify them as soon as it
changes its hash function.

(b) Neighboring peers using different hash functions should
have the same Unicode value on their common bound.

(c) All peers on a given CAN-based bound should apply the
same hash function on this bound. Peers whose CAN
interval includes this bound should also know this hash
function, without needing to apply it.

Rule (a) is required to ensure the arrival of new peers (division
of an existing zone between two peers) is correctly handled.
Also, when routing data in the network, this allows a peer
to choose among its neighbors which one will be the most
efficient for routing a particular data. In the remaining of
the paper, we consider that each peer knows its neighbors
and the hash function they use for each dimension. Rule (b)
ensures overall consistency of the overlay: two peers sharing a
common CAN-based value should share a common Unicode-
based value, even if they use different hash functions. Given

3

two neighbor peers p1 and p2 using h1 and h2 as their
respective hash functions on dimension d, if maxd

p1 = mind
p2

then h1(maxd
p1) = h2(mind

p2). This rule prevents concurrent
hash function changes from creating overlap or empty areas
in the CAN. Finally, rule (c) keeps in line with rule (b) and is
necessary to maintain optimal routing in the overlay. Figure 5
describes the impact of rule (c) by showing the scope of a hash
function change in a CAN. Peer p1 decides to change its hash
function to reduce its Unicode interval on CAN-based bound
0.75. Thus, all peers on 0.75 (the grey area in Figure 5) should
also apply this new hash function. A multicast message is sent
by p1 and routed to all concerned peers, which also includes
p2. Indeed, p2 will not apply the new hash function but must
be aware of it to respect rule (a), as its CAN interval [0.5; 1[
comprises 0.75. This way, if a new peer wants to join p2 and
split on its horizontal interval, p2 and the new peer will both
know which Unicode value to apply on their new 0.75 CAN
bound. Also, p2 must continue routing the multicast message
in order to reach p3 and the other concerned peers.

Figure 5: Hash function update message routing.

We will now focus on the process that happens when a peer
wants to change its hash function. For the sake of simplicity,
we will only allow a peer to reduce its upper bound. The
possible negative consequences of this limitation are addressed
in Section IV-B2.

1) Message propagation: If a peer decides to change its
hash function (see Section V for details on how the new
function is calculated), it applies the update on itself then sends
a multicast update bound message. This message is propagated
to all concerned peers on this CAN-based bound to make them
change their associated Unicode value. Indeed, all other peers
having one of their bounds on the same CAN-based value
on the same dimension must apply the new value, too. This
is very important in order to keep the same topology (same
neighbors) and avoid inconsistency within the CAN (empty
zones no one is responsible for, or overlap zones managed by
two peers). The overloaded peer cannot predict if this change
will overload some of the concerned peers since they may not
be its neighbors. However, this can be easily addressed, as
peers applying this new hash function can also induce their
own hash function change later on.

2) Bound reduction: Peers having their CAN-based upper
bound equal to the maximum authorized CAN value Cmax

should also be able to reduce their upper Unicode bound.
Otherwise, if, for example, a large amount of non-Latin RDF
triples is sent into the system, they would probably be stored
at the bottom right corner of the CAN with no possibility for
the responsible peer to balance its load. To avoid this situation,
we allow peers located at the far right of the CAN to reduce
their upper Unicode bound like any other peer. To do so, we
take advantage of the tore-ring topology of the network, and

consider Cmin = Cmax, which means all Unicode updates
associated to Cmax must also be applied to all peers on Cmin.
As a consequence, peers on Cmin can become responsible for
two Unicode intervals within a single CAN-based interval. This
is shown in Figure 6, representing a CAN where the minimum
Unicode value allowed Umin is A and the maximum Umax is
Z. At step 3, peers p1, p5, and p6 own two different intervals:
respectively [[V ;Z]; [A;M [] for p6 and [[V ;Z]; [A;G[] for p1
and p5. Therefore, when a peer is responsible for two Unicode
intervals, the first interval must stop at Umax and the second
one must start at Umin.

Figure 6: Unicode reduction process on the Cmax bound.

