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Abstract—In this work, we analyze the implications and results
of implementing dynamic parallelism, concurrent kernels and
CUDA Graphs to solve task-oriented problems. As a bench-
mark we propose three different methods for solving DGEMM
operation on tiled-matrices; which might be the most popular
benchmark for performance analysis. For the algorithms that we
study, we present significant differences in terms of data depen-
dencies, synchronization and granularity. The main contribution
of this work is determining which of the previous approaches
work better for having multiple task running concurrently in a
single GPU, as well as stating the main limitations and benefits of
every technique. Using dynamic parallelism and CUDA Streams
we were able to achieve up to 30% speedups and for CUDA
Graph API up to 25x acceleration outperforming state of the art
results.

Index Terms—CUDA, Dynamic Parallelism, GPU, CUDA
Graph, CUDA Stream.

I. INTRODUCTION

In recent years, GPU compute capabilities have been sig-
nificantly increasing, however, applications and scalability of
algorithms still face some important challenges. One important
problem regarding scalability is hardware resource assignment;
which makes it difficult to take advantage of the GPU ar-
chitecture and sometimes applications are limited to execute
a single kernel in the GPU without taking advantage of the
whole capability of the device.

With the introduction of Dynamic Parallelism in CUDA, it is
possible to launch kernels from threads running on the device.
This means that the GPU can dynamically generate/execute
work without returning to the host or await for new threads
to be launched. CUDA Dynamic Parallelism allows implicit
synchronization between the parent and the child kernels, this
allows the device to execute work as needed from within the
GPU and divide tasks looking to achieve the maximum degree
of parallelism [1].

Tasking, on the other hand makes it possible for algorithms
with run-time dependent execution flow, to be paralellized.
For instance, a while-loop with independent chunks of work
could have some of these chunks executed simultaneously.
Tasking provides a solution for this problem by implementing

a queueing system, which dynamically handles the assignment
of threads to the work that needs to be performed. Threads
continue to pick up work until the queue of taks is empty
[2]. Task parallelism is a programming paradigm that provides
more flexibility, meaning that the developer is able to deal and
solve with certain problems in efficient ways, for instance,
loops which length is unknown at run time [3].

Another interesting alternative is to combine CUDA Dy-
namic Parallelism with CUDA Streams. In that way it is
possible not only to launch kernels from the GPU, but also
to execute them asynchronously, creating a task-oriented pro-
gramming model within the GPU. However for some applica-
tions, CUDA streams are not enough to efficiently process
some HPC applications, for instance deep neural network
training or scientific simulations have an iterative structure
were the same workflow is executed repeatedly. CUDA stream
require the work to be resubmitted at every iteration which is
both time and resource consuming. To address this issue, since
CUDA 10.0 it is possible to represent the workflow as a graph
as an alternative for submitting tasks using CUDA. A graph
consists of a series of operations such as memory copies and
kernel launches, connected by dependencies which are defined
separately from its execution. With this feature it is possible to
determine the number of nodes and the structure that optimizes
a specific problem.

This work explores different approaches to run several
tasks with data dependencies on the same GPU envisioning
a future integration of tasking oriented programming models
and NVIDIA GPUs. We are testing different algorithm variants
of a well known problem: DGEMM matrix multiplication,
to test the capacity of dynamic parallelism under different
circumstances. First, we test the performance of dynamic
parallelism with three different kernels. Second, we extend
the previous experiment by adding CUDA streams to the same
three kernels to test the impact of asynchronous tasking inside
the device, and finally, we test the implications of doing this
operations from both the host and the device. Finally, we study
the performance of CUDA Graph to determine if there is an
advantage from either side.

Matrix operations are relevant within scientific and engi-

kpistrin
Sello



neering computing operations, there has been a significant
effort for developing libraries that solve efficiently both sparse
and dense matrix operations [4]. In this work, we present
the results of evaluating DGEMM operations on the GPU
using dynamic parallelism and CUDA graph in different
configurations using the following heterogeneous system: 2
x IBM power9 8335-GTH at 2.4 Ghz, 32 GB RAM memory,
and a NVIDIA V100 (Volta) GPU with 16GB HBM2 and
NVLink2 for high-bandwidth communication between CPU
and GPU.

The contribution of this work is the analysis and evaluation
of the current CUDA features for tasking in latest GPU
architecture, this is a preliminary study and analysis for
a future integration of NVIDIA GPUs and tasking-oriented
programming models.

The rest of this document is organized as follows: Section II
discusses the most relevant work that was taken into consider-
ation for this paper. Section III describes the considerations
taken for the implementation of the kernels and how the
dynamic parallelism and CUDA graph are exploited. Finally
section IV discusses the conclusions and future work.

II. RELATED WORK

It is not uncommon to find libraries that implement task-
based programming models [5], [6], [7], [8]. For instance,
StarPU, which is designed for programming CPU/GPU hybrid
architectures handling run-time concerns and task dependen-
cies [9]. Other alternatives which follow a similar paradigm
are Intel Thread Building Blocks (TBB) and High performance
ParalleX (HPX). The rise of alternative for task-based pro-
grams has been so significant the last decade, that even the
OpenMP model integrates task-parallelism from version 3.0
[2].

Another interesting approach is OmpSs, which is a task-
based programming model that extend OpenMP directives to
give support to asynchronous parallelism and devices hetero-
geneity.

Distributing work by tasking is something common when
working with parallel systems, such as clusters, grids or
cloud computing, however it is not so common in hardware
accelerators [10].

In the last CUDA releases, a new feature can be found
which allows to execute a set of independent kernels on the
same GPU [11]. One of the feature to execute multiple kernels
on the same GPU consists in using CUDA streams, for each
kernel a stream is created and every command, action and data
transfer is stored on independent queues. Another alternative
is to create hierarchical calls within the device, exploiting the
dynamic parallelism that the device is capable of [12], [13],
[14].

The work of [15] presents a novel characterization for dy-
namic parallelism, observing the current approaches of subtask
aggregation with the objective of improving the performance
of irregular applications by introducing child kernels to reduce
workload imbalance and improve GPU utilization, reporting a
maximum of 1.8x speedup.

III. IMPLEMENTATION

For this study we propose four different approaches to
benchmark dynamic parallelism and task oriented program-
ming on the GPU. The first approach uses only dynamic
parallelism, and tasks are generated sequentially. Second, we
introduce streams within the GPU, that way we take advantage
of the several execution queues that are available in the
device. Next, we compare the same approach, but instead of
instantiating jobs within the GPU, we create tasks from the
host using multiple streams at the same time. Finally, we test
task performance using the CUDA graph API. Every scenario
was tested using our own DGEMM kernel based on the work
of [4]

Figure 1 shows the proposed configuration for the different
experiments that we perform. We define three different scenar-
ios with different degrees of parallelism, synchronization and
tasks executed every time. The objective of these configura-
tions is to test how well the device handles each scenario and
the obtained performance when the GPU executes more than
one task at the same time. In the first configuration (Top) the
amount of work that is performed at every iteration is very low,
almost sequential so the device must wait for synchronization
after every calculation is performed. The second configuration
(center) has a higher degree of parallelism, it is not the optimal,
but a higher number of operations are expected to be executed
at the same time before the device needs to synchronize.
Finally, the last proposed experiment (bottom), has the highest
degree of parallelism and the number of operations executed
at the same time before the device needs to wait for the next
phase is expected to be the highest.

For all three kernels we made the required modifications in
order to test dynamic parallelism, CUDA Streams and CUDA
Graph to execute several tasks. For this experiment we are
performing DGEMM matrix multiplication to represent the
units of work. To determine the impact of every technique, we
use matrices of size N*N which are divided into tiles of size
M*M. Those values can be modified to define the amount of
work, synchronization and the number of kernels that should
be executed within the GPU.