3) Concurrency and message filtering: For a given bound, a
peer p receiving an update message will allow the new Unicode
value only if it is lower than p’s current Unicode value for
the same CAN-based value. Thus, it is forbidden to ask for
a forwards reduction, in order to avoid inconsistent concur-
rent reductions (i.e. on different directions). For example, in
Figure 6, if p6 and p7 decided in a short time interval to
modify the Unicode value for the same CAN bound (0.5) but
on different directions (backwards: from M to J for p6 and
forwards: from M to Q for p7), it would become difficult to
tell which one has priority over the other, especially since their
multicast messages may not be received in the same order by
all concerned peers (p2, p3, p6, p7). Moreover, if messages
containing different hash functions are sent by different peers
at the same time and for the same CAN-based bound, we
ensure all peers will end up choosing the same value: the
lowest one. Thus, peers will reject the other messages and stop
their multicast routing. The only case where a higher Unicode
value would be accepted is when reduction is made by a peer
containing two intervals on one dimension (see IV-B2) and the
new value is included in the first interval. On Figure 6, if, after
step 3, p1 wants to reduce from G to Y , it would no longer

4

be responsible for two Unicode intervals (only [V ;Y [), but its
neighbor p2 would ([[Y ;Z]; [A;M []).

4) Data movement: After a peer p has changed its hash
function, it has to send all triples it is no longer responsible
for to its neighbor(s). To do so, p has to wait until they apply
the update as well (it should be done quickly as they are
only one hop away from p). After sending its triples, p waits
until it receives a storage acknowledgement message from its
neighbor(s) before deleting triples, in order to ensure no triple
is lost during this process.

V. LOAD BALANCING

A. Computing a new hash function

In this section, we explain how adaptive hash functions
are calculated to manage load imbalance. We consider the
number of RDF triples a peer stores as the imbalance criterion,
assuming all triples are of a similar data size.
Let p be a peer storing a given number of triples noted as loadp
on a Unicode interval [Uminp, Umaxp[. If p is overloaded,
it has to send all triples above a certain limit, lim, to its
neighbor(s) on the forward direction on a dimension d, such
as the new value of loadp ≤ lim. Basically, p has to move its
upper Unicode bound backwards, such as only lim data remain
in p’s zone. This is achievable by simply changing p’s hash
function from h1 to h2 such that the new value of h2(maxd

p)
(i.e. the new value of Umaxd

p) is equal to the Unicode value
of p’s (lim + 1)th triple (as we consider p can sort triples
alphabetically). An example is shown in Figure 7, where we
consider a peer is overloaded if it stores more than 6 triples.
Thus, in Figure 7-(1), peer p1 is overloaded and has to change
its hash function on maxd

p1, corresponding to Unicode value
mango. A new hash function h2 should transform maxd

p1 into
the Unicode value of p1’s 7th triple (as lim is equal to 6),
i.e. fig. In Figure 7-(2), p1 and p2 have changed their hash
function to h2 respectively on maxd

p1 and mind
p2, and their

load is evenly balanced.

Figure 7: Load distribution before and after rebalancing.

B. Load balancing policies

We propose hereafter three different strategies a peer can
use to check whether it should induce a rebalancing, and
describe how the limit is calculated.

1) Threshold-based policy: A peer p is said to be over-
loaded when it stores more data than the limit set by a
threshold thres. If a peer is overloaded, it has to send all its
triples above thres to its neighbour(s) on the forward direction
for a randomly chosen dimension d. This approach is similar
to the implementation on top of a Skip Graph proposed by

[11]. The new Unicode value h2(maxd
p) would be equal to

the Unicode value of p’s (thres+ 1)th triple.

2) Locally-based policy: Each peer p periodically contacts
its forward neighbors Fneighborsdp on a random dimension
d to calculate the average load localAvg in its neighborhood.
If p finds out it stores more data than localAvg and more
data than a given threshold localThres, then p can induce a
rebalance. We use localThres to ensure a peer storing very
few triples will not be allowed to change its hash function if it
is surrounded by peers storing few triples, too. However, as the
data distribution and load are not known in advance, relying on
a threshold can be problematic. One way to address this would
be for peers to independently update their threshold value at
runtime, depending on their knowledge of the system’s load
state. Then, p calculates how many triples triplesToMovep it
has to send so that it stores as many triples as the sum of triples
stored by Fneighborsdp. Then, h2(maxd

p) would be equal to
the Unicode value of p’s (loadp − triplesToMovep)

th triple.