A. Dynamic Parallelism

The first approach we used to test the proposed experiment
was using only dynamic parallelism to evaluate the GPU
tasking capabilities; the main advantage of this feature is
the capacity of the GPU to constantly create work without
returning to the host [16], [17], [18]. Figure 2 shows the
results of different configurations and amounts of work that
the device executed. As expected kernels that made the most
parallel calculations had a better performance overall, the
best cases had performance gains about 30%. However, there
are important considerations that must be addressed, even
though performance improves from test to test, it is not as
significant as we expected and this is mainly due because
two main reasons. First, even though it is not necessary to
return to the host to generate more work, most of the memory
fetching is from global memory. This approach was tested



Fig. 1. Benchmark test cases used to test different degrees of parallelism
in DGEMM operations. For the first test (Top) synchronization is performed
after every operation, for the second test (center) every Nth operation and for
the final test (bottom) every N*Nth operation.

by switching the DGEMM kernel to the one implemented
in CUBLAS in order to avoid loses or gains due to the
implementation of the kernel and not by the synchronization
pattern. CUBLAS was faster than our implementation, but the
key observation is that the pattern persisted, in other words
the speedup percentage was almost the same as the obtained
with our kernels. This further confirms that the bottleneck of
the execution is how the hardware handles the creation and
destruction of kernels in between launches from the device.
Second, there is a significant overhead that is involved with
creating kernels within the GPU which directly impacts the
performance. To mitigate that, we added CUDA streams to
maximize the amount of asynchronous work.

Fig. 2. Results of the different configurations using Dynamic Parallelism on
a 4096*4096 Matrix. We tested several configurations which are shown in
the x axis. Representing the number of tiles we used times the size of the
elements contained in a particular tile.

B. CUDA Streams with Dynamic Parallelism

With the addition of CUDA streams, we can assign tasks
to different execution queues and as long as there does not
exist data dependencies between the kernels, they should run
concurrently. Once created, a device stream can be used by
any thread within the same thread block. However, it cannot
be used after the thread block finishes executing, on other
thread blocks or on the host. Similarly, streams created on the
host cannot be used on the device.

By including streams into the evaluation, it was observed
that there was a significant improvement in terms of perfor-
mance, the experiment as a whole took less time to complete
in all the configurations that were tested against using only
dynamic parallelism without explicit concurrency. However,
speaking of how the GPU handles several tasks at the same
time, this approach shows limitations. Regardless of the con-
figuration, the GPU did not execute efficiently the different
tasks that needed to execute, even when the third configuration
design had much more parallelism and a higher potential for
overlapped calculations, it did not outperformed significantly
the first configuration that was almost sequential. This is most
likely due to the fact that the overhead of creating kernels from
the device is really expensive in terms of computing time.
Figure 3 shows the results of the performance of launching
different configurations of DGEMM kernels and the time it
takes in terms of milliseconds to complete the execution.

1) CUDA Streams from Host: Based on the previous re-
sults, it is important to address that using dynamic parallelism,
whether it is alone or with CUDA streams, has an important
bottleneck that is directly related to the creation of kernels
within the GPU, to test the impact that it has on the perfor-
mance and task execution, we performed the same experiments
but this time the launches were made from the host not from
the device.



Fig. 3. On red is the result of executing N given kernels from the host,
like a regular CUDA application. On gray is the execution time required to
launch the same number of kernels using CUDA Dynamic Parallelism. Finally
on yellow, the results of launching those kernels using CUDA streams and
CUDA Dynamic Parallelism from the device.

Fig. 4. Results of the evaluation of launching different kernels using different
configurations for CUDA Streams from the host using different configurations.
On the x-axis, the number of tiles times the elements contained in any
particular tile is represented.

Figure 4 shows the results of the experiment. Depending
on the configurations and the number of tiles and the sizes
employed, there is a speedup that is directly related to the
degree of synchronization required for each kernel. The main
gains we were able to achieve was by efficiently implementing
the use of CUDA streams, however they have some drawbacks
as well, for instance it is possible to create as many streams as
jobs to be launched, nevertheless the GPU cannot efficiently
handle as many asynchronous calls. On average, the biggest
acceleration was achieved when using 8 to 16 concurrent
executions.

Dynamic parallelism has some advantages over launching
kernels from the host, it reduces memory and data transfer
between both devices, and work can be dynamically created
within the GPU. Nevertheless it is important to address that

there is a significant overhead involved in the creation of
each new kernel, and in some cases the trade-off between
latency and speedup is not worth it. Two key limitations exists,
first the communication between a parent thread and its child
threads has to be done through global memory variables, and
second launching kernels from GPU threads has a non-trivial
performance overhead, which both were key factors for the
limited speedup that was achieved in this context.

For the sake of clarity and completeness, the results illus-
trated correspond to the execution time for computing a matrix
4096*4096 with 256 tiles and 65536 elements.However for
this study we used different configurations of almost every
variable that we had control of, for example the size of the
matrices ranged from 128x128 to 8192x8192 elements. The
number of tiles in the matrices determined the number of
kernels that were launched in the experiments and ranged from
2x2 to 1024x1024 with the corresponding tiles to properly
fit the original matrix. All tests were performed using square
matrices. We tested the same synchronization scenarios using
our DGEMM implementation from the device. The computing
time drastically varies depending on the scenarios, and the
degrees of parallelism that were achieved. It is important to
highlight that for every experiment synchronization played a
determinant role performance wise, in other words, task that
had the most barriers performed significantly slower than the
kernels whose tasks were launched asynchronously. Regardless
the configuration of the experiment in terms of number of tiles
or elements the conclusions are consistent with the presented
results.

C. CUDA Graph

Finally, in the last test we performed, we adapted the code
to test the previous configurations but using the latest CUDA
Graph API. Figure 5 shows the graphs used to represent the
work flow structure. On the left we have the first case in which
all the tasks are running on the same stream, meaning that
there is little to none task overlapping and kernels must wait
for each other to finish and then start executing. On the second
configuration (middle) we execute N kernels at the same time.
This N is defined by the variable which determines the size
of the Matrix. Finally the third configuration (right) shows the
scenario were we can calculate a whole layer of the resultant
matrix at a time. As the previous experiments we were able
to define the size of the matrices, how many tiles we used
to divide it and the size of each tile. Listing 1 shows how
the implementation is performed, depending on the benchmark
test, nodes must wait for the previous level to finish executing
before starting a new task.

Listing 1. Cuda Graph Implementation
cudaGraph t g raph ;
c u d a S t r e a m t s t r e a m s [ j o b s ] ;
c u d a E v e n t t dgemmEvent ;
c u d a S t r e a m C r e a t e (& s t r eamForGraph ) ) ;
cud aGrap hCrea t e (& graph ) ;
/ / ca se 1



Fig. 5. Graph design to test the different configurations for the experiments,
each node represents a DGEMM operation which is treated as an independent
task. Tasks at different levels cannot execute until the previous one has
finished.

cudaGraphAddNode ( graph ,
k e r n e l a , {} , . . . ) ;

cudaGraphAddNode ( graph ,
k e r n e l b , { k e r n e l a } , . . . ) ;

cudaS t reamWai tEven t ( dgemmEvent ) ;
cudaGraphAddNode ( graph ,

k e r n e l c , { k e r n e l b } , . . . ) ;
cudaS t reamWai tEven t ( dgemmEvent ) ;
/ / ca se 2
cudaGraphAddNode ( graph ,

k e r n e l a , {} , . . . ) ;
cudaGraphAddNode ( graph ,

k e r n e l b , { k e r n e l a } , . . . ) ;
cudaGraphAddNode ( graph ,

k e r n e l c , { k e r n e l a } , . . . ) ;
cudaGraphAddNode ( graph ,

k e r n e l d , { k e r n e l a } , . . . ) ;
cudaS t reamWai tEven t ( dgemmEvent ) ;
c u d a S t r e a m S y n c h r o n i z e ( s t r eamForGraph ) ;