3) Overall-based policy: In the present case, we assume
each peer knows an estimate of the average network load,
thanks to a gossip protocol or by asking a peer having a global
knowledge on the system. As the overall load may be very
low in a network made of thousands of nodes, we consider a
peer p is overloaded if it stores at least n times more triples
than the average overall load overallAvg. If so, h2(maxd

p)
would become equal to the Unicode value of p’s median triple,
in order to send half of p’s triples forwards in the network,
without underloading p.

VI. EXPERIMENTS

A. Experimental setup

To validate our approach, we ran extensive experiments in
a cycle-based simulator: PeerSim [12]. A cycle represents the
time required by a peer to perform a basic operation (message
routing, load checking, etc.). We simulate a 3-dimensional
CAN composed of 1000 peers. Maximum Unicode value
supported Umax is set to code point 220 on all dimensions,
to encompass the whole Unicode characters table. In order
to make realistic experiments, we used a dataset made of
triples from three different sources. The first two are only
composed of Latin Unicode characters, from the Berlin BSBM
benchmark [13] and the LC Linked Data Service2. The third
source is extracted from DBpedia3 and contains Japanese
Unicode characters. One million triples are inserted into the
network in the space of 15 cycles, to simulate bursty traffic.
A perfect data distribution would correspond to all 1000 peers
storing 1000 triples. However, this is not achievable in practice
for two reasons. First, the CAN topology may not be perfect
(some zones larger than others). Secondly, real RDF data is
often very skewed, due to the large scope of the whole Unicode
and the fact RDF triples may contain very similar values, like
ID numbers that differ by a single character.
We ran experiments for each strategy described in V-B. For the
threshold-based (resp. locally-based) approach, we set a limit
of 8000 (resp. 30000) triples. For the overall-based strategy, we
used a coefficient of 15, which means a peer was overloaded
if it stored more than overallAvg × 15 triples.

5

Table I: Load balancing results for each strategy.

Strategy Peers
storing
data

Changes of
hash function

Moved
triples

Cycles to
achieve
balance

Standard
deviation
(triples)

None 2 0 0 0 235702

Threshold 652 156 10333076 80 1618

Local 818 170 5153092 100 2675

Overall 602 90 4626023 45 1900

Figure 8: Load distribution (excluding peers storing no data)

B. Results

Table I summarizes obtained results for each load balancing
strategy at the end of simulations. Results are expressed in
terms of number of peers storing data (out of 1000), hash
functions changed by overloaded peers, cumulated total num-
ber of triples moved from peers in order to balance their load,
cycles to achieve balance4 (after all triples are stored by the
very first peer) and standard deviation in terms of RDF triples
stored. Figure 8 represents the load distribution at the end of
our experiments, excluding peers storing no data. For example,
using the threshold-based strategy, 31% of peers storing data
hold between 1 and 99 triples, 32% store between 100 and
999 triples, 37% between 1000 and 9999, while no peer stores
more than 9999 triples.
Without applying any load balancing strategy, results show
that only 2 peers would store data, because of the large bias
between datasets (Latin vs Japanese characters). These two
peers respectively correspond to the one at the far left of
the CAN on each dimension, responsible for storing all Latin
triples, and the peer at the far right of the CAN on each
dimension, responsible for storing all Japanese triples.
The threshold-based strategy offers the lowest standard devi-
ation between the load of peers but requires moving a large
number of triples (over 10 million). The locally-based strategy
distributes data across more peers than other strategies, but has
a higher standard deviation and requires slightly more updates
on hash functions (170). As a consequence, it takes more
time to achieve balance. The overall-based strategy requires
less communication between nodes (only 90 changes of hash

2http://id.loc.gov/
3http://dbpedia.org
4By achieving balance, we mean no more peer is overloaded, according to

a given strategy.

function and 4626023 triples moved), which also means peers
will store more data, but balance will be achieved sooner.
To ensure that load balancing operations do not affect the
consistency of the overlay, 200 random queries were sent to
random peers throughout the experiments. For all of them, a
result was received within a reasonable time (an average of
15 hops to route queries or results). This is because a triple
is always stored at least on one peer. Moreover, moving data
is only done once an update bound message is applied by the
sender and the receiver. Thus, reaching the new responsible
peer for a given triple should not require more than a few
hops in the network, at the very most.
These results show that our approach efficiently improves load
distribution when storing highly skewed data, while maintain-
ing consistency regarding storage and network topology. Using
no load balancing strategy, only 2 peers store data. Therefore,
it is very likely that they would quickly become overloaded.
Conversely, up to 818 peers were able to share workload, when
allowing different hash functions within the overlay.

VII. CONCLUSION

In this paper, we have presented a load balancing technique
for storing highly skewed data in SON. We have shown it is not
necessary for all peers to use the same hash function, while
continuing to maintain optimal routing and consistency in a
CAN overlay. Our approach is based on a dynamic adaptation
of hash functions to data skewness, in order to improve
data distribution among peers. We applied this technique in
the context of distributed RDF data storage, using highly
skewed but nonetheless realistic data. We simulated an overlay
composed of 1000 peers and injected 1 000 000 triples. Load
balancing in the overlay was greatly improved, the number
of peers storing data going from 2 up to 818. This work is
performed without a priori knowledge about data distribution.
Although we used a CAN overlay throughout this paper, the
ideas and techniques presented could be used by any DHT
overlay network.

REFERENCES

[1] G. Klyne and J. J. Carroll, “Resource description framework (rdf):
Concepts and abstract syntax,” 2006.

[2] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. Van Pelt, “Grid-
vine: Building internet-scale semantic overlay networks,” in The Se-
mantic Web–ISWC 2004. Springer, 2004, pp. 107–121.

[3] L. Ali, T. Janson, and G. Lausen, “3rdf: Storing and querying rdf data
on top of the 3nuts overlay network,” in Database and Expert Systems
Applications, International Workshop on. IEEE, 2011, pp. 257–261.

[4] I. Filali, L. Pellegrino, F. Bongiovanni, F. Huet, and F. Baude, “Modular
P2P-based Approach for RDF Data Storage and Retrieval,” in Proceed-
ings of The Third International Conference on Advances in P2P Systems
(AP2PS 2011), 2011.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A
scalable content-addressable network,” vol. 31, no. 4, pp. 161–172,
October 2001.

[6] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in ACM SIGCOMM Computer Communication Review, vol. 31,
no. 4. ACM, 2001, pp. 149–160.

[7] J. Byers, J. Considine, and M. Mitzenmacher, “Simple load balancing
for distributed hash tables,” in Peer-to-peer systems II. Springer, 2003,
pp. 80–87.

[8] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting
scalable multi-attribute range queries,” ACM SIGCOMM Computer
Communication Review, vol. 34, no. 4, pp. 353–366, 2004.

6

[9] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi, “Meghdoot:
content-based publish/subscribe over p2p networks,” in Proceedings of
the 5th ACM/IFIP/USENIX international conference on Middleware.
Springer-Verlag New York, Inc., 2004, pp. 254–273.

[10] M. Cai and M. Frank, “Rdfpeers: a scalable distributed rdf repository
based on a structured peer-to-peer network,” in Proceedings of the
international conference on WWW. ACM, 2004, pp. 650–657.

[11] I. Konstantinou, D. Tsoumakos, and N. Koziris, “Fast and cost-effective
online load-balancing in distributed range-queriable systems,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 22, no. 8, pp.
1350–1364, 2011.

[12] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator,”
in Peer-to-Peer Computing, 2009. P2P’09. IEEE Ninth International
Conference on. IEEE, 2009, pp. 99–100.

[13] C. Bizer and A. Schultz, “The berlin sparql benchmark,” International
Journal on Semantic Web and Information Systems (IJSWIS), vol. 5,
no. 2, pp. 1–24, 2009.

7