Figure 6 shows the results of the previously described
evaluation. Using the CUDA Graph API, we were able to
achieve a better degree of parallelism and task overlapping.
For instance, between benchmark case 1 - 2 we achieved on
average a 4x acceleration, and between benchmark case 1 - 3
a 12x acceleration. On the best cases we were able to achieve
a 25x acceleration between cases 1 - 2 and 80x acceleration
between cases 1 - 3. This is due to several factors. First the
approach we are proposing works better when the graph design
is breadth oriented instead of depth oriented. This reduces
significantly the amount of computations that require wait
events and overlapping is easily achieved. Next, this approach
works better when we maintain a balance between the number
of tiles and the size of each one. It is better to work with less
number of tiles if it means we can have bigger sub matrices to
compute. However when the number of tiles is small (between
2 - 16) we are not able to achieve significant gains in terms
of tasking because there is not enough work to distribute and
process concurrently.

Figure 7 shows the expected speedup for the different
configurations. Prior to executing the benchmark cases we

Fig. 6. Results of executing tiled Dgemm matrix operations using the different
graph configurations

Fig. 7. Expected speedup for the different configurations of CUDA Graph.

computed a projected maximum speed up, which was cal-
culated by executing the exact amount of nodes that each
individual graph needed to complete all tasks without making
any DGEMM operations at all, just launching all the nodes
and measuring the time that they needed to complete using
CUDA Graph API. The results of the theoretical maximum
is represented in Blue, on Yellow is the performance of a
determined kernel using 32 tiles and on gray are the results
of the execution using 64 tiles. It is important to note that
the configuration of the work flow is determinant on the
performance gains that can be achieved using CUDA Graph.
When comparing the results of CUDA Graph against dynamic
parallelism and CUDA Streams it is evident that the graph
feature outperforms both in terms of efficiency and work
overlap in the device.

IV. CONCLUSIONS AND FUTURE WORK

In this work we have tested several kernel benchmark
configurations, different sizes for both matrices and tiles with
dynamic parallelism and asynchronous streaming as well as
CUDA Graph API. There is a speedup between the proposed
scenarios, on average a 30% acceleration is perceived in each
execution using dynamic parallelism and concurrent streams.
However, while there is a performance gain, it is not as
significant as expected, this is due to the nature of the dynamic



parallelism, creating tasks from within the GPU tends to be
slower to the host when a small number of threads are required.
There are some limitations that need to be addressed in
more efficient ways, for instance, when dealing with matrices
larger than 8192*8192 elements, the device is not capable of
handling the volume of data, even when using libraries such
as CUBLAS to make the computations.

The presented results show different degrees of speedups,
however in the scope of this work, dynamic parallelism and
concurrent streams within the device do not work as expected.
There is much overhead involved and work do not overlap
properly. On the other hand, CUDA Graph API has a better
performance overall, in both terms of performance and tasking
capabilities. CUDA Graph API allowed kernels to run concur-
rently while minimizing waiting and synchronization. With the
addition of CUDA Graph API, we are able to outperform the
current results such as the ones mentioned in the work of
Zhang, et al [15].

After analysing the presented results, this work shows how
the GPU can be used for a tasked-oriented programming model
in a way that applications are no longer limited to execute a
single kernel in the GPU and taking the most advantage of the
device capabilities, and avoiding issues such as the bottlenecks
presented in the creation of kernels with dynamic parallelism
while having independent chunks of work executing at the
same time.

As future work it would be interesting to make a comparison
between other models such as OmpSs and evaluate which
alternative proves better in terms of tasking in the GPU as
well as the integration of both features for future releases.
As a matter of fact CUDA Graph API proved to be the
superior option for task-oriented programming models such
as OmpSs, which could definitely benefit from the integration
to its architecture.
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